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Abstract

To mimic the striking capability of microbial culture for growth adap-

tation after the onset of the novel environmental conditions, a hetero-

geneous microbial population model in the chemostat with essential re-

sources is proposed which considers adaptation by spontaneously phenotype-

switching between normally growing cells and persister cells having re-

duced growth rate. A basic reproductive number R0 is introduced so that

the population dies out when R0 < 1, and when R0 > 1 the population

will be asymptotic to a steady state of persister cells, or a steady state

of normal cells, or a steady state corresponding to a heterogeneous pop-

ulation of both normal and persister cells. Our analysis confirms that

inherent heterogeneity of bacterial populations is important in adaption

to fluctuating environments and in the persistence of bacterial infections.
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1 Introduction

The monod model for a single species in the chemostat has the advantage of be-
ing easily implementable in a laboratory, hence it has been subject to extensive
tests and experiments and has become a benchmark model in microbial ecology
(See, e.g. [17, 21]):

S′ = (S◦ − S)D − 1
y f(S)x,

x′ = (f(S)−D)x,

S(0) ≥ 0, x(0) > 0.

(1.1)

Here S and x are respectively the concentrations of the growth-limiting nutrient
and the microorganisms. S◦ is the concentration of the nutrient supply into the
chemostat. D is the dilution rate and y is the yield constant. The growth rate
f shows saturation kinetics as

f(S) = νmax · S/(a + S), (1.2)

where νmax is the maximal growth rate and a is the saturation constant.
It is however well known that the physiology of microbial population reveals

a striking capability for adaptation after the onset of the novel environmental
conditions ([5] and [22]). Adaptation means that cells vary their cellular com-
position in order to cope optimally with the fluctuate environmental conditions.
For instance, bacteria have been experimentally found to protect themselves at
the cost of suspending their growth against many antibiotic encounters. The
slow-growing persister phenotype can save the population from extinction during
times of stress. This phenomenon was first reported for staphylococcal infec-
tions treated with penicillin ([3]) and has since been observed in many bacterial
species (see e.g. [2, 10, 18, 25]). Such persistence was linked to preexisting
heterogeneity in bacterial populations because phenotypic switching occurred
between normal growing cells and persister cells having reduced growth rates.

Standard kinetic Monod model (1.1) systematically neglects the possible
adaptive variations in growth characteristics and the inherent heterogeneity of
bacterial populations in the persistence of bacterial infections. As a conse-
quence, it remains a puzzle as to why a supposed saturation constant of E.
coli in (1.2) for glucose proved to differ by orders of magnitude under different
environment (see [13, 19]). Moreover, the expected monotone kinetic dynamics
in the Monod equation (1.1) was not able be observed, but showed transient
oscillations before steady state is reached (see C-8 strain of E. coli [8] and algae
Chlamydomonas reinhardii [4]).

Numerous experimental disproofs have led to many attempts of modification
of the original kinetic Monod model (see [5, 23] and the references therein). To
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explicitly include an adaptive mechanism behind persistence, Malik and Smith
([15]) proposed a model of an osmotrophic bacterial population growing in a
chemostat with multiple limiting resources R = (R1, · · · , Rm):

R′j = d(R◦j −Rj)− c−1
j f(R)N, j = 1, 2, · · · ,m,

N ′ = N [f(R)− d] + α(R)D − β(R)N,

D′ = −dD + β(R)N − α(R)D,

(1.3)

where cj ’s are the yield constants, R◦j is the concentration of Rj in the feed
to a well-stirred continuous culture with dilution rate d. The total population
of bacteria cells is divided into two subpopulations: rapidly growing normal
cells N(t) and nongrowing (dormant) persister cells D(t). The rate of switching
from normal to persister is labeled β, and the rate of switching from persister
to normal is labeled α. Note that both α and β are dependent on R.

This model is able to show that, even if the nutrient input concentration
remains relatively low, the bacterial organism could still not be washed out
by switching between the two different phenotypes ([15]). Transient oscillatory
convergence to steady states reported in [4, 8] is also observed in this model.

It should be pointed out that model (1.3) only concerns with the heteroge-
neous population consisting of normal cells and dormant persister cells. How-
ever, the observation in Balaban et al. [2] indicated that there are at least two
types of persistent cells. The type I persisters, e.g., hipA7 mutant strain of E.
coli (Moyed and Bertrand 1983 [18]), are nongrowing cells that exhibit a negligi-
ble spontaneous switching rate from normal to persister. The size of the type I
subpopulation depends on the number of cells that have passed through station-
ary phase and does not increase during growth phase. The type II persisters,
e.g., hipQ mutant strain (Wolfson et al. [25]), on the other hand, constitute
a subpopulation of slow-growing cells. The type II persisters are formed via a
phenotype-switching mechanism whereby a normal cell spontaneously becomes
a type II persister, and the type II persister cell can spontaneously switch back
to the normal phenotype.

Although type I persisters are somehow in the category of the above equa-
tion (1.3), this model is not applicable to slow-growing (but not dormant) type
II persisters any more. To understand the potential dynamics of a bacterial
heterogeneous population of normally growing cells and persister cells having
reduced growth rates, we propose a model (see (2.1) in Section 2) of a bacterial
population where the phenotype is acquired via a spontaneous, reversible switch
between normal and slow-growing persister cells. The corresponding switching
rates are depending on the levels of several essential resources. By essential
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resources, it means that growth ceases in the absence of any one of them (cf.
[20, 24]). Therefore, while stated in terms of bacteria, our model is equally
applicable to osmotrophic organism such as phytoplankton ([11, 12]).

We are able to carry out a global analysis of the proposed model by ap-
proach of asymptotically autonomous theory. A basic reproductive number R0

is introduced so that the population dies out when R0 < 1, and when R0 > 1 the
population will be asymptotic to a steady state of only persisters, or a steady
state of only normal cells, or a steady state corresponding to a heterogeneous
population of both normal and persister cells. Moreover, R0 is observed to be
strictly less than that of a single phenotype without persisters. This observation
suggests that clonal bacterial populations may use persister cells, whose slow
division rate under growth conditions leads to lower population fitness, as an
insurance policy against antibiotic encounters.

Observe that the reduced-growing persisters in our model can also be allowed
to be nongrowing. Therefore our new alternative model is able to describe both
the population dynamics of the mutant hipQ strain of E. coli (Wolfson et al [25]),
which is of Type II phenotype, and that of the mutant hipA7 strain of E. coli
(Moyed and Bertrand [18]) which is of Type I phenotype. Besides, our model
also exhibits the advantage of the adaptive mechanism of phenotype-switching
between the normal cells and slow-growing persisters over that of switching
between normal growing and dormant cells. That is, even if the concentration
of nutrient input into the chemostat is very low, the bacteria cultures could
still survive with persister cells in the slow-growing mode, provided that the
dilution rate is low enough. For the heterogenous cultures switching between
normal and dormant phenotypes in [15], the population survives only if the
essential nutrients input is higher than some threshold value. We illustrate
this phenomena by numerical simulation comparison in Section 4. At the end of
Section 4, we also present in our model that the transient oscillations phenomena
reported in [4, 8] are observed as population levels approach the survival steady
state.

Mathematically, we point out that it involves much more complicated analy-
sis in our model than that in [15] because it includes more potential steady
states. In particular, a key technical lemma (Lemma 5.2) is presented, moti-
vated by which we give the total classification of the steady states. Moreover,
noticing that the switching functions α and β are usually non-smooth, one can-
not utilize the linearization method in [15, 23] to analyze the local stability of
the steady states. An invariant region technique is therefore introduced in this
paper (see Section 5.2) to accomplish our stability analysis. Finally, in order to
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obtain global behavior of the system, we use a new approach by providing the
sufficient and necessary conditions (see Lemmas 5.16-5.18) for determining the
basins of attraction of semitrivial steady states.

Persisters have been selected to increase chances of survival of bacterial
populations exposure to stress. The quantitative characterization of persistence
states and the associated phenotypic transitions should find clinical application
in treatment of pathogens. Single-cell microscope observation of persisters car-
ried out in Balaban et al. [2] has further found that persisters in the wild-type
bacterial population of E. coli are continuously generated during normal growth.
However, passage through stationary phase also increases the number of per-
sisters. The wild-type population can be thus described as consisting of three
subpopulations: normal cells; continuously generated type II persisters; and sta-
tionary phase type I persisters. This may induce the more complex wild-type
population dynamics. We leave the mathematical description and quantitative
measurement of this multiple-persistence switch as our future work.

2 The model and reproductive number

The proposed model follows microbial cultures and multiple inorganic nutrients
S1, S2, · · · , Sm. The total population of microbial cells is divided into two sub-
populations: normal cells and persister cells. At any time t , the number of
normal cells, n(t), and persister cells, p(t), forms the total population

τ(t) = n(t) + p(t).

This quantity changes in time due to the growth or decline of the two sub-
populations. Nutrients are supplied as in a chemostat, with dilution rate d

and input concentrations S◦1 , · · · , S◦m. Bacterial growth depends on inorganic
nutrient concentrations. One usually assumes Michaelis-Menten (i.e., Monod)
functional forms in (1.2). Multiple-nutrient-limited growth can be modeled by
the minimum of the functions describing single-nutrient-limited growth, encod-
ing Liebig’s law of the minimum. For the most generality, we present weak
assumptions on growth rates, see (P1)-(P3) in the following paragraph, of both
the normal and persisters cells. The specific growth functions can be found in
[1, 6, 7] including Liebig’s law of the minimum. The rate of switching from nor-
mal to persister is labeled β, and the rate of switching from persister to normal
is labeled α. Both α and β are dependent on the nutrients S = (S1, · · · , Sn).
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Together, these assumptions result in the following model:

Ṡj(t) = d(S◦j − Sj)−Θjgn(S)n−Θjgp(S)p, j = 1, 2, · · · ,m,

ṅ(t) = n[gn(S)− d] + α(S)p− β(S)n,

ṗ(t) = p[gp(S)− d] + β(S)n− α(S)p.

(2.1)

Here both normal cells and slow-growing persisters, since they are of the same
species, have the same yield constant Θ−1

j > 0. For simplicity, we rewrite model
(2.1) as the following equation in vector form:

Ṡ(t) = d(S◦ − S)− [gn(S)n + gp(S)p]Θ,

ṅ(t) = n[gn(S)− d] + α(S)p− β(S)n,

ṗ(t) = p[gp(S)− d] + β(S)n− α(S)p.

(2.2)

Where S◦ = (S◦1 , S◦2 , · · · , S◦m)T and Θ = (Θ1,Θ2, · · · ,Θm)T . Let L = {S ≥ 0 |
S = S◦ − λΘ, 0 ≤ λ ≤ min

1≤j≤m

S◦j
Θj
} be the portion of the ray through S◦ in the

direction −Θ belonging to Rm
+ . gn and gp are the growth rates of the normal

and persister cells, respectively. We assume the following properties for both of
them:

(P1) gn(gp) : Rm
+ → [0,∞) are continuous function, which are C1 on a neigh-

borhood of L with ∇gn ·Θ > ∇gp ·Θ > 0 on L;

(P2) gn(S) ≥ gp(S) for S ∈ Rm
+ , and gn(S) > gp(S) for S ∈ IntRm

+ ;

(P3) gn(S) = gp(S) = 0 at S = S◦ − min
1≤j≤m

S◦j
Θj

Θ.

Note that persisters in this model can be either in slow-growing phase (i.e.,
gp 6= 0) or in dormant phase (i.e., gp ≡ 0). Our equations are thus able to
describe both the population dynamics of Type II phenotype and that of Type
I phenotype observed in Balaban et al. [2].

Motivated by [15], we assume the switching rates α and β to be continuous,
and piecewise smooth as follows:

• (a) α: Rm
+ → [0,∞) is continuous and A0 := {S ∈ Rm

+ : α(S) = 0} is the
closure of a compact neighborhood of 0 with a piecewise smooth boundary
∂A0. α is C1 except on ∂A0 and ∇α ≥ 0. In addition, we assume that
S ∈ A0 and 0 ≤ R ≤ S implies that R ∈ A0.
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∂B+

Figure 1: The positions of A0 and B+ when there are only two resources.

• (b) β: Rm
+ → [0,∞) is continuous and B+ := {S ∈ Rm

+ : β(S) > 0} is a
compact neighborhood of 0 with a piecewise smooth boundary ∂B+. β is
C1 except on ∂B+ and ∇β ≤ 0. In addition, we assume that R ∈ B+ and
0 ≤ S ≤ R implies that S ∈ B+.

• (c) The closure of B+ is contained in the interior of A0 .

Of course, in the resource phase space Rm
+ , 0 ≤ S ≤ R means that 0 ≤ Si ≤ Ri

for all i = 1, 2, · · · ,m. We refer to ∂A0 as the “normal-switching threshold” and
∂B+ as the “persister-switching threshold”. See Figure 1 depicting the positions
of A0 and B+ when there are only two resources. Moreover, we suppose that
available resources in the chemostat are suitable such that ∂A0 and ∂B+ exist.

For system (2.2), a direct calculation yields that S(t) + τ(t)Θ → S◦ as
t → ∞. By virtue of asymptotically autonomous theory (see [9, 16]), system
(2.2) possesses an autonomous limit system given by:

ṅ(t) = n[gn(S◦ − τΘ)− d] + α(S◦ − τΘ)p− β(S◦ − τΘ)n,

ṗ(t) = p[gp(S◦ − τΘ)− d]− α(S◦ − τΘ)p + β(S◦ − τΘ)n,
(2.3)

where S◦ − τΘ = S. The domain of (2.3) is the triangular region Γ = {(n, p) ∈
R2

+ | 0 ≤ τ = n + p ≤ min
1≤j≤m

S◦j
Θj
}, which is positively invariant with respect to

(2.3). Rewrite (2.3) in vector form

(
n

p

)′

= M
(

n

p

)
, with

M =

(
gn(S◦ − τΘ)− d− β(S◦ − τΘ) α(S◦ − τΘ)

β(S◦ − τΘ) gp(S◦ − τΘ)− d− α(S◦ − τΘ)

)
.

Noticing that α(S◦ − τΘ)β(S◦ − τΘ) = 0, one has

detM = Hn(S◦ − τΘ) ·Hp(S◦ − τΘ),

where
Hn(S◦ − τΘ) = gn(S◦ − τΘ)− d− β(S◦ − τΘ) (2.4)

and
Hp(S◦ − τΘ) = gp(S◦ − τΘ)− d− α(S◦ − τΘ). (2.5)
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We define
Rn0 =

gn(S◦)− β(S◦)
d

, Rp0 =
gp(S◦)

d
,

and the Basic Reproductive Number for our model is given by

R0 := max{Rn0, Rp0}. (2.6)

It captures the maximum of the respective numbers of descendants that both a
single normal cell and a single persister cell, introduced into the sterile steady
state E0 = (0, 0) of (2.3), produce in an average survival period 1/d.

Remark 2.1. The basic reproductive number R0 given in (2.6) naturally in-
cludes the corresponding R∗0 defined in [15], which only considered the phenotype-
switching between normal and dormant cells. In this special case, R0 = Rn0

because dormant persisters are nongrowing. A straightforward calculation then
yields that R0 < (>) 1 iff Hn(S◦) ·Hp(S◦) > (<) 0. Hence,

R0 < (>) 1 ⇐⇒ R∗0 , gn(S◦) · 1
d
· α(S◦) + d

α(S◦) + β(S◦) + d
< (>) 1.

Remark 2.2. It is obvious that R0 is strictly less than that of a single phenotype
without persisters. This observation suggests that clonal bacterial populations
may use persister cells, whose slow division rate under growth conditions leads
to lower population fitness, as an insurance policy against antibiotic encounters.

3 Main results

Hereafter, let E denote the set of steady states of the limit system (2.3). Then
the potential elements of E can only be of the following forms:

E0 = (0, 0), En = (n̄, 0), Ep = (0, p̄), or Ec = (n∗, p∗),

for which n̄, p̄, n∗, p∗ > 0. We refer to En as the normal cell steady state, Ep

the persisters steady state and Ec the coexistence of both normal and persister
cells. We will show that En and Ec, if they exist, are locally asymptotically
stable (see Lemma 5.12). However, they can never exist simultaneously (see
Corollary 5.4). When neither En nor Ec exists, Ep will be stable (see Lemma
5.13); but Ep will lose its stability as En or Ec appears (see Lemma 5.14).

Our first result describes the global dynamics of (2.3):

Theorem 3.1. (i) R0 < 1 implies that E = {E0} and E0 is a global attractor.
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(ii) R0 > 1 implies that E = {E0, Ep} , {E0, Ec}, {E0, En}, {E0, Ec, Ep} or
{E0, En, Ep}. En and Ec, if they exist, are global attractors provided that
n(0) > 0. If E = {E0, Ep} then Ep is a global attractor provided that
(n(0), p(0)) 6= (0, 0).

Theorem 3.1 will be proved in Section 5.4. We now present a simple cri-
terion, when R0 > 1, for determining which case occurs exactly in statement
(ii). Roughly speaking, let subset Λn ⊂ Rm

+ (resp. Λp ⊂ Rm
+ ) be the break-

even nutrient concentration threshold of normal (resp. persister) cells such that
gn(Λn) = d (resp. gp(Λp) = d). Viewing total population τ as a parameter, we
determine its value such that the ray S = S◦− τΘ meets Λn at a resource level
Sn = S◦ − τnΘ and meets Λp at a resource level Sp = S◦ − τpΘ, respectively.
Obviously, 0 ≤ Sn ≤ Sp ≤ S◦ in the resource phase space by the fundamental
hypotheses of gn and gp. Then one can deduce which case in (ii) of Theorem
3.1 occurs by analyzing the relative positions of Sn and Sp with respect to the
normal-switching threshold ∂A0 and the persister-switching threshold ∂B+.

More precisely, we define two functions hi : [0,minj

S◦j
Θj

] → R by

hi(τ) = gi(S◦ − τΘ)− d,

for i = n, p. Obviously, hp ≤ hn, hi is strictly decreasing and hi(minj

S◦j
Θj

) < 0

for i = n, p. Since R0 = max{Rn0, Rp0} > 1, there always exists a unique
τn > 0 such that hn(τn) = 0. Furthermore, when Rp0 > 1 there exists a
unique τp ∈ (0, τn) such that hp(τp) = 0 (τp does not exist when Rp0 ≤ 1).
Let Sn = S◦ − τnΘ and Sp = S◦ − τpΘ (if Sp exists). Then Sn ∈ Λn and
Sp ∈ Λp. The exact criterion that determines all the cases in Theorem 3.1(ii) is
listed in Table 1. The rigorous proof of statements in Table 1 will be given in
next Section (see Proposition 5.1). From Table 1, it is worth noticing that En

cannot exist but Ec or Ep can exist when the nutrient concentration input S◦

is relatively low as β(S◦) > 0.
Corresponding to the steady states E0, En, Ec, Ep of (2.3), there are steady

states e0, en, ec, ep of (2.2). They are given by e0 = (E0, S
◦), en = (En, Sn),

ep = (Ep, Sp) and ec = (Ec, S
∗) with S∗ = S◦ − (n∗ + p∗)Θ.

In the following two main Theorems, we will classify global dynamics of
the original system (2.2) completely. The proof of these two Theorems will be
provided in Section 5.5.

Theorem 3.2. Assume that S◦ does not belong to the normal-switching thresh-
old ∂A0. Then
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Table 1: The classification of E when R0 > 1.

Cases E Figures

Rn0 > 1
β(Sn) > 0 {E0, Ec}

-

6

S1

S2 ∂A0

∂B+

Sn
q

Rp0 ≤ 1
β(Sn) = 0 {E0, En}

-

6

S1

S2 ∂A0

∂B+

Sn
q

-

6

S1

S2 ∂A0

∂B+

Snq

α(Sp) > 0

β(Sn) > 0 {E0, Ec}

-

6

S1

S2 ∂A0

∂B+

Sn
q

Spq

R0 > 1

Rp0 > 1
β(Sn) = 0 {E0, En}

-

6

S1

S2 ∂A0

∂B+

Sn
q

Spq

-

6

S1

S2 ∂A0

∂B+

Spq
Sn
q

Rn0 > 1 α(Sp) = 0 β(Sn) > 0 {E0, Ep, Ec}
-

6

S1

S2 ∂A0

∂B+

Sn
q Sp

q

β(Sp) = 0 β(Sn) = 0 {E0, Ep, En}

-

6

S1

S2 ∂A0

∂B+
Sp
q
Sn
q

Hn(Sp) > 0 {E0, Ep, Ec}
β(Sp) > 0

Hn(Sp) ≤ 0 {E0, Ep} -

6

S1

S2 ∂A0

∂B+

Sp
q

Snq

Rp0 > 1
β(Sp) > 0 Hn(Sp) ≤ 0 {E0, Ep}

Rn0 ≤ 1
-

6

S1

S2 ∂A0

∂B+

Sp
q
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(i) R0 < 1 =⇒ e = {e0} and e0 is a global attractor;

(ii) Rp0 ≤ 1 and Rn0 > 1 =⇒ e = {e0, ec} or {e0, en}. If S◦ ∈ A0, then
e0 is an attractor for the initial value n(0) = 0 and p(0) > 0, while the
nontrivial steady state is a global attractor provided that n(0) > 0. If
S◦ /∈ A0, then the nontrivial steady state is a global attractor provided
that (n(0), p(0)) 6= (0, 0).

(iii) Rp0 > 1 and Rn0 ≤ 1 =⇒ e = {e0, ep} and ep is a global attractor provided
that (n(0), p(0)) 6= (0, 0).

Theorem 3.3. Assume that Rp0 > 1 (hence Sp := S◦− τpΘ exists) and Rn0 >

1. Assume also that both S◦ and S◦−τpΘ do not belong to the normal-switching
threshold ∂A0. Then one of the following alternatives holds exactly:

(i) e = {e0, ep}, {e0, ec} or {e0, en}, and the nontrivial steady state is a global
attractor provided that (n(0), p(0)) 6= (0, 0);

(ii) e = {e0, ec, ep} or {e0, en, ep}, and ec or en is a global attractor provided
that n(0) > 0. Moreover, if S◦ ∈ A0 then ep attracts all the orbit with
the initial value n(0) = 0 and p(0) > 0; if S◦ /∈ A0 then there exists a
τ̂ ∈ (0, τp) such that ep attracts all the orbits with the initial value n(0) = 0
and p(0) ≥ τ̂ , and the other nontrivial steady state (i.e., ec or en) attracts
all the orbits with the initial value n(0) = 0 and 0 < p(0) < τ̂ .

Moreover, we have a simple criterion for determining which case in Theorems
3.2 and 3.3 occurs exactly from Table 1, because Ei in (2.3) is corresponding
to ei in (2.2) for i = 0, c, n, p.

4 New phenomena in numerical simulation

To illustrate the new phenomena of the dynamics in our model (2.2), we con-
sider the dynamical bifurcation of model (2.2) as the environment undergoes
proportional nutrient enrichment: S◦ = ηv0, η ≥ 0, where v0 > 0 is a positive
unit vector. We view η as a bifurcation parameter and explore some important
bifurcations scenarios by numerical simulation. This approach was due to [15],
but we shall present in our model several new bifurcation phenomena, by which
one can make clear the advantage of slow-growing persister strain than dormant
(nongrowing) persister strain in heterogeneous populations against stress.

Assume for definiteness that there are only two resources S1 and S2 and
consider Michaelis-Menten Kinetics: gi

n(Si) = µnSi/(Ki + Si) and gi
p(Si) =
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Figure 2: Time evolution of normal (thick line) and slow-growing persister (thin line) cells.

Population tends to be washed out when the resource environment is extremely poor (top-

left), to a steady state of persisters in relatively resource-poor environment (top-middle), to

coexistence in resource-moderate (top-right and bottom-left) environment, and to a steady

state of normal cells in resource-rich (bottom-right) environment.

µpSi/(Ki + Si), with µp < µn, for i = 1, 2. The growth rate of normal and
persister cells, which obeys Liebig’s law of minimum, takes the form of gi(S) =
min{g1

i (S1), g2
i (S2)}, for i = n, p, respectively. Now let us take piecewise smooth

normal-switching and persister-switching rate α(S1, S2) = max{g1
n(S1)g2

n(S2)−
0.7, 0}, β(S1, S2) = max{0.5 − g1

n(S1)g2
n(S2), 0}, respectively. To incorporate

proportional enrichment, we define v0 = (1, 2) and let η increase gradually
to mimic the environment changing from the “resource-poor” status to the
“resource-moderate” status, and to the “resource-rich” status. Other parameter
values are chosen from the following Table.

µn µp K1 K2 Θ1 Θ2 n(0) p(0) S1(0) S2(0)
5 2.5 20 10 0.4 0.6 0.5 0.5 0.4 0.6

By choosing the dilution rate d = 0.15, new bifurcation phenomenon can
be observed via the numerical simulation shown in Figure 2. A steady state
of slow-growing persisters, instead of coexistence of both normal and persister
cells (observed by [15]), will bifurcate out of the washout state. More precisely,
the population is washed out if the resource environment is extremely poor.
But, if the resource environment is relatively poor, the population will tend to
a steady state of persisters. Then in resource-moderate status the population
coexistence steady state is observed, and in resource-rich status a steady state
of normal cells bifurcates from the coexistence steady state. In Figure 3, we
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Figure 3: Population tends to be washed out when the resource environment is extremely poor

(left), to a steady state of slow-growing persisters in relatively resource-poor environment

(left-middle), and to coexistence in both resource-moderate and resource-rich environment

(right-middle and right).

Figure 4: We take η = 1.1 and d = 0.1. Other parameters chosen are same as the previous

Table. The population is washed out (left) as µp = 0, i.e., the case of normal and dormant

persister cells; while the population can still survive at steady state of persisters (right) as the

case of normal and slow-growing persister cells.

let d = 0.1 and obtain the similar phenomena in Figure 2, except that the
population tends to coexistence steady state in both resource-moderate status
and in resource-rich status.

The evidence shown in Figures 2 and 3 implies that, even if the concen-
tration of nutrient input into the chemostat is very low, the population could
still survive with all cells in the persister mode, provided that the dilution rate
d is low enough. For the heterogeneous population switching between normal
and dormant cells in [15], however, the population survives only if the vector
S◦ := (S◦1 , S◦2 ) is higher than some critical threshold value. The simulation
shown in Figure 4 outstands this advantage of the adaptation mechanism be-
tween normal and slow-growing persister cells than that between normal and
nongrowing persisters. Of course, from our main results, another advantage of
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our model here is that, by choosing S◦1 , S◦2 , d appropriately, one can obtain pure
cultures of only normal cells or of only persister cells. Only pure cultures of
cells of one growing mode (normal cells) can be obtained if cells switch between
normal and dormant states.

Not surprisingly, when the growth rates obey Liebig’s law of minimum, we
take d = 0.3 (see Figure 5); when gn(S1, S2) = g1

n(S1)g2
n(S2) and gp(S1, S2) =

g1
p(S1)g2

p(S2), we take d = 0.2 (see Figure 6) and d = 0.9 (see Figure 7). Similar
three bifurcation diagrams reported in [15] can also be observed in our model.

Figure 5: Population tends to be washed out in a resource-poor environment (left), to coexis-

tence in resource-moderate (middle) environment and to normal steady state in resource-rich

(right) environment.

Figure 6: Population tends to extinction in a resource-poor environment (left) and to coexis-

tence in both resource-moderate (middle) and resource-rich (right) environments.

Figure 7: Population tends to extinction in a resource-poor environment (left), and to normal

steady state in both resource-moderate (middle) and resource-rich (right) environments.
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Transient oscillation, a phenomenon often observed in laboratory culture
of bacteria [8] and algas [4], is obtained in our model (see Figure 8) when
population levels approach the survival steady state.

Figure 8: Transient oscillations in the change of the total concentration τ(t) of one bacterial

population in the chemostat with two essential resources S1, S2.

5 The proof of the main results

5.1 Classification of equilibria of limit system

The following Proposition is the main result in this subsection.

Proposition 5.1. (I) Suppose that Rp0 > 1 and Rn0 ≤ 1. Then E = {E0, Ep}.

(II) Suppose that Rp0 ≤ 1 and Rn0 > 1. Then

(i) E = {E0, En} if β(S◦ − τnΘ) = 0, or

(ii) E = {E0, Ec} if β(S◦ − τnΘ) > 0.

(III) Suppose that Rp0 > 1 and Rn0 > 1. Then one of the following alternatives
occurs:

(i) E = {E0, En} if α(S◦ − τpΘ) > 0 and β(S◦ − τnΘ) = 0;

(ii) E = {E0, Ec} if α(S◦ − τpΘ) > 0 and β(S◦ − τnΘ) > 0;

(iii) E = {E0, En, Ep} if α(S◦ − τpΘ) = β(S◦ − τnΘ) = 0;

(iv) E = {E0, Ec, Ep} if β(S◦ − τnΘ) > 0 = α(S◦ − τpΘ) = β(S◦ − τpΘ);

(v) E = {E0, Ec, Ep} if β(S◦ − τpΘ) > 0 and gn(S◦ − τpΘ) − β(S◦ −
τpΘ)− d > 0;
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(vi) E = {E0, Ep} if β(S◦−τpΘ) > 0 and gn(S◦−τpΘ)−β(S◦−τpΘ)−d ≤
0.

In order to prove this proposition, we need the following key technical lemma:

Lemma 5.2. Assume that Rp0 > 1. Then there exist exactly two points τn,

τp ∈ (0,minj
S◦j
Θj

) with τp < τn such that gn(S◦ − τnΘ) = d = gp(S◦ − τpΘ).
Moreover, if Ec exists, then τ∗ := n∗ + p∗ ∈ (τp, τn) with gn(S◦ − τ∗Θ) − d =
β(S◦ − τ∗Θ) > 0.

Proof. Since Rp0 =
gp(S◦)

d
> 1, one has gp(S◦) − d > 0. Note that gn ≥ gp,

one can also obtain that gn(S◦) − d > 0. By (P3) in the hypotheses of gn(gp),

one has gi(S
◦ −minj

S◦j
Θj

Θ)− d = −d < 0, for i = n, p. Then it follows from the

monotonicity of gn(gp) that there exist exactly two points τn, τp ∈ (0,minj
S◦j
Θj

)
such that gn(S◦ − τnΘ)− d = 0, gp(S◦ − τpΘ)− d = 0. Recall that gn > gp in
IntRm

+ , we obtain τp < τn.
Let Ec = (n∗, p∗) ∈ E with τ∗ := n∗ + p∗ (n∗, p∗ > 0). Then one has

[gn(S◦ − τ∗Θ)− β(S◦ − τ∗Θ)− d]n∗ + α(S◦ − τ∗Θ)p∗ = 0, (5.1)

[gp(S◦ − τ∗Θ)− α(S◦ − τ∗Θ)− d]p∗ + β(S◦ − τ∗Θ)n∗ = 0. (5.2)

Suppose that τ∗ ≥ τn, then

gn(S◦ − τ∗Θ)− d ≤ gn(S◦ − τnΘ)− d = 0. (5.3)

If β(S◦ − τ∗Θ) = 0 then, from (5.2), gp(S◦ − τ∗Θ) − d = α(S◦ − τ∗Θ) ≥ 0.
But because τ∗ ≥ τn > τp, gp(S◦ − τ∗Θ) − d < gp(S◦ − τpΘ) − d = 0, a
contradiction. Therefore, β(S◦− τ∗Θ) > 0 which implies that α(S◦− τ∗Θ) = 0.
So gn(S◦ − τ∗Θ)− d = β(S◦ − τ∗Θ) > 0 by (5.1), contradicting (5.3). Thus we
have proved that τ∗ < τn.

Now we will prove that τ∗ > τp. Otherwise τ∗ ≤ τp, then

gn(S◦ − τ∗Θ)− d > gp(S◦ − τ∗Θ)− d ≥ gp(S◦ − τpΘ)− d = 0 (5.4)

Suppose that α(S◦ − τ∗Θ) = 0, then from (5.2),
p∗

n∗
=

β(S◦ − τ∗Θ)
d− gp(S◦ − τ∗Θ)

≤ 0,

a contradiction. Therefore α(S◦ − τ∗Θ) > 0 and hence β(S◦ − τ∗Θ) = 0. From

(5.1) it follows that
n∗

p∗
=

α(S◦ − τ∗Θ)
d− gn(S◦ − τ∗Θ)

, contradicting (5.4). Thus we have

proved that τ∗ ∈ (τp, τn) with Rp0 > 1.

Now suppose that β(S◦−τ∗Θ) = 0, from (5.1),
n∗

p∗
=

α(S◦ − τ∗Θ)
d− gn(S◦ − τ∗Θ)

≤ 0,

for τ∗ ∈ (τp, τn), a contradiction. So β(S◦−τ∗Θ) > 0 and
p∗

n∗
=

β(S◦ − τ∗Θ)
d− gp(S◦ − τ∗Θ)

and gn(S◦ − τ∗Θ)− d = β(S◦ − τ∗Θ) > 0.
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Lemma 5.3. (i) En exists if and only if gn(S◦− n̄Θ) = d and β(S◦− n̄Θ) =
0.

(ii) Ep exists if and only if gp(S◦ − p̄Θ) = d and α(S◦ − p̄Θ) = 0.

Proof. The proof is obvious, we omit it here.

Corollary 5.4. En and Ec cannot exist simultaneously.

Proof. By Lemma 5.3, En ∈ E if and only if gn(S◦− n̄Θ) = d and β(S◦− n̄Θ) =
0. So, if Ec ∈ E simultaneously, then it follows from Lemma 5.2 that τ∗ < n̄.
As a consequence, 0 < β(S◦ − τ∗Θ) ≤ β(S◦ − n̄Θ) = 0, a contradiction.

Lemma 5.5. (i) If Ep = (0, p̄) exists, then Rp0 > 1.

(ii) If En = (n̄, 0) exists, then Rn0 > 1.

(iii) If Ec = (n∗, p∗) exists, then Rn0 > 1 and β(S◦ − τ∗Θ) > 0.

Proof. Item (i) and (ii) are direct corollary of Lemma 5.3. Now we focus on item
(iii) and recall that (5.1) and (5.2) hold. Suppose that β(S◦ − τ∗Θ) = 0 with
τ∗ = n∗+ p∗. Then, by (5.2), gp(S◦− τ∗Θ)−d = α(S◦− τ∗Θ) ≥ 0. So gn(S◦−
τ∗Θ) > d, which contradicts (5.1). Thus we have proved β(S◦− τ∗Θ) > 0. As a
consequence, α(S◦−τ∗Θ) = 0, and hence by (5.1) Hn(S◦) > Hn(S◦−τ∗Θ) = 0,
where Hn is defined in (2.4). That is to say Rn0 > 1. We have completed the
proof.

We now break the proof of Proposition 5.1 into the following Lemmas and
Corollaries.

Lemma 5.6. Assume that Rp0 > 1 and let τp < τn as in Lemma 5.2. Suppose
that α(S◦ − τpΘ) > 0. Then Rn0 > 1 and

(i) E = {E0, En} if β(S◦ − τnΘ) = 0.

(ii) E = {E0, Ec} if β(S◦ − τnΘ) > 0.

Proof. Suppose that α(S◦−τpΘ) > 0. Then Ep does not exist by Lemma 5.3(ii)
and

β(S◦ − τpΘ) = 0. (5.5)

Therefore, gp(S◦ − τpΘ)− d− β(S◦ − τpΘ) = 0, which implies that

Hn(S◦ − τpΘ) = gn(S◦ − τpΘ)− d− β(S◦ − τpΘ) > 0. (5.6)

So gn(S◦)− d− β(S◦) > 0, i.e., Rn0 > 1.

17



(i) If β(S◦−τnΘ) = 0, then it follows from Lemma 5.3(i) that En = (τn, 0) ∈
E . But, Ec = (n∗, p∗) 6∈ E by Corollary 5.4, which implies that E = {E0, En}.

(ii) If β(S◦ − τnΘ) > 0 then, by Lemma 5.3(i) again, En does not exist.
Moreover, since Hn(S◦ − τnΘ) = −β(S◦ − τnΘ) < 0 and Hn(S◦ − τpΘ) > 0
by (5.6), there exists a unique τ∗ ∈ (τp, τn) such that Hn(S◦ − τ

τ∗Θ) = 0. So
β(S◦−τ∗Θ) = gn(S◦−τ∗Θ)−d > gn(S◦−τnΘ)−d = 0 and gp(S◦−τ∗Θ)−d <

gp(S◦ − τpΘ)− d = 0. Therefore, Ec = (n∗, p∗) can be defined by n∗ + p∗ = τ∗

and
p∗

n∗
=

β(S◦ − τ∗Θ)
d− gp(S◦ − τ∗Θ)

, that is, Ec exists. So, E = {E0, Ec}.

Lemma 5.7. Assume that Rp0 > 1 and let τp < τn as in Lemma 5.2. Suppose
that α(S◦ − τpΘ) = 0 and β(S◦ − τpΘ) = 0. Then Rn0 > 1 and

(i) E = {E0, En, Ep} if β(S◦ − τnΘ) = 0.

(ii) E = {E0, Ec, Ep} if β(S◦ − τnΘ) > 0.

Proof. Since α(S◦ − τpΘ) = 0, it follows from Lemma 5.3(ii) that Ep = (0, τp)
exists. A careful examination in the proof of Lemma 5.6 yields that (5.5),
i.e., β(S◦ − τpΘ) = 0, is a critical condition. Note also that (5.5) is an exact
hypothesis in the statement of this Lemma. Then, similarly as in the proof of
Lemma 5.6, one can obtain that E = {E0, En, Ep} if β(S◦ − τnΘ) = 0, and
E = {E0, Ec, Ep} provided that β(S◦ − τnΘ) > 0.

Lemma 5.8. Assume that Rp0 > 1 and let τp < τn as in Lemma 5.2. Suppose
that β(S◦ − τpΘ) > 0. Then

(i) E = {E0, Ec, Ep} if gn(S◦ − τpΘ)− β(S◦ − τpΘ)− d > 0.

(ii) E = {E0, Ep} if gn(S◦ − τpΘ)− β(S◦ − τpΘ)− d ≤ 0.

Proof. Obviously β(S◦ − τpΘ) > 0 implies α(S◦ − τpΘ) = 0. Then Ep = (0, τp)
exists by Lemma 5.3(ii) and Lemma 5.2. Moreover, β(S◦−τpΘ) > 0 also implies
that β(S◦ − τnΘ) > 0, then En does not exist by Lemma 5.3(i).

(i) If gn(S◦ − τpΘ) − β(S◦ − τpΘ) − d > 0, then (5.6) holds. By the sim-
ilar arguments as in the proof of Lemma 5.6 (ii), one obtains that Ec exists.
Consequently, E = {E0, Ec, Ep} in this case.

(ii) If gn(S◦− τpΘ)−β(S◦− τpΘ)− d ≤ 0, we claim that Ec = (n∗, p∗) does
not exist. Otherwise, it follows from Lemma 5.2 that n∗+p∗ = τ∗ ∈ (τp, τn) such
that Hn(S◦− τ∗Θ) = gn(S◦− τ∗Θ)− d−β(S◦− τ∗Θ) = 0. On the other hand,
since Hn(S◦−τΘ) is strictly decreasing for τ , Hn(S◦−τΘ) < Hn(S◦−τpΘ) ≤ 0
for all τ ∈ (τp, τn). This contradicts that Hn(S◦ − τ∗Θ) = 0. Thus we have
proved our claim, and hence E = {E0, Ep} in this case.
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Corollary 5.9. Assume that Rp0 > 1 and Rn0 ≤ 1, then E = {E0, Ep}.

Proof. By our assumption, it follows from Lemma 5.6 - Lemma 5.8 that only
(ii) of Lemma 5.8 holds. So, E = {E0, Ep}.

Corollary 5.10. Assume that Rp0 ≤ 1 and Rn0 > 1, then

(i) E = {E0, En} if β(S◦ − τnΘ) = 0,

(ii) E = {E0, Ec} if β(S◦ − τnΘ) > 0.

Proof. We first claim that Ep = (0, p̄) does not exist. Otherwise, gp(S◦−p̄Θ) = d

by Lemma 5.3, which implies that gp(S◦) > d, contradicting that Rp0 ≤ 1. Thus,

we proved our claim. Since Rn0 > 1, there exists a unique τn ∈ (0,minj
S◦j
Θj

) such
that gn(S◦ − τnΘ)− d = 0. So En ∈ E if β(S◦ − τnΘ) = 0 according to Lemma
5.3. For the case that β(S◦ − τnΘ) > 0, one can obtain that E = {E0, Ec} by
repeating the proof of Lemma 5.6 (ii) sentence by sentence with τp replaced by
0.

5.2 Stability of the equilibria of limit system

Lemma 5.11. (i) If R0 < 1, then E0 is locally asymptotically stable.

(ii) If Rn0 > 1 and Rp0 < 1, then E0 is a saddle, the stable manifold of E0

lies outside Γ if S◦ 6∈ A0, it is the portion of p-axis in Γ if S◦ ∈ A0.

(iii) If Rn0 < 1 and Rp0 > 1, then S◦ ∈ B+ and E0 is a saddle, the stable
manifold of E0 lies outside Γ.

(iv) If Rn0 > 1 and Rp0 > 1, then

(1) If gp(S◦)− α(S◦)− d > 0, then E0 is an unstable node.

(2) If gp(S◦)− α(S◦)− d ≤ 0(which implies that S◦ 6∈ A0), then E0 is a
saddle, but its stable manifold is outside Γ.

Proof. Noticing α(S◦)β(S◦) = 0, a straightforward calculation yields (i)-(iv).
We just omit it here.

Next we will discuss the local stability of each nontrivial equilibrium point
provided that R0 > 1. However, before proceeding to our further stability
analysis of the nontrivial equilibria, we have to be more careful about the piece-
wise smooth hypotheses for the transition functions α and β. This implies that
system (2.3) may not be smooth in Γ, because S = S◦ − (n + p)Θ may be-
long to ∂A0 where α(S) is not smooth or to ∂B+ where β(S) is not smooth.
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Consequently, one cannot utilize the linearization method in [15, 23] to analyze
the local stability of the steady states. Fortunately, we introduce an invariant
region technique in this section to accomplish our stability analysis.

Lemma 5.12. Ec and En are locally asymptotically stable when they exist.

Proof. We first consider the coexistence equilibrium point Ec with n∗+p∗ = τ∗.
By Lemma 5.5(iii), one has S◦ − τ∗Θ ∈ IntB+, which implies that both α(S)
and β(S) are C1 near S◦ − τ∗Θ. So the Jacobian matrix of (2.3) at Ec exists
and is given by

JEc =

0
B@

n∗(−∇gn ·Θ +∇β ·Θ) n∗(−∇gn ·Θ +∇β ·Θ)

−p∗(∇gp ·Θ)− n∗(∇β ·Θ) + β −p∗(∇gp ·Θ)− n∗(∇β ·Θ) + gp − d

1
CA .

A direct computation yields that detJEc
> 0 and TraceJEc

< 0, which implies
that Ec is locally asymptotically stable if it exists.

At En, gn(S◦ − n̄Θ) = d and β(S◦ − n̄Θ) = 0 by Lemma 5.3. So S◦ − n̄Θ 6∈
B+. Since α is not C1 on ∂A0 and β is not C1 on ∂B+, we cannot use the
similar arguments of linearization in the proof of the stability of Ec as above.
Therefore, we have to consider two cases, that is, (i) S◦ − n̄Θ 6∈ B̄+, where B̄+

is the closure of set B+; and (ii) S◦ − n̄Θ ∈ ∂B+, respectively.
Case (i): S◦ − n̄Θ 6∈ B̄+. Then there exists a neighborhood V of En in Γ

such that β(S◦− (n+p)Θ) = 0 for all (n, p) ∈ V . So system (2.3) in V becomes

n′ = [gn(S◦ − τΘ)− d]n + α(S◦ − τΘ)p,

p′ = [gp(S◦ − τΘ)− d− α(S◦ − τΘ)]p,
(5.7)

with τ = n + p. Observe that gp(S◦ − n̄Θ)− d− α(S◦ − n̄Θ) < gn(S◦ − n̄Θ)−
d − α(S◦ − n̄Θ) = −α(S◦ − n̄Θ) ≤ 0. Considering a smaller V if necessary,
one can find a δ > 0 such that gp(S◦ − τΘ) − d − α(S◦ − τΘ) < −δ for all
(n, p) ∈ V . As a consequence, p′ < −δp in V , and hence p(t) → 0 as t → ∞.
Now consider the limit equation of (5.7), n′ = [gn(S◦ − nΘ) − d]n. Noticing
that gn(S◦ − nΘ) < gn(S◦ − n̄Θ) = d when n > n̄, one has n′ < 0 as n > n̄.
Similarly, n′ > 0 when n < n̄. Therefore En is locally asymptotically stable in
this case.

Case (ii): S◦ − n̄Θ ∈ ∂B+. Then α(S◦ − n̄Θ) = 0 and β(S◦ − n̄Θ) = 0. By
hypothesis (c) concerning α and β, one can choose a neighborhood V of n̄ such
that α(S◦− τΘ) = 0 for all τ ∈ V . Let n+p = τ in V . Then system (2.3) turns
into

n′ = [gn(S◦ − τΘ)− d− β(S◦ − τΘ)]n,

p′ = [gp(S◦ − τΘ)− d]p + β(S◦ − τΘ)n.
(5.8)

20



In the following, we will find a subdomain Γ1 ⊂ Γ, with piecewise smooth
boundary ∂Γ1, such that En ∈ Γ1 and Γ1 is positively invariant with respect
to the vector field of (2.3). To this end, we draw in Γ a straight dashed line
L1 : n = p, which meets another straight dashed line L2 : n + p = n̄ at point
A (see Figure 9). Choose a point G ∈ L1, G > A, sufficiently close to A, we
obtain a domain Γ1 ⊂ Γ, whose boundary ∂Γ1 = CA∪AG∪GB∪BC, where the
segment CA is parallel to the p-axis, and GB parallel to L2. Obviously, En ∈ Γ1.
We will analyze in the following the vector field of (2.3) along different parts of
∂Γ1 one by one. Firstly, on segment CA, it is easy to see that n + p ≤ n̄. So
S◦ − (n + p)Θ ≥ S◦ − n̄Θ, and hence β(S◦ − (n + p)Θ) = 0, which implies that
the first equation of (2.3)

n′ = [gn(S◦ − τΘ)− d]n + α(S◦ − τΘ)p ≥ [gn(S◦ − τΘ)− d]n.

Note also that gn(S◦ − n̄Θ) = d. Then n′ ≥ 0 on CA. Secondly, on segment
AG, (2.3) becomes into

n′ = [gn(S◦ − τΘ)− d− β(S◦ − τΘ)]n,

p′ = [gp(S◦ − τΘ)− d + β(S◦ − τΘ)]n.

because n = p, (5.8) and G is sufficiently close to A. Thus, by taking G closer to
A if necessary, it follows from Lemma 5.3 (i) that n′ ≤ 0, p′ < 0 and |p′|/|n′| > 1.
So the vector field of (2.3) along AG points into Γ1. Thirdly, on GB, a direct
calculation from (5.8) yields that (n + p)′ = n(gn(S◦ − τΘ) − d) + p(gp(S◦ −
τΘ)−d) ≤ 0. Overall, we have proved that Γ1 is positively invariant w.r.t (2.3).

Since En is the unique steady state in Γ1 and there is no periodic orbit in
Γ1 (see Proposition 5.15), En is locally asymptotically stable, which completes
our proof.

Lemma 5.13. Suppose that Ep is the only nontrivial equilibrium of (2.3), then
Ep is locally asymptotically stable.

Proof. Suppose that E = {E0, Ep}. Then it follows from Lemmas 5.6-5.8 that
Ep = (0, p̄) with β(S◦ − p̄Θ) > 0 and gn(S◦ − p̄Θ) − β(S◦ − p̄Θ) − d ≤ 0. So
S◦− p̄Θ ∈ IntB+, which implies that system (2.3) is C1 in the neighborhood of
S◦− p̄Θ. As a consequence, we consider the linearization of (2.3) at Ep and get
the Jacobian Matrix

JEp
=

(
gn(S◦ − p̄Θ)− d− β(S◦ − p̄Θ) 0
−p̄(∇gp ·Θ) + β(S◦ − p̄Θ) −p̄(∇gp ·Θ)

)
. (5.9)
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Figure 9: ∂Γ1 : CA∪AG∪GB ∪BC where

Γ1 is attractive region of En as S◦ − n̄Θ ∈
∂B+.
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Figure 10: ∂Γ2 : AB ∪ BC ∪ CE ∪ EA

where Γ2 is attractive region of Ep as E =

{E0, Ep}.

Obviously, Ep is a locally asymptotically stable node if gn(S◦− p̄Θ)−d−β(S◦−
p̄Θ) < 0. However, when gn(S◦−p̄Θ)−d−β(S◦−p̄Θ) = 0, JEp

is degenerate and
one can not deduce any information just from JEp

. Consequently, we return back
to the original vector field (2.3) near Ep when gn(S◦− p̄Θ)−d−β(S◦− p̄Θ) = 0.
It is easy to see that, in a neighborhood U of Ep in Γ, (2.3) turns into (5.8) with
β(S◦ − τΘ) > 0 for all (n, p) ∈ U, τ = n + p.

We choose a subdomain Γ2 ⊂ U , as in Figure 10, whose boundary ∂Γ2 =
AB ∪ BC ∪ CE ∪ EA, where B is on the dashed line ` : n + p = p̄, AB is the
horizontal segment, BC is the vertical segment and CE is a segment which is
parallel to `. Similarly as in the proof of Lemma 5.12, an easy calculation directly
yields that Γ2 is positively invariant. Since one can choose A,E arbitrarily close
to Ep, Ep is asymptotically stable. Thus we have completed the proof.

Lemma 5.14. Suppose that Ep is not the unique nontrivial steady state. Then
there exists a neighborhood U of Ep in Γ such that the orbit (n(t), p(t)) will leave
U provided that n(0) > 0. Moreover, Ep just attracts a portion of p-axis.

Proof. Let Ep = (0, p̄). Then by Lemma 5.3, α(S◦− p̄Θ) = 0 and gp(S◦− p̄Θ) =
d. Hence S◦− p̄Θ ∈ A0. Moreover, since Ep is not the unique nontrivial steady
state, E = {E0, Ep, En} or {E0, Ep, Ec} by Lemmas 5.6-5.8. We will discuss the
following three cases, respectively.

(i) S◦ − p̄Θ /∈ ∂A0 ∪ ∂B+. Then system (2.3) is C1 at S◦ − p̄Θ, and hence
one can utilize the linearization of (2.3) at Ep and obtain the Jacobian JEp

as
in (5.9). By virtue of Lemmas 5.7 and 5.8(i), it is easy to see that gn(S◦− p̄Θ)−
d− β(S◦ − p̄Θ) > 0 if E = {E0, Ep, En} or {E0, Ep, Ec}. So from (5.9), Ep is a
saddle point, whose stable manifold is a portion of p-axis.

(ii) S◦− p̄Θ ∈ ∂B+. Then α(S◦− p̄Θ) = 0 and β(S◦− p̄Θ) = 0. In this case,
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the set E={E0, Ep, Ec} by Lemma 5.7(ii), where Ec = (n∗, p∗) with τ∗ = n∗+p∗.
Moreover, there exists a neighborhood U of Ep in Γ such that α(S◦ − τΘ) = 0
for all τ = n+ p with (n, p) ∈ U . Therefore, (2.3) can be written as (5.8) again.
Recall that τ∗ > p̄ from Lemma 5.2. Then Hn(S◦ − p̄Θ) > Hn(S◦ − τ∗Θ) = 0.
So one can choose U so small that Hn(S◦ − τΘ) > δ > 0 for all τ = n + p with
(n, p) ∈ U . It then follows from the first equation of (5.8) that n(t) will leave
U provided that n(0) > 0. On p-axis, it is easy to see from the second equation
of (5.8) that Ep attracts all the points in U .

(iii)S◦ − p̄Θ ∈ ∂A0. In this case, the set E={E0, Ep, En} or {E0, Ep, Ec} by
Lemma 5.7. Take a neighborhood U of Ep in Γ such that β(S◦− τΘ) = 0 for all
τ = n + p with (n, p) ∈ U . Then system (2.3) turns into (5.7). By virtue of the
first equation of (5.7), n′ ≥ [gn(S◦−τΘ)−d]n. Noticing that gn(S◦− p̄Θ)−d >

gp(S◦− p̄Θ)−d = 0, one can make U so small that gn(S◦− τΘ)−d > δ > 0 for
all τ = n + p with (n, p) ∈ U . So n(t) will leave the neighborhood U provided
that n(0) > 0. While on p-axis, consider the second equation of (5.7), i.e.,
p′ = [gp(S◦ − pΘ) − d − α(S◦ − pΘ)]p. When p > p̄, one has p′ < 0 because
0 ≤ α(S◦ − pΘ) ≤ α(S◦ − p̄Θ) = 0. So each orbit with initial value n(0) = 0
and p(0) > p̄ is asymptotic to Ep = (0, p̄).

5.3 Nonexistence of the closed orbits

Proposition 5.15. System (2.3) has no periodic orbit.

Proof. Suppose that α and β are C1 in Γ. Then, by taking Dulac’s function 1
np

and the fact that

∇ · 1
np (n′, p′) = −∇gn·Θ

p − α(S◦−τΘ)
n2 − ∇gp·Θ

n − β(S◦−τΘ)
p2 < 0, (5.10)

we have verified that system (2.3) has no periodic orbits in Γ.
We are now focusing on the case that α and β are piecewise smooth in Γ.

Our assumptions on A0 and B+ guarantee that the segment S = S◦ − τΘ, τ ∈
[0,minj S◦j /Θj ], may meet ∂A0 at most one point (or value of τ) which, if it
exists, we label τ0. Similarly, this line may meet ∂B+ at most once and we label
τ+ the corresponding value of τ if it exists. So the worst case is that both τ0

and τ+ exist, and hence system (2.3) fails to be C1 in Γ only along two lines
n + p = τ0 and n + p = τ+. The argument is similar and simpler in neither or
only one line meets Γ. Hereafter we only need to consider this case, i.e., τ0 and
τ+ exist simultaneously.

Suppose that system (2.3) has a periodic orbit, which we label O. Then it
must enclose the equilibrium point Ec. By virtue of Lemma 5.5(iii), one has
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S◦ − τ∗Θ ∈ IntB+. Compared with the Hypotheses (c) concerning α and β, it
is easy to see that τ0 < τ+ < τ∗.

Now we divide the triangular region Γ into three regions I, II and III, where

I = {(n, p) ∈ Γ : α(S◦ − τΘ) > 0, β(S◦ − τΘ) = 0},

II = {(n, p) ∈ Γ : α(S◦ − τΘ) = 0, β(S◦ − τΘ) = 0},
III = {(n, p) ∈ Γ : α(S◦ − τΘ) = 0, β(S◦ − τΘ) > 0}.

Motivated by [15], we introduce new variables u = p/n and τ = n + p, whose
inverse transformations are n =

τ

1 + u
, p =

uτ

1 + u
. Then the three regions I, II

and III are transformed into regions

ω1 = {(u, τ) : u ≥ 0, 0 ≤ τ < τ0},
ω2 = {(u, τ) : u ≥ 0, τ0 ≤ τ ≤ τ+},
ω3 = {(u, τ) : u ≥ 0, τ+ < τ ≤ τmax}

in the uτ−plane, respectively. Of course, τmax = minj
S◦j
Θj

. Moreover, system
(2.3) is then transformed into the following

u′ = u{[gp(S◦ − τΘ)− d− α(S◦ − τΘ)]− [gn(S◦ − τΘ)
−d− β(S◦ − τΘ)]− uα(S◦ − τΘ)}+ β(S◦ − τΘ),

τ ′ = τ
1+u{[gn(S◦ − τΘ)− d] + u[gp(S◦ − τΘ)− d]}.

(5.11)

Obviously, Ec ∈ ω3. Moreover, the u′ = 0 nullcline for (5.11) consists of u = 0
in regions ω1 ∪ ω2 and the graph G1 of the function

u =
β(S◦ − τΘ)

gn(S◦ − τΘ)− gp(S◦ − τΘ)− β(S◦ − τΘ)
, τ+ < τ ≤ τmax, (5.12)

in ω3. A straightforward calculation yields that

u′τ =
−(gn − gp)∇β ·Θ + β(∇gn −∇gp) ·Θ

(gn − gp − β)2
> 0

by the fact that ∇gn · Θ > ∇gp · Θ, gn > gp and ∇β · Θ < 0. So, along G1, u

is a strictly increasing, continuous function of τ , vanishing at τ = τ+ and has a
horizontal asymptote τ̃ , where gn(S◦ − τ̃Θ) − gp(S◦ − τ̃Θ) − β(S◦ − τ̃Θ) = 0.

Recall that gn(S◦− τ∗Θ)−gp(S◦− τ∗Θ)−β(S◦− τ∗Θ) = d−gp(S◦− τ∗Θ) > 0
from Lemma 5.2, and gn(S◦ − τmaxΘ) − gp(S◦ − τmaxΘ) − β(S◦ − τmaxΘ) =
−β(S◦ − τmaxΘ) < 0, one has τ+ < τ∗ < τ̃ < τmax (see Figure 11).

The τ ′ = 0 nullcline for (5.11) are given by τ = 0, and the graph G2 of the
function

u = −gn(S◦ − τΘ)− d

gp(S◦ − τΘ)− d
. (5.13)
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Figure 11: Graph (5.12) and graph (5.13) in the uτ−plane when Rp0 > 1 (left), and when

Rp0 ≤ 1 (right).

of τ , which is defined on [0, τn] if Rp0 ≤ 1, or on (τp, τn] if Rp0 > 1. Here
τp, τn are as in Lemma 5.2 (Note that τn always exists because Rn0 > 1 which
is implied by the existence of Ec). Function (5.13) vanishes at τ = τn. An easy
computation shows that

u′τ =
(gp − d)∇gn ·Θ + (d− gn)∇gp ·Θ

(gp − d)2
.

Then, along G2, u is strictly decreasing in [0, τn] if Rp0 ≤ 1 (resp. strictly
decreasing in (τp, τn] if Rp0 > 1, and has an asymptote τ = τp in this case)(see
Figure 11). The rest of the proof is then almost the same as its counterpart in
[15, Lemma 4] with a minor change, so we omit it here.

5.4 Proof of Theorem 3.1

Proof. If R0 < 1 then both Rp0 < 1 and Rp0 < 1, and hence E = {E0}
by Lemma 5.5. By virtue of Lemma 5.11, R0 < 1 also implies that E0 is
locally asymptotically stable. So it is globally attractive by Proposition 5.15
and Poincaré-Bendixson Theory.

If R0 > 1 then nontrivial equilibria will appear. By virtue of Proposition
5.1, one can obtain that E has one of the following forms: {E0, Ep}, {E0, En},
{E0, Ec}, {E0, Ep, En}, {E0, Ep, Ec}. Since R0 > 1, it follows from Lemma
5.11 (ii)-(iv) that E0 is an unstable node, or a saddle whose stable manifold lies
on p-axis or outside Γ. By Lemma 5.12, Ec and En are locally asymptotically
stable when they exist. It then follows from Lemma 5.14, Proposition 5.15
and Poincaré-Bendixson Theory that Ec (resp. Ep) attracts all the orbits with
n(0) > 0, provided E = {E0, En}, {E0, Ec}, {E0, Ep, En} or {E0, Ep, Ec}.

If E = {E0, Ep}, then Rp0 > 1 by Lemma 5.5(ii). So Lemma 5.11(iii)-(iv)
implies that E0 is an unstable node, or a saddle whose stable manifold lies
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outside Γ. Note also that Ep is locally asymptotically stable by Lemma 5.13.
So Ep is globally asymptotically stable for all (n(0), p(0)) 6= (0, 0) in Γ. 2

5.5 Proofs of Theorems 3.2 and 3.3

Define Σ := S◦ − [S + (n + p)Θ]. Then system (2.2) can be transformed into
the following system of equations

n′ = n[gn(S)− β(S)− d] + α(S)p,

p′ = p[gp(S)− α(S)− d] + β(S)n,

Σ′ = −dΣ,

(5.14)

where S = S◦ − Σ − (n + p)Θ. System (5.14) is restricted to the positively
invariant set Γ̃ = {(n, p, Σ)|n, p ≥ 0,Σ + (n + p)Θ ≤ S◦}. Moreover, let Γ̃n+ =
Γ̃ ∩ {(n, p, Σ)|n > 0} and Γ̃p+ = Γ̃ ∩ {(n, p, Σ)|p > 0}. Then Γ̃n+ and Γ̃p+

are also positively invariant. The corresponding trivial, normal-growing only,
slow-growing only and coexistence steady states of (5.14) are σ0 = (E0, 0),
σn = (En, 0), σp = (Ep, 0) and σc = (Ec, 0), respectively. It also follows easily
from the third equation of (5.14) that Σ(t) → 0 as t →∞. Hereafter denote by
φ(t) := (n(t), p(t),Σ(t)) the nontrivial solution of (5.14).

Being different from the methods in [23, 15], we here use a new approach
by first providing sufficient and necessary conditions (see the following three
Lemmas) for determining the basins of attraction of semitrivial steady states.

Lemma 5.16. Let Rp0 > 1. Assume that S◦ does not belong to the normal-
switching threshold ∂A0. Then, for (5.14), φ(t) → 0 as t → ∞ if and only if
n(t) = p(t) = 0 for all t ≥ 0.

Proof. Since Σ(t) → 0 as t →∞, we only need to consider the necessariness.
Case (i): Suppose that S◦ ∈ A0. Then S◦ ∈ IntA0 by our assumption.

We also obtain that S(t) = S◦ − Σ(t) − (n(t) + p(t))Θ → S◦ as t → ∞,
because φ(t) → 0 as t →∞. So there exists a neighborhood U0 of S◦ such that
S(t) ∈ U0 ⊂ A0 for all t sufficiently large, and hence α(S) = 0, which implies
that (5.14) along φ(t), for t sufficiently large, becomes

n′ = n[gn(S)− β(S)− d],
p′ = p[gp(S)− d] + β(S)n,

Σ′ = −dΣ.

(5.15)

Moreover, one can choose U0 sufficiently small, if necessary, such that gp(S) >

gp(S◦ − τpΘ) for all S ∈ U0, where τp as in Lemma 5.2 since Rp0 > 1. Conse-
quently, gp(S)− d > gp(S◦ − τpΘ)− d = 0 for all S ∈ U0. It then follows from

26



the second equation of (5.15) that p(t) = 0 for all t > 0 sufficiently large. So
the second equation of (5.15) becomes

p′ = β(S)n, (5.16)

for all t sufficiently large. Thus we can also claim that n(t) = 0 for all t > 0
sufficiently large. Otherwise, by the positive invariance of Γ̃n+, one has n(t) > 0
for all t > 0 sufficiently large. Thus β(S(t)) = 0 for all t sufficiently large, which
implies that n′(t) = n(t)[gn(S(t)) − d] > n(t)[fp(S(t)) − d] > 0, contradicting
n(t) → 0 as t → ∞. Thus we have proved that n(t) = p(t) = 0 for all t

sufficiently large. Note also that Γ̃n+ and Γ̃p+ are positively invariant with
respect to (5.14). This implies that n(t) = p(t) = 0 for all t ≥ 0.

Case (ii): Suppose that S◦ /∈ A0. Then (5.14) along φ(t) , for t sufficiently
large, becomes

n′ = n[gn(S)− d] + α(S)p,

p′ = p[gp(S)− α(S)− d],
Σ′ = −dΣ.

(5.17)

Similarly as the proof in case (i), one can easily obtain from the first equation
of (5.17) that n(t) = 0 for all t sufficiently large. So the first equation of (5.17)
becomes

n′ = α(S)p, (5.18)

for all t sufficiently large. We claim that p(t) = 0 for all t sufficiently large.
Otherwise, it follows from (5.18) that α(S(tj)) = 0 for some sequence tj →∞.
By letting j → ∞, one has α(S◦) = 0, which contradicts S◦ /∈ A0. Thus, we
have proved the claim, i.e., p(t) = 0 for all t sufficiently large. The remaining is
the same as the similar arguments in the proof in case (i).

Lemma 5.17. Let Rp0 ≤ 1 and Rn0 > 1. Assume that S◦ does not belong to
the normal-switching threshold ∂A0. Then, for (5.14),

(i) If S◦ ∈ A0, then φ(t) → 0 as t →∞ if and only if n(t) = 0 for all t ≥ 0.

(ii) If S◦ /∈ A0, then φ(t) → 0 as t →∞ if and only if n(t) = p(0) = 0 for all
t ≥ 0.

Proof. (i) S◦ ∈ A0. Then S(t) ∈ A0 because α(S(t)) ≤ α(S◦) for all t ≥ 0 and
A0 is lower-closed. And hence, the system (5.14) becomes the system (5.15).

If n(t) = 0 for all t ≥ 0, then it follows from gp(S(t))
d ≤ gp(S◦)

d = Rp0 ≤ 1 and
the second equation of (5.15) that p(t) converges decreasingly to some a ≥ 0 as
t →∞. Suppose that a > 0, then S(t) → S◦−aΘ as t →∞, and hence (0, a, 0)
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is a steady state of (5.14), which implies that a(gp(S◦ − aΘ)− d) = 0 from the
second equation of (5.15). But gp(S◦−aΘ)

d <
gp(S◦)

d = Rp0 ≤ 1, a contradiction.
Thus we obtain that p(t) → 0 as t →∞, which implies that φ(t) → 0 as t →∞.

On the other hand, suppose that φ(t) → 0 as t → ∞. Then S(t) → S◦ as
t →∞. So there exists a neighborhood U of S such that gn(S(t))−β(S(t))−d ≥
d(Rn0−1)

2 > 0 for all t sufficiently large. Combined with the first equation of
(5.15), φ(t) → 0 yields that n(t) = 0 for all t sufficiently large. Note also that
Γ̃n+ is positively invariant with respect to (5.14). This implies that n(t) = 0 for
all t ≥ 0.

(ii) S◦ /∈ A0. The sufficiency is obvious. The necessariness is the same as in
the proof of case (ii) of Lemma 5.16. We omit it here.

Lemma 5.18. Let Rp0 > 1 (and hence τp exists). Assume that S◦ − τpΘ
does not belong to the normal-switching threshold ∂A0 and Ep is not the only
nontrivial equilibrium of (2.3). Then, for (5.14), φ(t) → σp as t → ∞ if and
only if p(0) > 0 and n(t) = 0 for all t ≥ 0.

Proof. The sufficiency is obvious by Lemma 5.16. We now focus on the neces-
sariness and suppose that φ(t) → σp as t →∞.

Since Ep is not the only nontrivial equilibrium of (2.3), it then follows from
Lemmas 5.7 and 5.8(i) that gn(S◦−τpΘ)−β(S◦−τpΘ)−d > 0 and α(S◦−τpΘ) =
0. As a consequence, S◦− τpΘ ∈ IntA0 by our assumption. We also obtain that
S(t) = S◦−Σ(t)−(n(t)+p(t))Θ → S◦−τpΘ as t →∞, because Ep = (0, τp) and
φ(t) → σp as t → ∞. So there exists a neighborhood V of S◦ − τpΘ such that
S(t) ∈ V ⊂ A0 for all t > 0 sufficiently large, and hence α(S) = 0, which implies
that (5.14) along φ(t), for t sufficiently large, becomes (5.15) again. Moreover,
one can choose V sufficiently small, if necessary, such that

gn(S(t))− β(S(t))− d ≥ δ > 0 (5.19)

for some δ > 0 and all t sufficiently large. Note that n(t) → 0 as t →∞. Then,
by virtue of the first equation of system (5.15), (5.19) implies that n(t) = 0
for all t sufficiently large. Moreover, one can also obtain that n(t) = 0 for all
t ≥ 0, because Γ̃n+ is positively invariant with respect to (5.14). Thus, p(0) > 0
(otherwise φ(t) ≡ 0, a contradiction), which completes our proof.

Proof of Theorem 3.3. Define Σ := S◦− [S + (n + p)Θ] and transform (2.2) into
(5.14). Then the equilibria e0, en, ec, ep of system (2.2) are corresponding to the
equilibria σ0, σn, σc, σp of system (5.14), respectively. Therefore, we hereafter
only consider the set σ = {σ0, σn, σc, σp} of the equilibria of system (5.14). Let
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φ(t) := (n(t), p(t),Σ(t)) be the nontrivial solution of (5.14). Then it is easy to
see that Σ(t) → 0 as t →∞. So (5.14) is asymptotically autonomous with limit
system (2.3). Let Ω(φ) be the ω-limit set of φ(t). Then Ω(φ) can be written
as Ω(φ) := (Ω0, 0), where Ω0 ⊂ R2

+. Then, by the theory of asymptotically
autonomous systems (see e.g., [16, Theorem 1.8]), Ω0 is a chain-recurrent set of
the flow generated by (2.3). Note also that system (2.3) has no periodic orbit,
homoclinic cycle or heteroclinic cycle. Consequently, Ω0 = Ei, where i = 0, p, n

or c, and hence, Ω(φ) = σi for i = 0, p, n or c.
(i) If E = {E0, Ep}, {E0, Ec} or {E0, En}, then σ = {σ0, σp}, {σ0, σc} or

{σ0, σn}, respectively. It follows from Lemma 5.16 that Ω(φ) = σ0 if and only
if n(t) = p(t) = 0 for all t ≥ 0. Therefore, Ω(φ) = σp, σc or σn, respectively, if
(n(0), p(0)) 6= (0, 0).

(ii) If E = {E0, Ep, Ec} (resp. {E0, Ep, En}), then σ = {σ0, σp, σc} (resp.
{σ0, σp, σn}). By Lemmas 5.16 and 5.18, we obtain that Ω(φ) = σc (resp.
Ω(φ) = σn) provided that n(0) > 0.

We now consider the solution φ(t) with the initial value n(0) = 0 and p(0) >

0. Case (a): S◦ ∈ A0. Then S(t) ∈ A0 for all t ≥ 0 because 0 ≤ S(t) ≤ S◦ and
A0 is lower-closed. As a consequence, α(S(t)) = 0 for all t ≥ 0, and hence, the
system (5.14) becomes the system (5.15). Thus n(0) = 0 implies that n(t) ≡ 0
for all t ≥ 0. Noticing p(0) > 0, it then follows from Lemma 5.18 that φ(t) → σp

as t →∞. Case (b): S◦ /∈ A0. Since Ep is not the only nontrivial equilibrium of
(2.3), α(S◦− τpΘ) = 0 by Lemmas 5.7 and 5.8(i). So one has S◦− τpΘ ∈ IntA0.
Then there exists a unique τ̂ ∈ (0, τp) such that S◦ − τ̂Θ ∈ ∂A0. By virtue
of the first equation of the system (5.14), it is easy to see that φ(t) → σp if
p(0) ≥ τ̂ , and φ(t) → σc or σn if 0 < p(0) < τ̂ . Thus we have completed the
proof of Theorem 3.3. 2

Proof of Theorem 3.2. We keep using the notations in the proof of Theorem 3.3
and the fact that Ω(φ) = σi for i = 0, p, n or c.

(i) If R0 < 1, then σ = {σ0} and all the trajectories of (5.14) are attracted
to σ0. Therefore e = {e0} and all the trajectories of (2.1) are attracted to e0.

(ii) Let Rp0 ≤ 1 and Rn0 > 1. Then by Corollary 5.10, E = {E0, En} if
β(S◦ − τnΘ) = 0, or E = {E0, Ec} if β(S◦ − τnΘ) > 0. Hence σ = {σ0, σn} if
β(S◦ − τnΘ) = 0, or σ = {σ0, σc} if β(S◦ − τnΘ) > 0.

If S◦ ∈ A0, then it follows from Lemma 5.17 (i) that Ω(φ) = σ0 if and only
if n(t) = 0 for all t ≥ 0. Therefore, Ω(φ) = σc or σn, respectively, if n(0) > 0.
If S◦ /∈ A0, then it follows from Lemma 5.17 (ii) that Ω(φ) = σ0 if and only
if n(t) = p(t) = 0 for all t ≥ 0. Therefore, Ω(φ) = σc or σn, respectively, if
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(n(0), p(0)) 6= (0, 0).
(iii) Let Rp0 > 1 and Rn0 ≤ 1. Then by Corollary 5.9, E = {E0, Ep}. Hence

σ = {σ0, σp}. It follows from Lemma 5.16 that Ω(φ) = σ0 if and only if n(t) =
p(t) = 0 for all t ≥ 0. Therefore, Ω(φ) = σp provided that (n(0), p(0)) 6= (0, 0).
We have completed the proof of Theorem 3.2. 2

Acknowledgement. The authors are greatly indebted to two anonymous
referees for very careful reading and providing lots of inspiring and helpful com-
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