LECTURE 3: SMOOTH VECTOR FIELDS

1. TANGENT AND COTANGENT VECTORS

Let M be an n-dimensional smooth manifold.

Definition 1.1. A tangent vector at a point p € M is a linear map X, : C°(M) — R
satisfying the Leibnitz law

(1) Xo(fg) = F(p)Xp(g) + Xp(f)g(p)

It is easy to see that the set of all tangent vectors of M at p is a vector space. We
will call it the tangent space of M at p, and denote it by T,,M. Its dual space is called
the cotangent space of M at p, and is denoted by Ty M.

Fact: Both T, M and T M are n-dimensional vector spaces.
Locally let {¢,U,V'} be a chart around p with ¢(p) = 0. Then the maps
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are tangent vectors at p. One can check that they are linearly independent and form
a basis of T, M. To describe the cotangent space Ty M, we need to introduce

Definition 1.2. Let ¢ : M — N be a smooth map. Then for each p € M, the
differential of ¢ is the linear map dy, : T,M — T, )N defined by

diop(Xp)(f) = Xp(f 0 )
for all X, € T,M and all g € C°(N).

In the special case f : M — R is a smooth function, we can identify TR with
R. Then we have

Xp(f) = dfp(Xp)-
In other words, df, € T;M is a cotangent vector at p. Locally in a coordinate chart
{0, U, V'} the dual basis of {0y, ---,0,} in Ty M is {dxy,--- ,dv,}, and we have

dfy = (D1 f)das + - + (D f)da.

We now set T'M = U,T,M, the disjoint union of all tangent vectors. It is called
the tangent bundle of M. There is a natural projection map

7:TM — M, (p, X,) — p.
Obviously we have T,M = 7~ '(p).

Proposition 1.3. T'M is a smooth manifold of dimension 2n, and w is smooth.
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Sketch of proof. Suppose {¢,U,V} is a chart of M, then {Tp, 7 }(U),V x R"} is a
chart of TM, where the trivialization map Ty : 7= 1(U) — V x R" is given by

To(p, Xp) = (p(p), dwp(Xp))-
O

Similarly T*M = U,T7M, the cotangent bundle of M, is also a smooth manifold
of dimension 2n, with the natural projection map a smooth map.

2. VECTOR FIELDS

Definition 2.1. A wvector field on M is a section of the tangent bundle TM, i.e. a
map X : M — TM such that m o X = Idy;. It is smooth if for any f € C(M), the
function

Xfp) = X,(f)
is a smooth function on M. The set of all smooth vector fields on M is denoted by
[ (TM).

From now on when we say “vector fields”, we always mean smooth vector fields.
We can think of a vector field X as a map
X:C®M)—C®(M), f—XFf.
Locally in a chart {op, U, V'} any smooth vector field can be represented by
X=X+ +X"0, = X'0,
where X%’s are smooth functions on U. So X is actually a 1! order differential operator.

Now consider two smooth vector fields X and Y on M. Locally we can write
X = X'0; and Y = Y'9;. Using the fact 9;0;f = 9;0;f, a direct computation yields

X Y]f = X(V) = Y(Xf) = X0,(Y70,0) = Y'O,(XI0, ) = (XD = Y'9,X7)0) .
So the commutator [X,Y] = XY — Y X is again a smooth vector field on M.
Definition 2.2. We call the commutator [X, Y] the Lie bracket of X and Y.

It is easy to see that the Lie bracket [X, Y] satisfies the following properties:

Proposition 2.3. (a)(skew symmetry)[X,Y] = —[Y, X].
(b)(R linearity)[aX + bY, Z] = a[X, Z] + bY, Z].
(c)(Jacobi identity)[ X, [Y, Z]| + [Y, [Z, X]] + [Z, [ X, Y]] = 0.

Proof. (a), (b) are obvious, and (c) follows from direct computation. O

A vector space together with a binary operation [-, -] satisfying these three con-
ditions is called a Lie algebra. So I'*°(T'M) together with the Lie bracket operation
above is an (infinite dimensional) Lie algebra.
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3. GEOMETRY AND DYNAMICAL SYSTEM OF VECTOR FIELDS

Recall that a smooth curve in a smooth manifold M is a smooth injective map
v : I — M, where [ is an interval in R. For any a € I, the derivative of v at t = a
gives a tangent vector on M at y(a) by % (a) = dy.(2).

Definition 3.1. We say that v : I — M is an integral curve of a vector field X if for

any a € I, ‘é—z(a) = X(v(a)).

Remark. Locally the equation Z—Z(a) = X(7y(a)) is a system of first order differential

equations. By the Picard theorem, locally an integral curve always exists and is unique,
and depends on the initial data smoothly.

Definition 3.2. A vector field X on M is complete if for any p € M, there is an
integral curve v : R — M such that v(0) = p.

As in the case of functions, we can define the support of a vector field by
supp(X) = {p € M | X(p) # 0}.

One can prove

Theorem 3.3. If X is a compactly supported vector field on M, then it is complete.

In particular, any smooth vector field on a compact manifold is complete. As
another example, we will see later that any left-invariant vector field on a Lie group is
complete.

Now suppose X is a complete vector field on M. Then for any p € M, there is a
unique integral curve v, : R — M such that 7,(0) = p. From this one can, for any
t € R, define a map

G M — M, p—,(t).
Notice that for any p € M and any t,s € R, ¢; o ¢5(p) and ¢yy5(p) are both integral
curves for X with initial conditions ¢s(p) at t = 0. By uniqueness, we have
G1 0 o5 = Prs.
Since ¢y = Id, we conclude that ¢, : M — M is bijective and ¢; ' = ¢_,.

Definition 3.4. We will call ® : R x M — M, (t,p) — ¢¢(p) the flow of X.

One can show that the map ® is smooth. It follows that ¢, are smooth maps. In
other words, the family of maps {¢;} is a one-parameter group of diffeomorphisms of

M.
Example: The vector field 9y is complete on S, and the flow generated by 9y is

d:Rx St = S (te?) e,
Recall that if ¢ : M — N is smooth, then it induces a “pull-back” map
' CF(N) = C*(M), f@'f=fop,
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and if ¢ is a diffeomorphism, then it also induces a “push-forward” map
0, : I°(TM) = T*(T'N), X p, X, where (¢.X)(q) = (dpy-1(9))(Xp-1(9)-
Finally let’s give the dynamical system description of X and [X,Y]:

Theorem 3.5. Suppose X € I'*°(T'M) is complete. Then

(1) For any f € C*(M), Xf = %‘t:o@kf-

(2) For any Y € T°(TM), [X,Y] = %],—0(¢—1): Y,

Remark. Suppose X is a complete vector field on M. Let {¢;} be the family of diffeo-
morphisms generated by X. Sometimes we will denote ¢, = exp(tX) to emphasis the
X-dependence, and so that the group law ¢; o s = ¢4, reads

exp(tX)exp(sX) = exp((s+t)X).
Note that in general exp(tX)exp(sY') # exp(sY) exp(tX). In fact, we have

Theorem 3.6. Let X, Y be complete vector fields on M. Then exp(tX) commutes
with exp(sY') for all t and s if and only if [X,Y] = 0.



