
20

INTRODUCTION

he first version of Windows CE was released in
November 1996 and it was intended for hand-
held PCs. Version 2.0 was introduced a year

later at the end of 1997. Some changes have been
made to the operating system since its first release to
address problems experienced by the users of version
1.0, to increase its performance and to reduce the size
of the executive.

With the introduction of Windows CE 2.0, Microsoft
wants to gain market share in the embedded operat-
ing systems market. It clearly marks Microsoft's attempt
to enter the embedded systems market. Microsoft
understands the need of an operating system to sup-
port real-time to enter this type of market. In this article,
we discuss the potential use of Windows CE 2.0 for
embedded real-time application development.
Statements on the use of Windows CE 2.0 for such
systems have been made in several articles released
by Microsoft, including [1], [4] and [5]. In [4], Mark D.
Peterson, project manager of Windows CE OS & Tools
Division Microsoft, states "Windows CE 2.0: The Real-
Time Embedded OS". In most articles released by
Microsoft these kind of statements are used as sales
arguments without being really validated by technical
data. Except [1], which gives measures of latencies. We
will discuss these figures later on. In discussion groups
on the real-time and embedded systems (comp.real-
time and comp.arch.embedded) Windows CE is gen-
erally not accepted as a real-time embedded operat-
ing system. We wanted to get to the heart of the
polemic and examine the operating system from every
angle to give an objective conclusion. This article is an
executive summary of the full evaluation report avail-
able later this year.

In the next two sections, we concentrate on the
requirements for embedded real-time applications and
determine whether Windows CE 2.0 can meet them.
Then we will comment some results of tests performed
by us and compare them to the results of QNX
Neutrino 1.0.

EMBEDDED

In this first section we focus on the embedded attribute
of the application we would like to develop for
Windows CE 2.0. The most important factor for embed-

ded applications is their memory size. Even if the price
of memory lowers every day, a small memory footprint
reduces the costs when producing the custom system
in large quantities. The key to success for an operating
system is to have a modular architecture as opposed
to a monolithic architecture. Modular systems have the
advantage of being adjustable to contain only the
required functionality.

Modularity
Microsoft insists on the modularity of the new version
of its 32-bit operating system. This modularity allows
the developer to include only the required modules for
his application. The benefit of modularity is to reduce
the size of the operating so as to contain only the
required functionality. It also reduces the complexity of
a system. A high number of modules increases the
interaction amongst them, which may in some cases
cause system failures such as deadline misses and
deadlocks. Furthermore modularity allows the develop-
er to replace specific modules with proprietary or third
party modules. Microsoft has provided the operating
system with a considerable set of modules, which
includes support for FAT file system, Java and a TCP/IP
protocol stack. Some of these modules are even sub-
divided into smaller components. However the mini-
mal configuration requires 330kbytes of ROM and
28kbytes of RAM (see [3]). A different paper published
by Microsoft ([2]) states that "a single non-display appli-
cation would require less than 500K of ROM and 350K
of RAM". This is a lot compared to other real-time oper-
ating systems like QNX's Neutrino 1.0, which requires
less then 128Kbytes for the equivalent minimal config-
uration.

Another point is that Windows CE is completely
ROMable. This means that the operating system can
execute from ROM with the use of some RAM for the
registry, the Windows CE database, the heaps and the
stack.

Portability of Windows CE 2.0
The system architecture has been designed to easily
port the operating system to a custom platform. Most
of the platform-specific code resides in the OEM
Abstraction Layer (OAL). This layer is situated between
the kernel and the platform hardware (see Figure 1).
Microsoft supplies a tool called OAL Adaption KIT
(OAK) to port the OAL to a specific target platform.

Copyright by Real-Time Magazine 98-3 (http://www.realtime-info.be)

By Martin Timmerman, Chief-Editor of Real-Time Magazine,
Bart Van Beneden Project Manager,

Laurent Uhres, Software Engineer,
Real-Time Consult.

Is Windows CE 2.0 a real threat
to the RTOS World ?

This article gives an overview of the capabilities of Windows CE 2.0 as a real-time operating system
(RTOS). This article is part of an evaluation project for real-time operating systems.

Is Windows CE 2.0 a real threat
to the RTOS World ?

T

RTOS EVALUATION

RTOS EVALUATION

21

Some information and guidelines are given in the
manual to proceed. The CPU requirements are listed
in the manual. An e-mail address is provided to get
information on specific processor support. But the doc-
umentation is not as complete on the procedure to
port the OAL and to build a new kernel as one would
expect.

Application Programmer Interface
The CE application programmer interface (API) is a
subset of the Win32 API. Approximately half of the inter-
faces routines of the Windows NT API are implement-
ed. This makes a total of about 600 routines. People
developing for NT are used to this interface and will be
able to easily implement programs. When developing
applications for CE, they can keep on using the
Windows integrated development environment (IDE).
But when developing the OAL the developer has to get
back to the basic DOS command prompt.

As the attempt to standardise the API for real-time
operating systems has not been as successful as
excepted, the Win32 API could rapidly become a de
facto standard because of the omnipresence of NT
and Windows95/98.

REAL-TIME

The second point of our investigation is the real-time
characteristic of the application. For an operating sys-
tem to support real-time the following elements are
required:
• The operating system needs to be multithreaded

and pre-emptible;

• The notion of thread priority has to exist;

• The operating system has to support predictable
thread synchronization mechanisms;

• A mechanism for priority inheritance must be avail-

able.

• The OS behavior should be known and predictable
(interrupt latencies, task switch latencies, driver
latencies, etc). This means that there should be a
maximum response time under all load circum-
stances.

It is important to note that these requirements are nec-
essary but not sufficient.

The Kernel: An Overview
Before studying this topic, we need to have an
overview of the kernel functionality. Figure 1 shows the
architecture of CE. The kernel resides above the OAL
layer described in the previous section. It includes
memory management, process management and
exception handling.

Multitasking and multithreading is implemented by a
pre-emptive priority-based scheduler using time-slicing
within a priority level (except at the highest priority
level). Priority levels assigned to threads are static. A
system of priority inheritance exists that adjust thread
priority levels to prevent priority inversion mechanism.

The system uses the MMU for virtual memory man-
agement. A single 4Gbyte virtual address space is cre-
ated by the operating system. Although all the
processes run in this common memory, they are pro-
tected from each other because the kernel assigns to
each process a unique slot in memory.

Interrupts are handled by the system in a traditional
way: when an interrupt occurs, the kernel looks up the
IRQ and calls the registered interrupt service routine
(ISR). An important point is that interrupts can not be
nested.

Interrupt Handling
The fact that interrupts can not be nested means that
all interrupts are disabled during the processing of an
interrupt. Especially, high level interrupts are not taken
into account when a low-level interrupt is processed.
This adds latencies to the system that are difficult to
predict and estimate. The system looses its determin-
ism. Application can miss deadlines because device
driver interrupts block your high priority interrupts. What
happens is that the execution of a critical application
depends on third party elements even when these use
low-level interrupts. A limited solution is to minimise the
processing time of an ISR. The interrupt model pro-
posed by Microsoft (see Figure) encourages handling
the interrupt at task level within an interrupt service
thread (IST). Interrupts and ISTs are linked together
through an event object. When an interrupt occurs, the
associated ISR performs minimal processing and
returns an interrupt ID to the kernel. The kernel sets the
event associated with the interrupt ID. The IST waiting
on that event is notified of an interrupt when the sys-
tem releases this event. It then starts performing the
interrupt handling. Generally ISTs execute at the high-
est priority level.

Processes and Threads Model
Here we stumble on the second problem: only eight
priority levels are available for threads. This is far too
few because it is difficult to use methodologies to

Copyright by Real-Time Magazine 98-3 (http://www.realtime-info.be)

Figure 1 System architecture

RTOS EVALUATION

22

design the thread model (e.g. rate-monotonic schedul-
ing). If the system needs more than eight threads,
some of them need to run on the same priority level
and thus share their CPU time because of the time-
slice algorithm. Only at the highest priority level the
threads are not time-sliced. They execute until they vol-
untary relinquish the CPU or when they perform a
blocking system call. This level is used for interrupt
handling. This can lead to very dangerous situations in
a system that needs to handle several different inter-
rupts. Imagine the following scenario where the two dif-
ferent ISTs execute at the highest level: a low-level
interrupt occurs and the kernel wakes the associated
IST up. While the IST executes a high level interrupt
occurs. The system releases the corresponding IST.
But this thread will not execute before the low-level
handling is completed. The obvious solution is to exe-
cute the first IST at a lower priority level. This is applic-
able in a system with only two different interrupts. In a
system with many interrupts, each thread needed to
handle an interrupt should be assigned an unique pri-
ority level, leaving few levels for the rest of the applica-
tion. It is easy to see that this low number of priority lev-
els makes it difficult to design a task model and to cor-
rectly implement device drivers.

Memory Model
As said before, memory management is based on vir-
tual memory management. This type of architecture
adds robustness to an application since they are pro-
tected from each other. On the other hand this kind of
memory management adds overhead to the execution
of an application because references to virtual
addresses need to be translates into physical address-
es and these addresses need to be checked to
ensure the protection.

Windows CE 2.0 features memory mapping allowing
threads to share physical memory. Using shared
memory allows fast communication between threads.
Memory mapping permits also access to memory and
registers of hardware devices.

The systems supports on-demand paging, which
means that only the page required for the execution of
a RAM-based application, is loaded into memory. This
paging mechanism adds overhead to the execution of
a program because access to a page not located in
memory incurs a page fault. Only then will the system
load the necessary page. Therefore, the API provides a

routine that permits to lock a specified region of a
process virtual address space into memory avoiding
that subsequent access to that region will provoke a
page fault.

PERFORMANCE

After a technical approach in the first two sections, we
concentrate in this section on some time measure-
ments. The measurements have been carried out with
an Intel Pentium 200Mhz MMX processor on a classi-
cal PCI ATX motherboard, with the cache enabled. The
hardware specification should be taken into account
when reading the results. Other results published by
Microsoft [1] and [2] are based on a SH-3 series micro-
processor running at 60Mhz. SH-3 microprocessors
run at 60MIPS compared to about 400MIPS for the
microprocessor we used in our test configuration. The
x86 platform has been chosen to provide a standard
platform for all our evaluations. The figures published
here should therefore be compared to other evalua-
tions we in this issue performed (see also another arti-
cle on page 11 in this issue - "Windows NT Real-Time
Extensions: better or worse ?") and in the past and to
forthcoming evaluations (for more detailed information
on our evaluation program see the article "RTOS
Evaluations Kick Off!" in this issue on page 6).

Interrupts
The first metric measured by the tests are latencies for
interrupt handling. In our test, we implemented the
interrupt model suggested by Microsoft: the handling
of the interrupt is done at thread level, in an interrupt
service thread (IST). The interrupts are generated by an
external device every 100µs (+/- 5µs) on the PCI bus.
As this device has an onboard clock, the interrupts are
generated asynchronously to the motherboard clock.

The metric measured by the test is the IST latency. IST
latency is the time interval from the last line executed
in the interrupted thread to the first line executed in the
IST handling the current interrupt. This interval includes
the interrupt latency and the time for the kernel to sig-
nal the event used to synchronise the IST. The average
for IST latency is 9.5µs and the maximum is 13.4µs.
The frequency distribution graph (Figure 4) shows that
the results are distributed around the average. The
peek observed at 18.8µs (Figure 3) is probably due to
occurrence of another interrupt, which has not neces-
sarily a higher level. Figure compares the results for

Copyright by Real-Time Magazine 98-3 (http://www.realtime-info.be)

Figure 2 Interrupt handling

RTOS EVALUATION

23

Windows CE 2.0 to QNX's Neutrino 1.0 (see [6] for the
evaluation of Neutrino 1.0) on an identical platform and
using the same memory model. The chart indicates
clearly that Windows CE 2.0 needs some improvement
to be competitive.

Threads
With the second test we measure the thread switch
latency, i.e. the time to switch from task to task. Ten
tasks have been used for this test. All the tasks run at
the same priority level and voluntarily relinquish the
CPU using a system call that puts a task at the end of
the priority queue.

The average of the measures (Figure 6) for thread switch
latency is 4.4µs and the maximum is 34.4µs.

Figure shows an enlargement of the first 1000µs.
Each point on the graph represents the thread switch
latency. The first point is the time to switch from first
task to the second task. It is interesting to note that the
first nine values are higher then the rest (remember
that we used ten threads in our test). Windows CE

seems not allocate all the necessary resources for a
thread to execute when it is created. These resources
are allocated when the thread executes for the first
time, which explains these initial higher results.
Consequently, although the average time for a thread
switch is 5µs, the maximum is 34.4µs and occurs at
the first execution of the thread. Again, compared to
Neutrino (Figure 8), the Windows CE results seem to
be higher, especially the maximum values.

Two rules should be applied to a real-time operating
system to reduce maximum latencies. Firstly, objects
should be ready when created, no additional resource
allocation should be done later on. Secondly, system
queues should be sorted when objects are added to
them, no rearrangement should be done to get an
object from a queue. Figure is an example for the first
rule. Applying it to Windows CE 2.0 would reduce the
maximum value for task switch latency from 34.4µs to
9.4µs. An example for the second rule is the queue of
threads pending on an unavailable semaphore. This
queue should be sorted on the thread priority level
each time a thread is added to it.

ADDITIONAL THOUGHTS

Finally, it is interesting to note that the article "Using
Windows CE for Real-time applications" of the user
manual contains the following statements:

"Although Windows CE is not a fully deterministic real-
time operating system, its well-designed system of
interrupt and thread priorities helps overcome this lim-
itation for real-time applications."

"While the may be certain time-critical (hard real-time)
applications for which Windows CE is not appropriate,
it does have the ability to handle the majority of today's

Copyright by Real-Time Magazine 98-3 (http://www.realtime-info.be)

Figure 3. Windows CE 2.0 - IST latency

Figure 4. Windows CE 2.0 - IST latency -
frequency distribution

Figure 5. IST latencies comparison

Figure 6. Windows CE 2.0 - Thread switch latency

Figure 7 Windows CE 2.0 - Thread switch latency -
enlargement

RTOS EVALUATION

24 Copyright by Real-Time Magazine 98-3 (http://www.realtime-info.be)

real-time systems."

The first statement contains a contradiction between
"not a fully deterministic" and "real-time operating sys-
tem". A definition of a real-time operating system is that
it can handle events in a bounded and deterministic
way. Furthermore, we conclude that the system of inter-
rupts is not well designed. The section on interrupt
handling explains why. Finally, from what has been
said in this article, it is hard to believe the second state-
ment.

CONCLUSION

The conclusions we can draw from this study is that
Windows CE 2.0 needs to mature. Performance mea-
surements show that Windows CE 2.0 is not fast
enough compared to a similar operating system. The
insufficient number of priority levels and the fact that
interrupts can not be nested makes the operating sys-
tem not suitable for medium and large real-time
embedded applications. Because for these applica-
tions, which handle many interrupts and include a
large set of threads, Windows CE 2.0 can not insure
deterministic and bounded responses.

This version of CE is more appropriated for small real-
time applications like device control and data acquisi-
tion although its memory requirements are a little high.
These systems have a simple design and low func-
tionality. They require a response time within a 1ms.
The number of tasks in such applications is lower then
10. As an example we can think of a system monitor-
ing a small number of temperature probes. The num-
ber of probes can hardly exceed two at most three
because of the interrupt handling mechanism.

Referring to the profiles defined in [7] based on the
POSIX 1003.13 standard, Windows CE 2.0 can be used
for small embedded controller systems and embed-
ded dedicated systems.

Its major assets are its modularity and the API based
on the Win32 API. Another advantage is the design of
the operating system's architecture: it is scalable
because of its modularity and it is possible to develop
a new board support package.

To overcome the problems pointed out in this article,
Microsoft proposes for version 3.0 faster IST latencies,
nested interrupts and more priority levels. Let's wait
and see…

REFERENCES

[1] "Real-Time Systems with Microsoft Windows CE",
http://www.eu.microsoft.com/windowsce/embed-
ded/techpapers/wce20/, 1998.

[2] "Microsoft Windows CE 2.0 - Embedded Solutions",
http://www.microsoft.com/windowsce/pie/win-
dowsce20ds.htm, 1998.

[3] "Microsoft Windows CE Memory Use",
http://www.eu.microsoft.com/msdn/news/fea-
ture/100197/memdrft2.htm, 1997.

[4] Peterson, M. D. , " Windows CE and the Internet ",
http://www.microsoft.com/sbnmember/download/c
epresentation.ppt.

[5] Pellerin, D., "The Win32 Programming Model: A
Primer for Embedded Software Developers",
http://www.eu.microsoft.com/windowsce/embed-
ded/techpapers/wce20/, September 1997.

[6] The full evaluation report on QNX Neutrino will be
available in October 1998.

[7] Timmerman, M., and Monfret, J.C., "RTOS
Benchmark Program", Real-Time Magazine, Issue
95Q2, pag. 12-17.

Dr. Ir. Martin Timmerman graduated in Telecommu-
nications Engineering from the Royal Military
Academy (RMA) Brussels and received his
Doctorate in Applied Science from the Gent State
University (1982). He became the director of the
System Development Center (SDC) at RMA, which
he created in 1983, and converted himself to a
Computer Science Engineer. Presently, he gives
general courses on Computer Platforms and more
specific courses on System Development
Methodologies at the RMA. Outside the RMA, Martin
is known for his audits, reviews, seminars, evaluation
reports and feasibility studies he performs with Real-
Time Consult. Real-Time Consult is also known for
Real-Time Magazine and the Real-Time
Encyclopaedia web-site (http://www.realtime-
info.be) His second company, Real-Time User
Support International (RTUSI) provides hardware
and software support services and is involved in
project engineering for Real-Time Systems.
Bart Van Beneden has been with Real-Time Consult
since 1997 where he is involved in the RTOS evalu-
ation program of Real-Time Magazine as a project
manager. He received his degree in computer sci-
ence at the Free University of Brussels. Before join-
ing Real-Time Consult, he designed multi-media
applications with LaserMedia Inc.
Laurent Uhres graduated in 1997 as an analyst-pro-
grammer from the Haute Ecole Rennequin Sualem,
Belgium. He has an additional diploma in Object
Oriented Development from the Instito Politécnico
do Porto, Portugal. Laurent joined Real-Time Consult
mid 1997 to work as a software engineer where he
has specialized himself in evaluating RTOSs.

* Although all care has been taken to obtain correct information and
accurate test results, Real-Time Consult and Real-Time Magazine can-
not be liable for any incidental or consequential damages (including
damages for loss of business, profits or the like) arising out of the use
of the information provided in this report, even if Real-Time Consult
and Real-Time Magazine have been advised of the possibility of such
damages.

Figure 8. Thread switch latencies comparison

