
LECTURE 3: SMOOTH VECTOR FIELDS

1. Tangent and Cotangent Vectors

Let M be an n-dimensional smooth manifold.

Definition 1.1. A tangent vector at a point p ∈M is a linear map Xp : C∞(M)→ R
satisfying the Leibnitz law

(1) Xp(fg) = f(p)Xp(g) +Xp(f)g(p)

It is easy to see that the set of all tangent vectors of M at p is a vector space. We
will call it the tangent space of M at p, and denote it by TpM . Its dual space is called
the cotangent space of M at p, and is denoted by T ∗pM .

Fact: Both TpM and T ∗pM are n-dimensional vector spaces.

Locally let {ϕ,U, V } be a chart around p with ϕ(p) = 0. Then the maps

∂i : C∞(U)→ R, f 7→ ∂f ◦ ϕ−1

∂xi
(0), i = 1, 2, · · · , n

are tangent vectors at p. One can check that they are linearly independent and form
a basis of TpM . To describe the cotangent space T ∗pM , we need to introduce

Definition 1.2. Let ϕ : M → N be a smooth map. Then for each p ∈ M , the
differential of ϕ is the linear map dϕp : TpM → Tϕ(p)N defined by

dϕp(Xp)(f) = Xp(f ◦ ϕ)

for all Xp ∈ TpM and all g ∈ C∞(N).

In the special case f : M → R is a smooth function, we can identify Tf(p)R with
R. Then we have

Xp(f) = dfp(Xp).

In other words, dfp ∈ T ∗pM is a cotangent vector at p. Locally in a coordinate chart
{ϕ,U, V } the dual basis of {∂1, · · · , ∂n} in T ∗pM is {dx1, · · · , dxn}, and we have

dfp = (∂1f)dx1 + · · ·+ (∂nf)dxn.

We now set TM = ∪pTpM , the disjoint union of all tangent vectors. It is called
the tangent bundle of M . There is a natural projection map

π : TM →M, (p,Xp) 7→ p.

Obviously we have TpM = π−1(p).

Proposition 1.3. TM is a smooth manifold of dimension 2n, and π is smooth.
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Sketch of proof. Suppose {ϕ,U, V } is a chart of M , then {Tϕ, π−1(U), V × Rn} is a
chart of TM , where the trivialization map Tϕ : π−1(U)→ V × Rn is given by

Tϕ(p,Xp) = (ϕ(p), dϕp(Xp)).

�

Similarly T ∗M = ∪pT ∗pM , the cotangent bundle of M , is also a smooth manifold
of dimension 2n, with the natural projection map a smooth map.

2. Vector Fields

Definition 2.1. A vector field on M is a section of the tangent bundle TM , i.e. a
map X : M → TM such that π ◦X = IdM . It is smooth if for any f ∈ C∞(M), the
function

Xf(p) = Xp(f)

is a smooth function on M . The set of all smooth vector fields on M is denoted by
Γ∞(TM).

From now on when we say “vector fields”, we always mean smooth vector fields.
We can think of a vector field X as a map

X : C∞(M)→ C∞(M), f 7→ Xf.

Locally in a chart {ϕ,U, V } any smooth vector field can be represented by

X = X1∂1 + · · ·+Xn∂n =: X i∂i,

where X i’s are smooth functions on U . So X is actually a 1st order differential operator.

Now consider two smooth vector fields X and Y on M . Locally we can write
X = X i∂i and Y = Y i∂i. Using the fact ∂i∂jf = ∂j∂if , a direct computation yields

[X, Y ]f := X(Y f)− Y (Xf) = X i∂i(Y
j∂jf)− Y i∂i(X

j∂jf) = (X i∂iY
j − Y i∂iX

j)∂jf.

So the commutator [X, Y ] = XY − Y X is again a smooth vector field on M .

Definition 2.2. We call the commutator [X, Y ] the Lie bracket of X and Y .

It is easy to see that the Lie bracket [X, Y ] satisfies the following properties:

Proposition 2.3. (a)(skew symmetry)[X, Y ] = −[Y,X].
(b)(R linearity)[aX + bY, Z] = a[X,Z] + b[Y, Z].
(c)(Jacobi identity)[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

Proof. (a), (b) are obvious, and (c) follows from direct computation. �

A vector space together with a binary operation [·, ·] satisfying these three con-
ditions is called a Lie algebra. So Γ∞(TM) together with the Lie bracket operation
above is an (infinite dimensional) Lie algebra.
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3. Geometry and Dynamical System of Vector Fields

Recall that a smooth curve in a smooth manifold M is a smooth injective map
γ : I → M , where I is an interval in R. For any a ∈ I, the derivative of γ at t = a
gives a tangent vector on M at γ(a) by dγ

dt
(a) = dγa(

d
dt

).

Definition 3.1. We say that γ : I → M is an integral curve of a vector field X if for
any a ∈ I, dγ

dt
(a) = X(γ(a)).

Remark. Locally the equation dγ
dt

(a) = X(γ(a)) is a system of first order differential
equations. By the Picard theorem, locally an integral curve always exists and is unique,
and depends on the initial data smoothly.

Definition 3.2. A vector field X on M is complete if for any p ∈ M , there is an
integral curve γ : R→M such that γ(0) = p.

As in the case of functions, we can define the support of a vector field by

supp(X) = {p ∈M | X(p) 6= 0}.
One can prove

Theorem 3.3. If X is a compactly supported vector field on M , then it is complete.

In particular, any smooth vector field on a compact manifold is complete. As
another example, we will see later that any left-invariant vector field on a Lie group is
complete.

Now suppose X is a complete vector field on M . Then for any p ∈ M , there is a
unique integral curve γp : R → M such that γp(0) = p. From this one can, for any
t ∈ R, define a map

φt : M →M, p 7→ γp(t).

Notice that for any p ∈ M and any t, s ∈ R, φt ◦ φs(p) and φt+s(p) are both integral
curves for X with initial conditions φs(p) at t = 0. By uniqueness, we have

φt ◦ φs = φt+s.

Since φ0 = Id, we conclude that φt : M →M is bijective and φ−1t = φ−t.

Definition 3.4. We will call Φ : R×M →M , (t, p) 7→ φt(p) the flow of X.

One can show that the map Φ is smooth. It follows that φt are smooth maps. In
other words, the family of maps {φt} is a one-parameter group of diffeomorphisms of
M .

Example: The vector field ∂θ is complete on S1, and the flow generated by ∂θ is

Φ : R× S1 → S1, (t, eiθ) 7→ ei(θ+t).

Recall that if ϕ : M → N is smooth, then it induces a “pull-back” map

ϕ∗ : C∞(N)→ C∞(M), f 7→ ϕ∗f = f ◦ ϕ,
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and if ϕ is a diffeomorphism, then it also induces a “push-forward” map

ϕ∗ : Γ∞(TM)→ Γ∞(TN), X 7→ ϕ∗X, where (ϕ∗X)(q) = (dϕϕ−1(q))(Xϕ−1(q)).

Finally let’s give the dynamical system description of X and [X, Y ]:

Theorem 3.5. Suppose X ∈ Γ∞(TM) is complete.Then
(1) For any f ∈ C∞(M), Xf = d

dt
|t=0φ

∗
tf .

(2) For any Y ∈ Γ∞(TM), [X, Y ] = d
dt
|t=0(φ−t)∗Yφt.

Remark. Suppose X is a complete vector field on M . Let {φt} be the family of diffeo-
morphisms generated by X. Sometimes we will denote φt = exp(tX) to emphasis the
X-dependence, and so that the group law φt ◦ φs = φt+s reads

exp(tX) exp(sX) = exp((s+ t)X).

Note that in general exp(tX) exp(sY ) 6= exp(sY ) exp(tX). In fact, we have

Theorem 3.6. Let X, Y be complete vector fields on M . Then exp(tX) commutes
with exp(sY ) for all t and s if and only if [X, Y ] = 0.


