
LECTURE 10: LIE SUBGROUPS

1. Lie Subgroups v.s. Lie Subalgebras

Let’s first recall the definition.

Definition 1.1. A subgroup H of a Lie group G is called a Lie subgroup if it is
a Lie group (with respect to the induced group operation), and the inclusion map
ιH : H ↪→ G is a smooth immersion (and therefore a Lie group homomorphism).

Note that we don’t require H to be a smooth submanifold of G.

Example. Consider G = T2 = S1×S1. Then S1×{0} and {0}×S1 are Lie subgroups.
Moreover, for any co-prime pair of integers (p, q),

Hp,q := {(eipt, eiqt) | t ∈ R}
is a Lie subgroup of T2. These are submanifolds as well. However, there are also many
Lie subgroups of T2 which are not submanifolds. In fact, for any irrational number α,

Hα := {(eit, eiαt) | t ∈ R}
is a Lie subgroup of T2. But H̄α = T2, so they are not submanifolds. (In particular,
we see that compact Lie groups may have noncompact subgroups!)

Suppose H is a Lie subgroup of G, and h be the Lie algebra of H. As we have
explained, we can think of h as a Lie subalgebra (= a linear subspace that is closed
under Lie bracket) of g. We first prove the following theorem that we have used in
determining the Lie algebra of many linear Lie groups:

Proposition 1.2. Suppose H is a Lie subgroup of G. Then as a Lie subalgebra of g,
the Lie algebra of H is

h = {X ∈ g | expG(tX) ∈ H for all t ∈ R}.

Proof. First suppose X ∈ h, then by naturality of exp, for any t ∈ R,

expG(tX) = ιH(expH(tX)) ∈ ιH(H) = H.

Conversely suppose X 6∈ h. Consider the map

ϕ : R× h→ G, (t, Y ) 7→ exp(tX) exp(Y ).

Since d exp0 is the identity map,

dϕ0,0(t, Y ) = tX + Y.

Since X 6∈ h, dϕ0,0 is injective. It follows that there exists a small ε > 0 and a
neighborhood U of 0 in h such that ϕ maps (−ε, ε)×U injectively into G. Shrinking U
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if necessary, we may assume that expH maps U diffeomorphically onto a neighborhood
U of e in H. Choose a smaller neighborhood U0 of e in H such that U−10 U0 ⊂ U . We
pick a countable collection {hj | j ∈ N} ⊂ H such that hjU0 cover H. (This is always
possible since H is the union of countable many compact sets.)

For each j denote Tj = {t ∈ R | exp(tX) ∈ hjU0}. We claim that Tj is a countable
set. In fact, if |t− s| < ε and t, s ∈ Tj, then

exp(t− s)X = exp(−sX) exp(tX) ∈ U .

So exp(t − s)X = exp(Y ) for a unique Y ∈ U . It follows ϕ(t − s, 0) = ϕ(0, Y ). Since
ϕ is injective, we conclude Y = 0 and t = s.

Now each Tj is a countable set. So one can find t ∈ R such that t 6∈ Tj for all j. It
follows that exp(tX) 6∈ ∪jhjU0 = H. So

X 6∈ {X ∈ g | expG(tX) ∈ H for all t ∈ R}.

This completes the proof. �

Conversely, any Lie subalgebra gives rise to some Lie subgroup:

Theorem 1.3. If h is a Lie subalgebra of g, then there is a unique connected Lie
subgroup H of G with Lie algebra h.

Proof. Let X1, · · · , Xk be a basis of h ⊂ g. Since X ′is are left invariant vector fields
on G, linearly independent at e, they are linearly independent at all g ∈ G. In other
words,

Vg = span{X1(g), · · · , Xk(g)}
gives us a k-dimensional distribution on G. Since [Xi, Xj] ∈ h for all i, j, V is integrable.
By Frobenius theorem, there is a unique maximal connected integral manifold of V
through e. Denote this by H.

To show that H is a subgroup, note that V is a left invariant distribution. So the left
translation of any integral manifold is an integral manifold. Now suppose h1, h2 ∈ H.
Since

h1 = Lh1e ∈ H ∩ Lh1H,
and since H is maximal, we have Lh1H ⊂ H. So in particular h1h2 = Lh1h2 ∈ H.
Similarly, h−11 ∈ H since Lh−1

1
(h1) = e ∈ H implies Lh−1

1
H ⊂ H. It follows that H is a

subgroup of G. Since the group operations on H are the restriction of group operations
on G, they are smooth. So H is a Lie group.

For uniqueness, let K be another connected Lie subgroup of G with Lie algebra h.
Then K is also an integral manifold of V . So we have K ⊂ H. Since TeK = TeH the
inclusion has to be a local isomorphism. In other words, K coincide with H near e.
Since any connected Lie group is generated by any open set containing e, we conclude
that K = H. �
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2. Closed Lie Subgroups

We are more interested in those Lie subgroups that are submanifolds as well.

Definition 2.1. A Lie subgroup H of G is said to be a closed Lie subgroup if H is
both a Lie subgroup and also a submanifold of G.

Although in general a submanifold doesn’t have to be a closed subset, a closed Lie
subgroup must be. This explains its name.

Lemma 2.2. Suppose G is a Lie group, H is a subgroup of G which is a submanifold
as well. Then H is closed in the sense of topology.

Proof. Since H is a submanifold of G, it is locally closed everywhere. In particular,
one can find an open neighborhood U of e in G such that U ∩ H = U ∩ H. Now
take any h ∈ H. Since hU is an open neighborhood of h in G, hU ∩ H 6= ∅. Let
h′ ∈ hU ∩ H, then h−1h′ ∈ U . On the other hand, since h ∈ H, there is a sequence
hn in H converging to h. It follows that the sequence h−1n h′ ∈ H converges to h−1h′.
In other words, h−1h′ ∈ U ∩ H = U ∩ H. So h ∈ H, i.e. H ⊂ H. Therefore, H is
closed. �

In other words, a closed Lie subgroup is must be a closed subgroup. A remarkable
theorem due to E. Cartan claims that the inverse is also true, i.e. any closed subgroup
must be a Lie subgroup.

Theorem 2.3 (E. Cartan’s closed subgroup theorem). Any closed subgroup H of a Lie
group G is a Lie subgroup (and thus a submanifold) of G.


