
RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 1 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na WHAT MAKES A GOOD

RTOS

© Copyright Real-Time Consult. All rights reserved, no part of the contents of this
document may be reproduced or transmitted in any form or by any means without

the written permission of Real-Time Consult.

Disclaimer

Although all care has been taken to obtain correct information and accurate test
results, Real-Time Consult and Real-Time Magazine cannot be liable for any

incidental or consequential damages (including damages for loss of business,
profits or the like) arising out of the use of the information provided in this report,

even if Real-Time Consult and Real-Time Magazine have been advised of the
possibility of such damages.

http://www.realtime-info.be

E-mail: info@realtime-info.be

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 2 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

EVALUATION REPORT LICENSE

This is a legal agreement between Mr Huang Wang, HH tech., USTC Phys. East
Campus,HeFei,AnHui,P.R.China, HeFei, ANHui China, 230026, China, representing yourself and/or your
company HH tech. and the company REAL-TIME CONSULT.

1. GRANT. Subject to the provisions contained herein, REAL-TIME CONSULT hereby grants you a
non-exclusive license to use its accompanying proprietary evaluation report for projects where you or
your company are involved as major contractor or subcontractor. You are not entitled to support or
telephone assistance in connection with this license.

2. PRODUCT. REAL-TIME CONSULT shall furnish the evaluation report to you electronically via
Internet. This license does not grant you any right to any enhancement or update to the document.

3. TITLE. Title, ownership rights, and intellectual property rights in and to the document shall remain in
REAL-TIME CONSULT and/or its suppliers or evaluated product manufacturers. The copyright laws
of Belgium and all international copyright treaties protect the documents.

4. CONTENT. Title, ownership rights, and an intellectual property right in and to the content accessed
through the document is the property of the applicable content owner and may be protected by
applicable copyright or other law. This License gives you no rights to such content.

5. YOU CAN NOT:

– You can not, make (or allow anyone else make) copies, whether digital, printed, photographic or
others, except for backup reasons. The number of copies should be limited to 2. The copies
should be exact replicates of the original (in paper or electronic format) with all copyright notices
and logos.

– You can not, place (or allow anyone else place) the evaluation report on an electronic board or
other form of on line service without authorisation.

6. INDEMNIFICATION. You agree to indemnify and hold harmless REAL-TIME CONSULT against any
damages or liability of any kind arising from any use of this product other than the permitted uses
specified in this agreement.

7. DISCLAIMER OF WARRANTY . All documents published by REAL-TIME CONSULT on the World
Wide Web Server or by any other means are provided "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. This disclaimer of warranty constitutes an essential part of the agreement.

8. LIMITATION OF LIABILITY . Neither REAL-TIME CONSULT nor any of its directors, employees,
partners or agents shall, under any circumstances, be liable to any person for any special, incidental,
indirect or consequential damages, including, without limitation, damages resulting from use of OR
RELIANCE ON the INFORMATION presented, loss of profits or revenues or costs of replacement
goods, even if informed in advance of the possibility of such damages.

9. ACCURACY OF INFORMATION . Every effort has been made to ensure the accuracy of the
information presented herein. However REAL-TIME CONSULT assumes no responsibility for the
accuracy of the information. Product information is subject to change without notice. Changes, if any,
will be incorporated in new editions of these publications. REAL-TIME CONSULT may make
improvements and/or changes in the products and/or the programs described in these publications at
any time without notice. Mention of non-REAL-TIME CONSULT products or services is for
information purposes only and constitutes neither an endorsement nor a recommendation.

10. JURISDICTION. In case of any problems, the court of BRUSSELS-BELGIUM will have exclusive
jurisdiction.

Agreed by Mr Huang Wang on Sep 24 1999

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 3 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

1 Introduction .. 4

2 Real-time systems & real-time operating systems .. 5

3 System architecture ... 6

3.1 OS structures ... 6
3.1.1 Monolithic operating system... 6
3.1.2 Layered operating system.. 7
3.1.3 Client-server operating system .. 9

3.2 Process – Thread – Task model .. 9
3.3 Scheduling & Priorities & Interrupts ... 10

4 Basic system facilities.. 11

4.1 Tasking Model.. 11
4.1.1 General... 11
4.1.2 Categories .. 12

4.2 Memory .. 15
4.3 Interrupts .. 20

4.3.1 General... 20

5 API richness... 24

5.1 General .. 24
5.1.1 Purpose .. 24
5.1.2 POSIX... 24

5.2 Categories.. 27
5.2.1 Task management.. 27
5.2.2 Clock and timer .. 27
5.2.3 Memory management .. 27
5.2.4 Interrupt handling ... 28
5.2.5 Synchronization and exclusion objects: ... 29
5.2.6 Communication and message passing .. 29
5.2.7 Waiting list length ... 29

6 Development methodology.. 31

6.1 Introduction .. 31
6.2 Host = Target ... 31
6.3 Host ≠ Target ... 31
6.4 Hybrid solutions.. 31

7 Conclusion ... 33

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 4 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

1 Introduction

What is a real-time operating system (RTOS)? There are a lot of misconceptions on the topic of real time.
Following reflects the opinion of Real-time Consult on what makes a good RTOS.

We will examine techniques that can be found in general purpose operating systems (GPOS) and explain
why they can or cannot be used in real-time operating systems (RTOS).

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 5 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

2 Real-time systems & real-time operating systems

What is a real-time system? Different definitions of real-time systems exist. Here we give just a few:

– Real-time computing is computing where the system correctness depends not only on the correctness
of the logical result of the computation but also on the result delivery time.

– DIN44300: The Real-time operating mode is the operating mode of a computer system in which the
programs for the processing of data arriving from the outside are permanently ready, so that their
results will be available within predetermined periods of time. The arrival times of the data may be
randomly distributed or be already a priori determined depending on the different applications.

– Koymans, Kuiper, Zijlstra – 1988: A Real-Time System is an interactional System that maintains an
on-going relationship with an asynchronous environment, i.e. an environment that progresses
irrespective of the RTS, in an uncooperative manner.

– Real-time (software) (IEEE 610.12 - 1990): Pertaining a system or mode of operation in which
computation is performed during the actual time that an external process occurs, in order that the
computation results may be used to control, monitor, or respond in a timely manner to the external
process.

– Martin Timmerman: A real-time system responds in a (timely) predictable way to unpredictable
external stimuli arrivals.

To build a predictable system, all its components (hardware & software) should allow realizing this
requirement. Traffic on a bus for example should take place in a way that all events could be managed
within the prescribed time limit. An RTOS should have all the features necessary to be a good building
block for a RT system.

However one should not forget that a good RTOS is only a building block. Using it in a wrongly designed
system may lead to a malfunctioning RT system. A good RTOS can be defined as one that has a
bounded (predictable) behavior under all circumstances of system load (simultaneous interrupts and
thread execution).

In a RT system, each individual deadline should be met. There exist different categories of real-time
systems :

– hard real-time: missing a deadline has catastrophic results for the system;

– firm real-time: missing a deadline has a non acceptable quality reduction as a consequence;

– soft real-time: deadlines may be missed and can be recovered from. The reduction of system quality is
acceptable;

– non real-time: no deadlines have to be met.

A transactional system is NOT a RT system. Indeed, performance is defined in statistical terms such like
x transaction/s average should be sustained. If however, the requirement for such a system looks like x
transaction/s average with a maximum of y fractions of a second for each transaction, then we have a RT
system constraint due to the maximum time limit imposed on the transaction!

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 6 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

3 System architecture

3.1 OS structures

3.1.1 Monolithic operating system

The OS is a piece of software that can be designed in different ways. 20 years ago, the OS was just one
piece of code composed of different modules. One module calls another in one or more ways. This is
called a monolithic OS. This type of OS has the problem to be difficult to debug. If one has to change one
module, then the impact on other modules may be great. If one fixes a bug in one module, other bugs in
other modules may show up.

Monolithic OS

Application
Program

Application
Program

. . .

User Mode

Kernel Mode

System Services

Hardware

Operating
System

Procedures

Figure 1 Monolithic operating system

The more modules, the more interconnections between modules, the more chaotic the software becomes
due to the multiple interconnections. This is sometimes referred to as spaghetti software. With this
design, it is almost impossible to distribute the OS in a way or another on multiple processors.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 7 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

3.1.2 Layered operating system

Simple Structure: MS-DOS

application program

resident system program

MS-DOS device drivers

ROM BIOS device drivers

Figure 2 MS-DOS system architecture 1

A better approach is to use a “layered structure” inside the OS, like the well-known OSI layers. However
OS technology, for performance reasons, is not that orthogonal with its layers as the OSI technology. In
OSI you may NOT skip one layer. You may therefore easily replace one layer without effect on the others.
This is not the same in OS technology. A “system call” goes directly to each individual layer. In RTOS one
wants even to go directly to the hardware. The OS software is in most cases as chaotic as in the previous
“monolithic” approach.

To clarify this statement the next figures show the MS-DOS approach. Figure 2 gives the impression of a
well-organized OS.

However by redrawing it like in Figure 3 we see how things are really organized. It is indeed a layered
structure, but several shortcuts exist: an application can access the BIOS or even the hardware directly.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 8 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

application programs

Simple Structure: MS-DOS (2)

resident system program

MS-DOS device drivers

ROM BIOS device drivers

HARDWARE

Figure 3 MS-DOS system architecture 2

RTOS have fundamentally been designed in this way for a long time.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 9 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

3.1.3 Client-server operating system

A new approach has been observed in the last 5 years: Client-Server technology in OS. As demonstrated
in Figure 4, the fundamental idea is to limit the basics of the OS to the strict minimum (a scheduler and
some synchronization primitive). The other functionality is on another level, implemented as system
threads or tasks. A lot of these “server” tasks are responsible for different functions or “system calls”. The
applications are clients requesting services from the server via system calls.

Client/server OS

Client
Application

Display
Server

User Mode

Kernel Mode

Hardware

Microkernel

File
Server

Process
Server

Memory
Server

Network
Server

Send

Reply

Figure 4 Client/Server operating system

This way of doing makes it a lot easier to the OS vendor to sell a “scalable” OS (with less or more
functions). It is more easily debugged (each “object” remains small). Distributing over multiple processors
is simple. Replacing one module does not have a “bug snow ball effect”. One module crash does not
necessarily crash the whole system, meaning it is an investment in a more robust environment. It is also
more conceivable to implement redundancy in the OS in this way. Dynamic loading and unloading of
modules becomes a possibility.

The major problem of this model is the overhead due to memory protection. The server processes have
to be protected. Every time a service is requested, the system has to switch from the application’s
memory space to the server’s memory space. The time it takes to switch from one process to another one
will increase when the processes are protected from each other. On the other hand, if no protection is
offered, a bug in the application might affect the system processes, which could compromise the stability
of the system.

3.2 Process – Thread – Task model

The first RTOS, more than 20 years ago was produced by DEC for the PDP family of machines. A
multitasking concept is essential if one wants to develop a good real-time application. Indeed, an

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 10 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

application has to be capable of responding in a predictable way (definition of real-time) to multiple
simultaneous external events (arriving in an uncontrolled way). If you only use one processor to do so,
you have to introduce a sort of pseudo parallelism, called multitasking. Rate Monotonic Scheduling (RMS)
theories then are helping today to compute in advance the processor power you need to deal with all
these simultaneous events in time.

We have one application running on a system. This application is subdivided in multiple tasks.

In the UNIX (or POSIX) world, people are talking from the very beginning about different processes in the
system. In this complex systems, the context or environment for each process is very heavy, (Processor,
I/O, MMU, FPP, etc.) and therefore switching from one process to another is time consuming. Two
reasons changed this approach. First, producing complex, distributed software has a need for
multitasking approach which is too heavy to implement with the process concept. Second, the POSIX
effort wanting to put the RT and non RT world in the same basket. The notion of thread was therefore
invented. It is a “sub process” or a “light weight process”. It inherits the context of a process but uses only
a subset of it so that switching between threads can be done more rapidly. Also between threads, there
are no security aspects because they really belong to the same environment or process.

The net result today is that we can say in a RT environment: a process is an application subdivided in
tasks or threads.

3.3 Scheduling & Priorities & Interrupts

In a multitasking environment, one has to “schedule” from one task (or thread) to another. If more than
one thread wants to use the processor simultaneously, one needs an algorithm to decide which thread
will run first. A deadline driven scheduling mechanism would be ideal. However, the current state of
technology does not permit for this. A replacement can be found in pre-emptive priority scheduling, taking
into account the existence of theories like RMS to give you a decision rule which priority level to assign to
each thread. Pre-emption should be used all the time to assure that a high priority event can be dealt with
before any other lower priority event. For this we do not only need a pre-emptive priority scheduling
mechanism, but also the interrupt handling following different simultaneous interrupts, should be handled
in a pre-emptive way.

Furthermore, we have to notice that each OS needs to disable the interrupts from time to time to execute
critical code that should not be interrupted. The number of lines of code executed should be limited to a
minimum to have minimum interrupt latency, but more essential, should be bound under all
circumstances.

There are different reasons to have a “lot” of priority levels provided in the RTOS. The first one comes
from what we discussed in paragraph 3.1 and 3.2. In a client-server OS environment, the system itself
can be viewed as one or more server applications subdivided in threads. Therefore it is necessary that a
number of high priority levels can be devoted to system processes and threads.

The second one comes form RMS scheduling theory. In a complex application with a large number of
threads, it is essential to be able to put all the real-time threads on a different priority level. The non real-
time threads can be put on one level (lower than the real-time ones) and may run in a round-robin
fashion. A level 0 priority or lowest level is necessary to implement the necessary idle monitor to measure
the available processor power.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 11 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

4 Basic system facilities

4.1 Tasking Model

4.1.1 General

To understand the reasons of this study we need to take a look at the different phases of the system
development methodology and observe where the characteristics of the RTOS emerge.

Four fundamental development phases come to light:

– Analysis: determines WHAT the system or software has to do;

– Design: HOW the system or software will satisfy these requirements;

– Implementation: DO IT, i.e. implement the system or software;

– Maintenance: USE IT, i.e. use the system or software.

In a waterfall model, one supposes that all these phases are consecutive. In practice, this is never
possible. Most developments end up being chaotic, where all the phases are executed simultaneously.
Adopting a pragmatic approach, the methodology used should just be a framework to guide the making of
the correct documents, doing the adequate reviews and audits at the appropriate time.

In real-time systems, both hardware and software are dealt with in what is called today a co-design
process. In such a process, the phases can be refined as follows:

– Feasibility study: how much effort will it take to build the required system;

– System analyses (SA): WHAT is the system going to do: draft refined or detailed requirements;

– System architectural design (SAD): HOW will we realize the requirements by defining subsystems
working in (real) parallel;

– Subsystem software analyses (SSA): WHAT is one subsystem going to do;

– Subsystem software architectural design (SSAD): similar to system architecture design, but here we
define a pseudo-parallelism in a multitasking model;

– Software detailed design (SDD): design all the tasks in the system by subdividing them in modules

– Implementation: code writing, debugging, testing, integration of the subsystem;

– System integration: integrating all subsystems;

– System delivery.

As seen 2 important steps are concerned with architectural design. In both these steps, the OS as a
building block is an important factor. In the SSAD – the multitasking capabilities of the OS is important. In
the SAD, the capability of supporting multiple processor architectures, interconnected in different ways, is
important.

In this paragraph, we area concentrating on the multitasking model (SSAD).

We should be capable of doing SSAD without knowing the RTOS used. However, actual commercial
RTOS vendors have made choices and one has to live with the possibilities and limitations of the actual
products.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 12 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

All products are different in the choices made. This means that a SSAD will largely depend on the RTOS
chosen. This also means that porting the application to another RTOS environment is just an illusion,
even if the RTOS is POSIX compliant.

4.1.2 Categories

4.1.2.1 Model

As stated in 3.2, today we may have different models for multitasking. Basically, on RTOS will consider
the application for the system as a (non-defined) process, which is subdivided in tasks. Others may use a
POSIX like model with processes subdivided in threads. Nevertheless, each process should be
considered as a different application. Not too much communication should exist between these
applications and in most cases they are of different nature: hard real-time, soft real-time and non real-
time.

The use of one or another model depends on the system application. Under all circumstances, an
application should first be subdivided in at least 3 subsystems: the hard real-time part, the soft real-time
part and the non real-time part. Of course, the system might be as simple as to having only one of these.

If the system is simple, (just hard or soft RT), then one does not need a process/thread model. Just
having tasks in the system is enough.

If however the system is complex and has at least 2 or 3 subsystems with different RT behavior, then a
process/thread model is a solution.

One should remember that a simple system with just a task model would have better RT response
compared to a more complex system with a process/thread model.

4.1.2.2 Priority levels

For the hard real-time part of the system one has to find a method to make the system predictable in all
circumstances. The best solution should be to use a deadline driven scheduler. However we need an
extra 10 years before we could think about using such technology in a commercial environment.

For the time being, we have to stick to pre-emptive priority driven schedulers. This introduces a problem:
how can we know that the system will react in a predictable way under all possible circumstances?

Liu and Layland started in 1971 to work at an answer for this question. They invented what is now called
Rate Monotonic Scheduling (RMS). It is a formal (mathematical) method to prove what should be the
condition to have a predictable system. You need a fixed (pre-emptive) priority scheduling for
implementing the theory. One can, by example demonstrate, that a variable priority scheme is probably a
better solution, but nobody has yet come up with a mathematical foundation of how to do so and to be
sure that it will work under all circumstances.

When using RMS, you need a different priority level for each real-time task. If the system is complex, you
might need a lot of priority levels. We therefore state that at least 128 available (fixed) priority levels is a
must.

4.1.2.3 Bounded dispatch time

When the system is not loaded, there will be only one thread waiting in the ready state to be executed.
With higher loads, multiple threads might be in the ready list. The dispatch time should be independent of
the number of threads in the list.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 13 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

In good RTS design, the list is organized (taking into account the thread priorities) when an element is
added to the list so that when a dispatch occurs, the first thread in the list can be taken.

4.1.2.4 Max. number of tasks (threads, process)

A task, thread or process may be considered as on OS object. Each object in the OS needs some
memory space for the object definition. The more complexity the object, the more attributes it will have,
the bigger the definition space will be. If there is for example an MMU in the system, the mapping tables
are extra attributes for the task and more system space is needed for all this.

This definition space may be part of the system or part of the task. If it is part of the system, then in most
cases the RTOS would like to make a reservation of the maximum space it would allocate to these tables.
In this case a maximum number of tasks which may coexist in the system is then a system parameter.
Another approach could be a total dynamic allocation of this space. The maximum number of tasks is
then only limited by the available memory in the system shared among object tables, code, etc.

4.1.2.5 Scheduling policies

The scheduler is one of the basic parts of an OS. It has the function to “switch” from one task, thread or
process to another. As this activity is considered overhead, it should be done as quickly as possible.

To understand scheduling one should know that a task has different states. At least 3 states are needed
to make an OS run smoothly: running, blocked and ready.

A task is running if it is using one processor to execute the task code. If it has to wait for another system
resource, then the task is blocked (waiting for I/O, memory, etc..) once the missing resources have been
allocated to the task, the tasks wants to run. As different tasks probably want to run simultaneously and
only as many tasks can run as available processors, one needs a “waiting for run” queue. A task being in
this queue is called ready. The queue is called the “ready list. In a symmetrical multiprocessor system,
there is only one queue for all processors. In other architectures, you have one queue per processor.

If there is more than one task in the ready queue, you need a decision-making algorithm: which task can
use the processor first. This is also called the scheduling policy.

There are probably as much policies as engineers inventing them. Therefore we have to limit ourselves to
the one’s really useful in RT systems.

In all RT systems, we need a deadline driven scheduling policy. However this is still under development
and not commercially available today.

A pre-emptive priority scheduling policy is a minimum requirement. You cannot develop a (hard)
predictable system without it! If you apply RMS, then each task should have a different priority level.

In more complex systems, only part of the system is hard real-time, other parts will be soft or non-real-
time. The soft real-time parts should be designed like the hard RT part, but taking into account that not
always all the needed processor power will be available. The same scheduling policy is applicable. In the
non-RT part, then a more general purpose OS (GPOS) approach may be desirable. In GPOS systems,
the philosophy is “maximum usage of all system resource”. This philosophy is contradictory with the RT
requirement of being predictable.

If one wants to give each task a equal share of the processor, a round robin scheme is more appropriate.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 14 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Process states & transitions

Running

Ready Blocked

Block

Timerrunout

Dispatch

Wakeup

Figure 5 Process states & transitions

The non real-time part in a complex system should therefore be capable of using a RRS. Most RTOS
implement this when you put more than one task on the same priority level. Other RTOS have a RRS
explicitly defined for some ranges of priorities.

Conclusion: an RTOS should always support pre-emptive priority scheduling. For complex applications,
where for some parts of the system, a more GPOS philosophy is needed, RRS or some other
mechanisms might be useful.

4.1.2.6 Number of documented states

In the previous paragraph, we mentioned a minimum of three states for a task. There is however no limit
to the maximum number of states. Indeed, the blocked state can be subdivided in a number of blocked
states specifying the reason of blocking. (waiting for I/O, waiting for semaphore, waiting for message
send, waiting for a memory block…). Making a diagram mentioning all these states is a good graphical
representation of what the OS is capable of. However this is never done in a systematic way.

Such diagrams might be very useful for debugging purposes. By animating the diagram during a reply,
one could see how the system evolves during time. Such a tool is not available today.

4.1.2.7 Min. RAM required per task

Memory footprint is an important issue in embedded system despite the cost reduction of silicon and disk
memory today. The size of the OS is important, the system space necessary to run the OS with all the
objects defined (see 4.1.2.4). A task needs RAM to run for the changing parts of the task control block
(the task object definition) and for stack and heap to be capable of executing the program (which might be
in ROM or RAM). It is the RTOS vendor’s choice to allocate a minimum number of RAM for this. It is also
an indication of the vendor of how big he sees the minimum application wherefore the RTOS is intended.

4.1.2.8 Max. addressable memory space

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 15 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Each task can address a certain memory space. Each vendor may have a different memory model
depending if he relies on X86 segments or not. This depends largely on the product history of the RTOS.
If it was initially developed for the flat address space of the MOTOROLA processors or for the segmented
X86 INTEL series. The limitation of 64K segments in a 8086 processor is an important limitation for
modern software. RT systems needing to be backward compatible with this type of hardware is a burden
to the designer. Vice versa, it should be carefully observed that this limitation is not imposed by the
RTOS, making new designs possible outside the 64K space per module.

4.2 Memory

Each program needs to reside in memory in order to be executed. If we accept that it is not wise to
develop auto-modifying code – this program may be in ROM.

Each program using a modular approach will use subroutines and therefore needs a stack, which should
be in RAM. A program makes no sense if it does not manipulate some input data to produce some output.
These “variables” also have to reside in RAM.

The fundamental requirement about memory in a real-time system is that the access time to it should be
bound (= predictable). As a direct consequence, the use of virtual memory is prohibited for real-time
processes. This is the reason why systems providing a virtual memory mechanism should have the ability
to “lock” the process into main memory so that swapping does not occur. (Swapping is a mechanism that
cannot be made predictable!)

Second, if paging is supported, the associative map for the pages should be part of the process context
and therefore be completely loaded in the processor or MMU. In the other case, the system is based on a
statistical phenomenon which is non-acceptable in hard real-time.

As a result, the whole story is to know if you are going to use static or dynamic memory allocation in your
design.

Combined memory protection &
dynamic relocation

CPUCPU << ++

limitlimit basebase
memorymemory

trap to OS
monitor - addressing error

logical
address yes

no

base

base + limit

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 16 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Figure 6 Memory protection & dynamic relocation

Static memory allocation means that all memory is allocated to each process or thread when the system
starts up. In this case, you never have to ask for memory during the execution of the process. This
however may be very costly. When hard real-time is not required, you can imagine to use a dynamic
allocation mechanism. This means that a process, during runtime, is asking the system for a memory
block of a certain size to house one or another data structure. (You never ask memory for a piece of
program in a hard RT-system). In this approach, the designer should know what to do if the memory block
doesn’t become available in time. Some RTOS support a timeout function on a memory request. You ask
the OS for memory within a prescribed time limit. The task is waiting for the memory as long as the
timeout is not expired. This feature may significant reduce the application code.

Paging Hardware

pp ff

CPUCPU
pp dd ff dd

physical
memory

physical
memorylogical address physical address

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

page
a

a: logical address generated by processor
p: logical page number
f: physical page number
d: offset in page

a: logical address generated by processor
p: logical page number
f: physical page number
d: offset in page

Figure 7 Paging hardware

In some circumstances, it may not be acceptable that a hardware failure corrupts data in memory. Then
the use of a hardware protection mechanism is indicated.

Figure 6 shows that memory relocation is possible with a change of the base address and that a
protection mechanism is simple. Each logical address has to be in the range [base, base+limit] otherwise
there is a memory protection failure.

This means that the hardware will check if the access to a certain block in memory is allowed to this
process. This hardware protection mechanism can be found in the processor or in a MMU. Today’s
MMUs however do much more than just protecting memory blocks. They allow also for address
translation, something we do not need in RT because we use (cross) compilers generating PIC code
(Position Independent Code).

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 17 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

pp ff

pp ff

CPUCPU
pp dd

0
2
3
5
8

0
2
3
5
8

ff dd

physical
memory

physical
memory

logical address physical address

a
c
d
f
i

a
c
d
f
i

associative map0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

a
b
c
d
e
f
g
h
i

a
b
c
d
e
f
g
h
i

++

address of
page table b

address of
page table b

PT origin R

b

only if no match
in assoc. map

Asociated map limitations

Not usable in RTNot usable in RT

Figure 8 Associated map limitations

A potential drawback of a paged-MMU mechanism is the page size. Indeed in GPOS the page-size is
often 2K and the paging mechanism (see Figure 7) is connected to the memory translation mechanism
(logical – physical addressing). This introduces the need of an associative map in the MMU. This
associative map has a limited size and a sort of caching between the page tables in memory and this
associative map is used to deal with this (see Figure 8). As stated before, this mechanism introduces
unpredictability.

Suppose we use a paged MMU for memory protection reasons, then the protection is connected to the
pages and so to the page size. To make it predictable one can imagine making the associative map part
of the task context. However if the page-size is limited to 2 K, the number of pages needed for the whole
program and data area is too high to fit in the associative map. One needs therefore a much larger page-
size.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 18 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

loadM

i

OS

free frame

physical mem

page table

1: reference

2: trap

3: page is on disk

4: get missing page

5: reset page table

6: restart inst

Virt_Mem
Mechanism

Figure 9 Virtual memory mechanism

To avoid this problem, one can use a segmented approach. Segments have variable sizes and can be
much larger than 2 K, however another problem arises here. If segments, with variable sizes are
allocated and de-allocated, external memory fragmentation will be the result. To clean up memory, some
OS use compaction of garbage collection. However, this can again not be used in a RT environment.
Indeed during the compaction procedure, the tasks that are displaced cannot run. This system becomes
unpredictable. This is the major problem if object orientation is used. Therefore C++ and JAVA are wrong
candidates for hard real-time tasks today as long as the compaction problem is not solved.

Virtual memory (Figure 9) is another technique that cannot be made predictable, and should therefore not
be used in real-time systems.

A simple solution is to allocate all memory for all objects you need during the system life and never de-
allocate them. Another solution resides in allocating and de-allocate always fixed size blocks of memory
(introducing internal fragmentation = never using some parts of memory internal to the blocks).

From the previous discussion we see that RT memory management and GP memory management have
different objectives and mechanisms. It is difficult to join them.

In simple systems which is or hard or soft or non real-time, the choice is simple. In complex systems
where both hard, soft and non real-time functionality’s are required, a good but expensive solution is to
run each subsystem on a different processor. However, today, the available cheap processor
performance is so high that one might want to put on the same platform all functionality (hard, soft & non
real-time).

In HRT you use static memory allocation. In SRT you may accept dynamic memory allocation – no virtual
memory – no compaction. In non-RT you may want virtual memory and compaction.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 19 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

If we accept that the non-RT task are put on a much lower priority than the SRT and than the HRT, then
the question still may be: how pre-emptable is a virtual memory mechanism and the compaction
mechanism. This can only be detected by testing the available RTOS.

Each RTOS is different in the memory allocation possibilities. Indeed, one RTOS is targeted towards one
type of system (HRT, SRT, non-RT) or toward a mix of all.

A target system may not need a memory protection scheme. However, during system development, it
might be interesting to have MMU support around. Indeed, having memory protection is a very nice
debugging tool. It helps the designer programmer to debug the system easy. A stack-heap overflow may
be debugged in seconds with a MMU based system, where in a non-protected system you might need
one week to find the error. Also, it might be that the bug is there but that you never detected it during
tests, except 3 years after the system is delivered…

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 20 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

4.3 Interrupts

4.3.1 General

Remark: in this paper we use the word interrupt for hardware interrupt. A software interrupt, together
with a hardware interrupt and other vectoring mechanism provided by the processor are called exception
handling (this is the MOTOROLA naming).

A RT System is supposed to react on external events within a prescribed time limit called a deadline. All
these external events are translated via the hardware in one or more bit transitions somewhere.

A first method to detect the occurrence of the event is to poll from the task the “event bit” from time to
time. If the system has only one external event, and has nothing to do besides waiting for that event, then
this polling mechanism is the most efficient way to go. However, in a multitasking environment, the
system has to deal with more than one event and cannot afford doing busy waiting. Therefore, in an OS
one has decided to make the detection of the event via an interrupt with an associated interrupt service
routine (ISR). This ISR maybe stand alone or part of a device driver structure depending on the RTOS
device driver model.

Context definition

Program

Stack

Heap

I/O Space

Temporary
Storage

Registers

PC

SPtr

HPtr

IOPtr

Floating Point
Registers

MMU
Registers

Figure 10 Context definition

Once you accept to deal with more than one event, you deal with more than one (simultaneous) interrupt.
Here again, you have a problem with predictability. What happens if a higher order interrupt shows up
when a lower level ISR is busy. To have a quality RTOS, the lower level ISR must be pre-emptable.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 21 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Context Switch
Register Set Task A

Task A
Register Save Area

Register Set Task B

Task B
Register Save Area

Figure 11 Context switch

Here a performance & design issue shows up. Indeed, first the RT system must be predictable, so there
should be a bound time between the interrupt and the handling of the event. Second, some events need
faster treatment than others (shorter deadlines).

The most straightforward method of dealing with events is to let them detect via an interrupt and then to
start a task or thread dealing with the event. This means that you need certain system calls to be
executed from the ISR level and therefore you need a minimum of context (see Figure 10). The time you
need, taking into account simultaneous interrupts, to go from interrupt to start task is an important system
metric and should be defined (see Figure 12). Tests are needed for this because the vendors never
publish comparable figures on these issues.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 22 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

68020 15 register context save68020 15 register context save

Context Switch Timing

Save Context A Dispatch Restore Context B

time

MOVEM.L RL,EA MOVEM.L EA,RL

Processor characteristicProcessor characteristic

Characteristic of RTOS
= pick first task in the ready list

Characteristic of RTOS
= pick first task in the ready list

EA: Effective Address
RL: Register List

MOVEM.L RL,EA
8 + 8n (n= # registers) cycles
20 MHz, 15 reg saved: 6.25µµµµs

MOVEM.L RL,EA
8 + 8n (n= # registers) cycles
20 MHz, 15 reg saved: 6.25µµµµs

Figure 12 Context switch timing

Under some circumstances, one cannot accept the previous latencies because the design requires
shorter deadlines than the ones you obtain with the previous technique. This can be solved by executing
event code or in the ISR or in the 0 level ISR or background mode, or in the device driver. This means
that there are different levels where the event code can be executed. Good design requests for the
shortest possible ISRs and device driver, but you may decide to overrule this.

The different RTOS may differ in the model they have to deal with this. The simplest model is one with
just a task level and an ISR level. The complex model is one with an ISR, a background ISR, a device
driver and a task level. Depending on where an event is dealt with, the event handling metrics will be
different (Figure 13). Important here is the context definition for each level. It is the simplest for the ISR
and the most complex for the process or task level. Context switching times largely depend on the context
definition and the processor speed. It is the RTOS together with the compiler, which defines the context
definition on each level.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 23 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Interrupt to task run

Interrupt Dispatch TimeInterrupt Dispatch Time

Interrupt RoutineInterrupt Routine

Other interruptOther interrupt

Pre-emption disabledPre-emption disabled

SchedulingScheduling

Context SwitchContext Switch

Return from System callReturn from System call

Int

run

Figure 13 Interrupt-to-task run

The evaluation report should clarify which model is used by the RTOS. Figure 13 shows the different
elements which are part of the total interrupt to task run time.

– Interrupt dispatch time: the time the hardware needs to bring the interrupt to the processor.

– Interrupt routine: the execution time of the ISR.

– Other interrupt: the time needed for managing each simultaneous pending interrupt.

– Pre-emption disabled: time needed to execute critical code during which no preemption may happen.

– Scheduling: time needed to make the decision on which thread to run.

– Context switch: time to switch from one context to another.

– Return from system call: extra time needed when the interrupt occurred during the execution of a
system call.

The maximum time needed to go from interrupt to run is the sum of all the potential maximums of these
different latencies. The fact that more than one simultaneous interrupt is to be dealt with is important.
Therefore one should always try to determine during design how many simultaneous interrupts might
occur!

The test shall measure the maximum of these times under all load circumstances.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 24 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

5 API richness

5.1 General

5.1.1 Purpose

The purpose of this section is to go in some detail through all the available system calls of the OS
commonly named the API or Application Program Interface.

Every system call is a software interrupt (SWI). The classical vectoring system of each processor is used
to implement the service. The number of vectors is a limitation of the processor. The processor may have
enough software vectors to implement all the system calls, but in complex OS this is rarely the case.
Therefore one or another data passing mechanism will be used by the OS around the SWI to be capable
of using the same vector for all or part of the system calls and also to be capable of rendering status data
once the system call is executed.

The classical approach is that the program continues execution just after the SWI instruction. There,
every programmer should implement error handling.

If assembler is used, the programmer will explicitly see the SWI and he will need to now the details of the
data-structures and the passing mechanism of this data to the OS. When using a high level language, the
SWI system calls will be implemented as procedure calls in that language. One speaks about a C or ADA
or whatever interface to the OS.

The format of these procedure calls is defined by the interface library builder and can yes or no
correspond to a standard like POSIX. (See 5.1.2).

The fundamental issue we want to discuss about the API is its richness. Indeed the number of system
calls may be very limited. The minimum functionality you need in a RT multitasking environment is a
scheduler and one synchronization primitive. All other synchronization and communication primitives or
system calls can be built on that. The question however is, what part of the software is going to do the
job, the application or the OS? The more system calls you have and the more complex they are, the
fewer lines of codes the application will have. Even more, the code executed in the OS is certainly more
efficiently executed (and better debugged) in the OS than the same code in the application. So we are
interested how many system calls are supported and how complex they are. This ultimate aim is to
reduce application maintenance as much as possible due to limited application code length.

Of course, a very simple application can probably do with just a few system calls. A very complex one
should have a wide choice of system calls.

5.1.2 POSIX

POSIX defines amongst other things the syntax of the library calls that execute the SWI for the OS
interface. This means that if everybody uses the POSIX interface, on the application side, in C, all
application code should be the same. However it is not as simple as that as we will see. On the
implementation side, all RTOSs are different. Each product will have other performance characteristics for
the “same” system call.

POSIX is very new and there are a lot of legacy applications around. And even more: POSIX does not
necessary have the best system calls for efficient implementation of certain portions of code. Therefore
lots of vendors do not only support POSIX but support also a second set of non-POSIX system calls. And

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 25 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

this is not against the POSIX rules. Both POSIX and non-POSIX compliant calls may co-exist in the same
system. This is one of the first reasons why we do not believe that POSIX compliance is an essential
issue today.

Another issue is that it took a very long time to standardize and the standard has been cut in different
pieces: the ones everybody can agree on immediately, the ones it is difficult to agree on and the ones
they will never agree on…. Today, some parts of the standard are finalized, others are still in draft form.
Therefore, different products comply with different “draft revisions” of the standard which makes the
actual usefulness of being compliant problematic.

Real-Time Systems range from very small-embedded systems like modems to very complex hybrid
systems like a satellite ground station. Today’s RTOS are not scalable enough to deal with both the small
and large systems. A particular RTOS aims at a particular target application size. The historical
consequence is that a small-embedded system RTOS uses a totally different API compared to a RT-
UNIX like RTOS. To deal with this, the POSIX committee invented profiles. This is stated in POSIX
1003.13. This means that if one talks about POSIX compliance, he should mention the profile. However
nobody is doing so. Another point is that these profiles do not cover all systems we have today.

Features versus Profiles
Minimal Control Dedicated Multi

+ + + +

+ + + +

- + - +

+ + + +

- + - +

- - - +

+ + + +

i i + +

- + - +

i i + +

- - + +

+ + + +

+ + + +

+ + + +

+ + + +

- + + +

- - + +

- + - +

+ + + c

Feature

Process Primitives

Process Environment

Files & Dir

IO

Device Specific

Data Base

Binary Semaphores

Memory Locking

Mapped Files

Shared Memory

Process Priority Sched

Real-time Signals

Clocks & Timers

IPC Msg Passing

Synchronised IO

Asynchronous IO

Prioritised IO

RT Files

Threads

i: implicit
c: configurable

Figure 14 Features versus profiles

The fundamental conclusion is that POSIX compliance is not a fundamental issue. POSIX has one
advantage however: today we talk less or more the same language if we talk API’s. This was not the case
10 years ago.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 26 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Problems with POSIX .13

POSIX A EP

Minimal Controler Dedicated Multi

File s & Dir no yes no yes

RAM Dis k no yes no yes

Standard File Sys te m no yes no yes

RT File Sys te m no yes no yes

M appe d File s no yes no yes

Ne tw ork no no no yes

Figure 15 Problems with POSIX 1003.13

Portability of a RT application is a myth. Doing analysis and design of a RT application in a
methodological way with RT-modeling techniques can only solve it. Producing new code starting from this
documentation is easier than to try to port a POSIX application from one system to another.

(RTConsult) Extended POSIX .13

Extended POSIX.13

Minimal Controler Dedicated Multi

Embedded Connected
Data

Acquisition
Embedded Connected

Data
Acquisition

Files &Dir no yes yes yes no yes yes yes

RAM Disk no yes yes yes no yes yes yes

Standard File System no no no yes no no yes yes

RT File System no no no yes no no yes yes

Mapped Files no no no yes no no yes yes

Network no no yes opt no yes opt yes

Figure 16 Extended POSIX 1003.13 by RTConsult

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 27 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

5.2 Categories

5.2.1 Task management

In paragraph 3.2 we explained the difference between task, threads and processes. The most complete
model will support processes (= applications) subdivided in threads. The threads are the units scheduled
(and executed in the system). Threads can be started, stopped and resumed. A process (when
subdivided in threads) is not started nor stopped because a process is more a sort of context.

When using RMS, one has no intention to change task priority levels during execution. You therefore
don’t really need this feature. However, in some application areas it might be interesting to do so. Priority
inheritance for example is an automatic mechanism changing the priority of a task to avoid priority
inversion. It is therefore an investment for future systems to have the possibility to dynamically change
the priority of a task. Important here is to know which object may do so (another task, an ISR, etc) and
under what circumstances.

5.2.2 Clock and timer

Most RT systems work with relative time today. Something happens BEFORE or AFTER some other
event. In a fully event driven system you don’t need a ticker since there is no time slicing. However if you
want to time stamp some events or if you want to introduce systems calls like “wait for one second” you
need a clock and or a timer.

RT Synchronization today is done by blocking (or waiting) for an event. Absolute time is not used. This
might change in the future. Indeed, you can also synchronize things by using the absolute time. This is
what humans do if they decided to start a meeting at 9:00 am. Having a precise absolute time clock in the
system is therefore something what we should look for in the future. Some systems need it already today
(especially in space applications). The precision of the software absolute clock is in most cases not
enough for these applications. A precise hardware clock should be provided, which in turn, the RTOS
should support.

5.2.3 Memory management

We discussed memory management in detail in section 4.2. RTOS vendors use, (in a non-POSIX
environment) different names for similar objects and the same names for different objects.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 28 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Naming in RTOS

Partitions
Pools

Regions
subdivided in

Blocks
Buffers

Segments

Figure 17 Naming in RTOSs

To make a good RT-design, one should know if the RTOS implements fixed or variable size blocks
(buffers, segments) and if these structures are protected by some MMU mechanism.

The design should take care not to run into a fragmented memory when using dynamic allocation and de-
allocation.

An important feature is the fact that the allocation of memory may be time limited or not. Indeed, if the
application needs some memory to fulfil the deadline, then this memory should be available immediately
when asked, or at the latest within some milliseconds. Some vendors support such a timeout as an
attribute of the system call. This is again very important in reducing the application code and thus the
system maintenance. Indeed, if no such feature is implemented, the RTOS will return a “not available
memory” error code after the allocation request. If the system can wait for some time, the application
should then take care in re-asking for that memory until “too late”. This induces a lot of complexity in the
application code.

This example shows again clearly that richness of the OS calls is very important in reducing the number
of application lines of code. This reduces maintenance and bug probability. The system will be more
reliable!

5.2.4 Interrupt handling

A RT designer has to write his own interrupt routines (and device drivers). These modules are part of the
OS. Therefore they are difficult to debug and a mistake in these leads to a major disaster. Some RTOS
are trying to limit this potential disaster by not allowing the vector table to be changed by the programmer.
Others just don’t care. It is difficult to state what the best solution is. The first one introduces some
protection against programmer errors but introduce some extra indirect jumps and therefore overhead
and interrupt handling performance reduction. The second one is fast but needs more care from the
programmer.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 29 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Another issue is to look what system calls can be performed starting form an ISR.

5.2.5 Synchronization and exclusion objects:

Synchronization and exclusion is needed so that the threads can execute some critical code. The objects
can also be used to make sure that some threads are executed one after the other. A variety of objects
are available:

– semaphores: synchronization and exclusion;

– mutexes: exclusion;

– conditional variables (in conjunction with mutexes): exclusion depending on a condition;

– event flags: synchronization on multiple events (can contain high level logic);

– signals: asynchronous event processing and exception handling.

The rules when to use what objects are very simple:

– How do you realize the requirements by producing the minimum amount of code.

– What construct can I use to be flexible in the acceptance of design changes.

How to apply these rules is not the purpose of this document. However, if an RTOS does only support
one or another primitive or object, then you are not even capable of applying the rules. Again, our
statement is that the richer the RTOS API, the better. At least you will have the choice during design.

5.2.6 Communication and message passing

Communication and message passing is a form of synchronization where data exchange happens.
Examples are:

– queues: multiple messages;

– mailboxes: single message.

The same rules and remarks as stated in the previous paragraph are applicable. However, when data is
exchanged, an extra problem arises: is the data structure completely copied from the sender thread
space to the receiver thread space or is just the pointer passed?

In most RTOS, passing the full data structure is not done for performance reasons, so a pointer goes
from the sender to the receiver.

Here we have another design issue: are you sure that in all circumstances the pointer is still valid when
the thread is using it? This document is not the place to go into these details, but the reader should be
aware of the problem.

Another issue is: “does the object accept single or multiple senders and receivers”?

By stating all these issues, one thing becomes clear: each RTOS behaves differently with apparently the
same objects. It is our aim to understand the behavior by testing and to publish the results in the
evaluation document.

5.2.7 Waiting list length

As stated, synchronizing means blocking or waiting on a synchronization object. A very important feature
in a good RTOS is that the temporal behavior of the system does not depend on the length of these
waiting lists.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 30 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

Good RTOS design means that for each thread that starts pending on an object, the list is reorganized at
that moment, so that the time it takes to release the object is independent of the queue list length.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 31 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

6 Development methodology

6.1 Introduction

It is important that an RTOS provides the users with an efficient way to develop applications. The
availability of good and efficient tools plays an important role in the development process, but there is
more. Different design philosophies exist, each with their own perks and pitfalls. Operating systems can
use different configurations of host and target. The host is the machine on which the application is
developed, while the target is the machine on which the application executes.

6.2 Host = Target

In this configuration, the host and target are on the same machine. The RTOS has its own development
environment (compilers, debuggers) and its own command shell. In such configuration, there are no
connection problems between host and target. However, the development environment is sometimes of
lesser quality, since the vendor of the OS often does not have sufficient resources to develop both the
operating system and the development environment. Furthermore, the RTOS does not have all the
features available in a general purpose operating system (GPOS) which facilitate development (e.g.
source code control system, backup tools, …).

6.3 Host ≠≠≠≠ Target

In this case, host and target are two different machines linked together (e.g. serial link, LAN, bus, ..) for
communication. The host is a machine with a proven GPOS, which is often more suitable as a host than a
machine with a dedicated RTOS. This situation often allows for a better and more complete development
environment, since all the all the features of the host can be used.

The drawback of this configuration is in debugging. The debugger is on the host, while the application is
executed on the target. So called debug agents are residing on the target to communicate the debug
information to the host.

When host and target are different machines, the development environment should provide simulators
that allow developers to execute a prototype of their application on the host by simulating the target. The
target can be simulated in 2 ways: by simulating the target microprocessor or by simulating the target
RTOS (API).

6.4 Hybrid solutions

The hybrid solutions are trying to combine the best of both worlds. The host and target are on the same
physical machine, but they run on different operating systems communicating with each other in some
way (e.g. by shared memory). The host OS is the rich and proven GPOS, while the target OS is the
dedicated RTOS.

In this situation, the application can be developed using all the tools available in the GPOS, and since the
RTOS and the target application code run on the same hardware, communication between the two is not
a big issue.

In reality however, these hybrid solutions have their own set of problems. The same hardware recourses
are shared by 2 operating systems (the GPOS and the RTOS), sometimes keeping the RTOS from

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 32 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

exhibiting predictable real-time behavior under all circumstances. The other way around, the RTOS
monopolizing the processor could keep the GPOS from performing its housekeeping chores,
compromising the stability of the whole system. Multiprocessor architectures should improve things.

RTOS EVALUATION PROGRAM
Doc. Name: What makes a good RTOS

Doc. Version: 1.01 Doc. date: 02 December, 1998

What makes a good RTOS DEZC-3862 Page 33 of 33©
C

op
yr

ig
ht

R
ea

l-T
im

e
C

on
su

lt.
A

ll
rig

ht
s

re
se

rv
ed

,n
o

pa
rt

of
th

e
co

nt
en

ts
of

th
is

do
cu

m
en

tm
ay

be
re

pr
od

uc
ed

or
tr

an
sm

itt
ed

in
an

y
fo

rm
or

by
an

y
m

ea
ns

w
ith

ou
tt

he
w

rit
te

n
pe

rm
is

si
on

of
R

ea
l-T

im
e

C
on

su
lt.

ht
tp

://
w

w
w

.r
ea

lti
m

e-
in

fo
.b

e
E

-m
ai

l:
in

fo
@

re
al

tim
e-

in
fo

.b
e

T
hi

s
lic

en
se

d
co

py
is

ow
ne

d
by

:M
r

H
ua

ng
W

an
g,

H
H

te
ch

.,
U

S
T

C
P

hy
s.

E
as

t
C

am
pu

s,
H

eF
ei

,A
nH

ui
,P

.R
.C

hi
na

,
H

eF
ei

,A
N

H
ui

C
hi

na
,2

30
02

6,
C

hi
na

7 Conclusion

The purpose of this document has been to explain the reasons of testing commercial RTOS by first
defining what we think are essential features for a good RTOS.

An RTOS, being a building block of a RTSystem should have in all circumstances a predictable behavior.
This means a behavior that is bounded in time independent of the load in the system and the length of the
queues in the system.

The purpose of the evaluation project is to detect by analyzing the documentation and by executing
extensive tests if all the requirements for "a good RTOS” are met.

