LECTURE 3: SMOOTH VECTOR FIELDS

1. Tangent and Cotangent Vectors

Let M be an *n*-dimensional smooth manifold.

Definition 1.1. A tangent vector at a point $p \in M$ is a linear map $X_p : C^{\infty}(M) \to \mathbb{R}$ satisfying the Leibnitz law

(1)
$$
X_p(fg) = f(p)X_p(g) + X_p(f)g(p)
$$

It is easy to see that the set of all tangent vectors of M at p is a vector space. We will call it the tangent space of M at p, and denote it by T_pM . Its dual space is called the *cotangent space* of M at p, and is denoted by T_p^*M .

Fact: Both T_pM and T_p^*M are *n*-dimensional vector spaces.

Locally let $\{\varphi, U, V\}$ be a chart around p with $\varphi(p) = 0$. Then the maps

$$
\partial_i: C^{\infty}(U) \to \mathbb{R}, \quad f \mapsto \frac{\partial f \circ \varphi^{-1}}{\partial x^i}(0), \quad i = 1, 2, \cdots, n
$$

are tangent vectors at p. One can check that they are linearly independent and form a basis of T_pM . To describe the cotangent space T_p^*M , we need to introduce

Definition 1.2. Let $\varphi : M \to N$ be a smooth map. Then for each $p \in M$, the differential of φ is the linear map $d\varphi_p : T_pM \to T_{\varphi(p)}N$ defined by

$$
d\varphi_p(X_p)(f) = X_p(f \circ \varphi)
$$

for all $X_p \in T_pM$ and all $g \in C^{\infty}(N)$.

In the special case $f : M \to \mathbb{R}$ is a smooth function, we can identify $T_{f(p)}\mathbb{R}$ with R. Then we have

$$
X_p(f) = df_p(X_p).
$$

In other words, $df_p \in T_p^*M$ is a *cotangent vector* at p. Locally in a coordinate chart $\{\varphi, U, V\}$ the dual basis of $\{\partial_1, \cdots, \partial_n\}$ in T_p^*M is $\{dx_1, \cdots, dx_n\}$, and we have

$$
df_p = (\partial_1 f) dx_1 + \dots + (\partial_n f) dx_n.
$$

We now set $TM = \bigcup_p T_pM$, the disjoint union of all tangent vectors. It is called the tangent bundle of M. There is a natural projection map

$$
\pi: TM \to M, (p, X_p) \mapsto p.
$$

Obviously we have $T_pM = \pi^{-1}(p)$.

Proposition 1.3. TM is a smooth manifold of dimension $2n$, and π is smooth.

Sketch of proof. Suppose $\{\varphi, U, V\}$ is a chart of M, then $\{T\varphi, \pi^{-1}(U), V \times \mathbb{R}^n\}$ is a chart of TM, where the trivialization map $T\varphi : \pi^{-1}(U) \to V \times \mathbb{R}^n$ is given by

$$
T\varphi(p, X_p) = (\varphi(p), d\varphi_p(X_p)).
$$

Similarly $T^*M = \bigcup_p T_p^*M$, the *cotangent bundle* of M, is also a smooth manifold of dimension $2n$, with the natural projection map a smooth map.

2. VECTOR FIELDS

Definition 2.1. A vector field on M is a section of the tangent bundle TM , i.e. a map $X : M \to TM$ such that $\pi \circ X = Id_M$. It is smooth if for any $f \in C^{\infty}(M)$, the function

$$
Xf(p) = X_p(f)
$$

is a smooth function on M . The set of all smooth vector fields on M is denoted by $\Gamma^{\infty}(TM)$.

From now on when we say "vector fields", we always mean *smooth* vector fields. We can think of a vector field X as a map

$$
X: C^{\infty}(M) \to C^{\infty}(M), \quad f \mapsto Xf.
$$

Locally in a chart $\{\varphi, U, V\}$ any smooth vector field can be represented by

$$
X = X^1 \partial_1 + \dots + X^n \partial_n =: X^i \partial_i,
$$

where X^{i} 's are smooth functions on U. So X is actually a 1st order differential operator.

Now consider two smooth vector fields X and Y on M . Locally we can write $X = X^i \partial_i$ and $Y = Y^i \partial_i$. Using the fact $\partial_i \partial_j f = \partial_j \partial_i f$, a direct computation yields

$$
[X,Y]f := X(Yf) - Y(Xf) = X^i \partial_i (Y^j \partial_j f) - Y^i \partial_i (X^j \partial_j f) = (X^i \partial_i Y^j - Y^i \partial_i X^j) \partial_j f.
$$

So the commutator $[X, Y] = XY - YX$ is again a smooth vector field on M.

Definition 2.2. We call the commutator $[X, Y]$ the Lie bracket of X and Y.

It is easy to see that the Lie bracket $[X, Y]$ satisfies the following properties:

Proposition 2.3. (a)(skew symmetry)[X, Y] = $-[Y, X]$. (b)($\mathbb R$ linearity)[$aX + bY, Z$] = $a[X, Z] + b[Y, Z]$. (c)(Jacobi identity)[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Proof. (a), (b) are obvious, and (c) follows from direct computation. \Box

A vector space together with a binary operation $[\cdot, \cdot]$ satisfying these three conditions is called a Lie algebra. So $\Gamma^{\infty}(TM)$ together with the Lie bracket operation above is an (infinite dimensional) Lie algebra.

3. Geometry and Dynamical System of Vector Fields

Recall that a smooth curve in a smooth manifold M is a smooth injective map $\gamma: I \to M$, where I is an interval in R. For any $a \in I$, the derivative of γ at $t = a$ gives a tangent vector on M at $\gamma(a)$ by $\frac{d\gamma}{dt}(a) = d\gamma_a(\frac{d}{dt})$.

Definition 3.1. We say that $\gamma: I \to M$ is an *integral curve* of a vector field X if for any $a \in I$, $\frac{d\gamma}{dt}(a) = X(\gamma(a))$.

Remark. Locally the equation $\frac{d\gamma}{dt}(a) = X(\gamma(a))$ is a system of first order differential equations. By the Picard theorem, locally an integral curve always exists and is unique, and depends on the initial data smoothly.

Definition 3.2. A vector field X on M is *complete* if for any $p \in M$, there is an integral curve $\gamma : \mathbb{R} \to M$ such that $\gamma(0) = p$.

As in the case of functions, we can define the *support* of a vector field by

$$
supp(X) = \overline{\{p \in M \mid X(p) \neq 0\}}.
$$

One can prove

Theorem 3.3. If X is a compactly supported vector field on M , then it is complete.

In particular, any smooth vector field on a compact manifold is complete. As another example, we will see later that any left-invariant vector field on a Lie group is complete.

Now suppose X is a complete vector field on M. Then for any $p \in M$, there is a unique integral curve $\gamma_p : \mathbb{R} \to M$ such that $\gamma_p(0) = p$. From this one can, for any $t \in \mathbb{R}$, define a map

$$
\phi_t: M \to M, \quad p \mapsto \gamma_p(t).
$$

Notice that for any $p \in M$ and any $t, s \in \mathbb{R}$, $\phi_t \circ \phi_s(p)$ and $\phi_{t+s}(p)$ are both integral curves for X with initial conditions $\phi_s(p)$ at $t = 0$. By uniqueness, we have

 $\phi_t \circ \phi_s = \phi_{t+s}.$

Since $\phi_0 = \text{Id}$, we conclude that $\phi_t : M \to M$ is bijective and $\phi_t^{-1} = \phi_{-t}$.

Definition 3.4. We will call $\Phi : \mathbb{R} \times M \to M$, $(t, p) \mapsto \phi_t(p)$ the flow of X.

One can show that the map Φ is smooth. It follows that ϕ_t are smooth maps. In other words, the family of maps $\{\phi_t\}$ is a one-parameter group of diffeomorphisms of M .

Example: The vector field ∂_{θ} is complete on S^1 , and the flow generated by ∂_{θ} is

$$
\Phi: \mathbb{R} \times S^1 \to S^1, \quad (t, e^{i\theta}) \mapsto e^{i(\theta + t)}.
$$

Recall that if $\varphi : M \to N$ is smooth, then it induces a "pull-back" map

 $\varphi^*: C^\infty(N) \to C^\infty(M), \quad f \mapsto \varphi^* f = f \circ \varphi,$

and if φ is a diffeomorphism, then it also induces a "push-forward" map

 $\varphi_* : \Gamma^\infty(TM) \to \Gamma^\infty(TM), \quad X \mapsto \varphi_* X, \text{ where } (\varphi_* X)(q) = (d\varphi_{\varphi^{-1}(q)})(X_{\varphi^{-1}(q)}).$ Finally let's give the dynamical system description of X and $[X, Y]$:

Theorem 3.5. Suppose $X \in \Gamma^\infty(TM)$ is complete. Then (1) For any $f \in C^{\infty}(M)$, $Xf = \frac{d}{dt}|_{t=0} \phi_t^* f$. (2) For any $Y \in \Gamma^{\infty}(TM)$, $[X, Y] = \frac{d}{dt}|_{t=0} (\phi_{-t})_* Y_{\phi_t}$.

Remark. Suppose X is a complete vector field on M. Let $\{\phi_t\}$ be the family of diffeomorphisms generated by X. Sometimes we will denote $\phi_t = \exp(tX)$ to emphasis the X-dependence, and so that the group law $\phi_t \circ \phi_s = \phi_{t+s}$ reads

$$
\exp(tX)\exp(sX) = \exp((s+t)X).
$$

Note that in general $\exp(tX) \exp(sY) \neq \exp(sY) \exp(tX)$. In fact, we have

Theorem 3.6. Let X, Y be complete vector fields on M. Then $exp(tX)$ commutes with $\exp(sY)$ for all t and s if and only if $[X, Y] = 0$.