LECTURE 10: LIE SUBGROUPS

1. LIE SUBGROUPS V.S. LIE SUBALGEBRAS

Let’s first recall the definition.

Definition 1.1. A subgroup H of a Lie group G is called a Lie subgroup if it is
a Lie group (with respect to the induced group operation), and the inclusion map
tg » H — G is a smooth immersion (and therefore a Lie group homomorphism).

Note that we don’t require H to be a smooth submanifold of G.

Example. Consider G = T? = S! x S'. Then S! x {0} and {0} x S! are Lie subgroups.
Moreover, for any co-prime pair of integers (p, q),

HP = {(e ') | t € R}

is a Lie subgroup of T?. These are submanifolds as well. However, there are also many
Lie subgroups of T? which are not submanifolds. In fact, for any irrational number a,

HY .= {(e", e | t € R}
is a Lie subgroup of T2. But H* = T2, so they are not submanifolds. (In particular,

we see that compact Lie groups may have noncompact subgroups!)

Suppose H is a Lie subgroup of GG, and h be the Lie algebra of H. As we have
explained, we can think of h as a Lie subalgebra (= a linear subspace that is closed
under Lie bracket) of g. We first prove the following theorem that we have used in
determining the Lie algebra of many linear Lie groups:

Proposition 1.2. Suppose H is a Lie subgroup of G. Then as a Lie subalgebra of g,
the Lie algebra of H is

h={X €g| exps(tX) € H for allt € R}.

Proof. First suppose X € b, then by naturality of exp, for any t € R,
expg(tX) = tp(expy (X)) € wy(H) = H.
Conversely suppose X ¢ . Consider the map

p:Rxbh—=G, (YY) exp(tX)exp(Y).

Since dexp, is the identity map,
dpoo(t,Y) =tX +Y.

Since X & b, dpoo is injective. It follows that there exists a small ¢ > 0 and a

neighborhood U of 0 in h such that ¢ maps (—¢,¢) x U injectively into G. Shrinking U
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if necessary, we may assume that exp; maps U diffeomorphically onto a neighborhood
U of e in H. Choose a smaller neighborhood Uy of e in H such that Z/[O_IZ/{Q CU. We

pick a countable collection {h; | j € N} C H such that h;U cover H. (This is always
possible since H is the union of countable many compact sets.)

For each j denote T; = {t € R | exp(tX) € h;Uyp}. We claim that 7} is a countable
set. In fact, if |t — s| < e and ¢, s € T}, then

exp(t — s) X = exp(—sX)exp(tX) e U.

So exp(t — s)X = exp(Y') for a unique Y € U. It follows p(t — s,0) = ¢(0,Y). Since
 is injective, we conclude Y = 0 and ¢ = s.

Now each T} is a countable set. So one can find ¢ € R such that ¢t ¢ T; for all j. It
follows that exp(tX) & U;h;Uy = H. So

X g{X e€g| exps(tX) € H for all t € R}.

This completes the proof. U

Conversely, any Lie subalgebra gives rise to some Lie subgroup:

Theorem 1.3. If h is a Lie subalgebra of g, then there is a unique connected Lie
subgroup H of G with Lie algebra b.

Proof. Let Xi,---, X} be a basis of h C g. Since X/s are left invariant vector fields
on G, linearly independent at e, they are linearly independent at all g € GG. In other
words,

Vy = span{Xi(g), -, Xi(9)}

gives us a k-dimensional distribution on G. Since [X;, X;] € b for all 4, j, V is integrable.
By Frobenius theorem, there is a unique maximal connected integral manifold of V
through e. Denote this by H.

To show that H is a subgroup, note that V is a left invariant distribution. So the left
translation of any integral manifold is an integral manifold. Now suppose hy, ho € H.
Since

hi = Lye€ HN Ly H,

and since H is maximal, we have Ly, H C H. So in particular hihy = Ly hy € H.
Similarly, h;! € H since Ly-1(h1) = e € H implies L+ C H. It follows that H is a
subgroup of GG. Since the group operations on H are the restriction of group operations
on (G, they are smooth. So H is a Lie group.

For uniqueness, let K be another connected Lie subgroup of G with Lie algebra b.
Then K is also an integral manifold of V. So we have K C H. Since T.K = T.H the
inclusion has to be a local isomorphism. In other words, K coincide with H near e.
Since any connected Lie group is generated by any open set containing e, we conclude
that K = H. 0J
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2. CLOSED LIE SUBGROUPS

We are more interested in those Lie subgroups that are submanifolds as well.

Definition 2.1. A Lie subgroup H of G is said to be a closed Lie subgroup if H is
both a Lie subgroup and also a submanifold of G.

Although in general a submanifold doesn’t have to be a closed subset, a closed Lie
subgroup must be. This explains its name.

Lemma 2.2. Suppose G is a Lie group, H is a subgroup of G which is a submanifold
as well. Then H is closed in the sense of topology.

Proof. Since H is a submanifold of G, it is locally closed everywhere. In particular,
one can find an open neighborhood U of e in G such that UN H = U N H. Now
take any h € H. Since hU is an open neighborhood of h in G, hU N H # (). Let
R € hU N H, then h~'h' € U. On the other hand, since h € H, there is a sequence
h, in H converging to h. It follows that the sequence h,'h’ € H converges to h™1h'.
In other words, h'"W e UNH =UNH. Soh € H,ie. H C H. Therefore, H is
closed. OJ

In other words, a closed Lie subgroup is must be a closed subgroup. A remarkable
theorem due to E. Cartan claims that the inverse is also true, i.e. any closed subgroup
must be a Lie subgroup.

Theorem 2.3 (E. Cartan’s closed subgroup theorem). Any closed subgroup H of a Lie
group G is a Lie subgroup (and thus a submanifold) of G.



