
LECTURE 12: LIE’S FUNDAMENTAL THEOREMS

1. Lie Group Homomorphism v.s. Lie Algebra Homomorphism

Lemma 1.1. Suppose G, H are connected Lie groups, and Φ : G→ H is a Lie group
homomorphism. If dΦ : g→ h is bijective, then Φ is a covering map.

Proof. Since H is connected and Φ is a Lie group homomorphism and is a local diffeo-
morphism near onto a neighborhood of e ∈ H, Φ is surjective. By group invariance, it
suffices to check the covering property at e ∈ H. Since dΦ : TeG→ TeH is bijective, Φ
maps a neighborhood U of e in G bijectively to a neighborhood V of e in H.

Let Γ = Φ−1(e) ⊂ G. Then Γ is a subgroup of G. Moreover, for any a ∈ Γ,

Φ ◦ La(g) = Φ(ag) = Φ(a)Φ(g) = Φ(g).

So Φ−1(V) = ∪a∈ΓLaU . The lemma is proved if we can show La1U ∩ La2U = ∅ for
a1 6= a2 ∈ Γ. We show this by contradiction. Let a = a−1

1 a2. If La1U ∩ La2U 6= ∅, then
LaU ∩U 6= ∅. Consider p2 = ap1 ∈ LaU ∩U , where p1, p2 ∈ U . Then Φ(p2) = Φ(ap1) =
Φ(p1). However, Φ is one-to-one on U . So p1 = p2. It follows a = e, and a1 = a2.
Contradiction. �

Corollary 1.2. Let Φ : G → H be a Lie group homomorphism with dΦ : g → h
bijective. Suppose G,H are connected and H is simply connected. Then Φ is a Lie
group isomorphism.

Proof. Since Φ is a covering map and H is simply connected, Φ is homeomorphism. In
particular, Φ and Φ−1 are both continuous Lie group homomorphisms. If follows that
both Φ and Φ−1 are smooth, and thus Φ is a diffeomorphism. �

The main theorem in this section is the following “lifting” property:

Theorem 1.3. Let G,H be Lie groups with G connected and simply connected, g, h
the Lie algebras of G,H. If ρ : g→ h is a Lie algebra homomorphism, then there is a
unique Lie group homomorphism Φ : G→ H such that dΦ = ρ.

Proof. Let
k = graph(ρ) = {(g, h) ∈ g⊕ h : h = ρ(g)}.

Obviously k is a vector space. It is actually a Lie subalgebra of g ⊕ h. In fact, if
hi = ρ(gi), i = 1, 2, then the fact ρ is a Lie algebra homomorphism implies

[h1, h2] = [ρ(g1), ρ(g2)] = ρ([g1, g2]).

It follows
[(g1, h1), (g2, h2)] = ([g1, g2], [h1, h2]) = ([g1, g2], ρ([g1, g2])).
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In other words, k is a Lie subalgebra of g⊕ h.

By the theorem we proved in last time, there exists a unique connected Lie subgroup
K of G×H with k as its Lie algebra. Consider the composition map

ϕ : K
ιK
↪→ G×H pr1→ G.

This is a Lie group homomorphism, so dϕ = dpr1◦dιK is a Lie algebra homomorphism.
Since dpr1 : g× h→ g is the projection map, dϕ : k→ g is a bijection. It follows that
ϕ : K → G is a Lie group isomorphism.

Now let Φ : G→ H be the composition

G
ϕ−1

−→ K
pr2−→ H.

Then this is a Lie group homomorphism with dΦ = ρ. This completes the proof. �

Corollary 1.4. If connected and simply connected Lie groups G and H have isomorphic
Lie algebra, then G and H are isomorphic.

2. Lie’s Fundamental Theorems

We have seen that associated to each Lie group G there is a god-given Lie algebra
g. A natural question is: To what extend will the Lie algebra determine this Lie group?
On one hand, we have seen that the Lie algebras of S1 and R1 are the same, so Lie
groups are not determined by its Lie algebra. On the other hand, according to the
B-C-H formula, the Lie group product near the identity e is totally determined by the
Lie bracket. So at least the Lie algebra g provides the local information for G. The
subtle relations between Lie groups and Lie algebras are described by the following
theorems observed by S. Lie at the beginning of the whole subject.

Recall that for any Lie group homomorphism f : G1 → G2, there is an induced Lie
algebra homomorphism df : g1 → g2. The assignment f  df satisfies the following
functorial properties :

• For f = Id : G→ G, df = Id : g→ g.
• If fi : Gi → Gi+1, i = 1, 2, are Lie group homomorphisms, then d(f2 ◦ f1) =
df2 ◦ df1.

To state the theorems, let’s first give a definition.

Definition 2.1. A local homomorphism between two Lie groups G, H is a smooth
map f from a neighborhood U of eG in G to a neighborhood V of eH in H such that if
g1, g2 ∈ U and g1g2 ∈ U , then f(g1g2) = f(g1)f(g2). f is called a local isomorphism if it
is a diffeomorphism from U to V such that both f and f−1 are local homomorphisms.

We know the Lie algebra, as the tangent space at e, is determined by the Lie group
structure on any neighborhood of e in G. So any local homomorphism determines a Lie
algebra homomorphism as well. Moreover, the functorial properties above also holds
for local homomorphisms.
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Theorem 2.2 (Lie’s first fundamental theorem). If G and H are locally isomorphic
Lie groups, then g and h are isomorphic Lie algebras.

Proof. Let f be the local isomorphism between G and G. Since dfe : g → h is a Lie
algebra homomorphism, We only need to show dfe is a bijection. However, this follows
from the fact that exp is locally diffeomorphism. �

Conversely,

Theorem 2.3 (Lie’s second fundamental theorem). If g and h are isomorphic Lie
algebras, then G and H are locally isomorphic Lie groups.

Proof. Let ρ : g→ h be the Lie algebra isomorphism map. As in the proof of theorem
1.3, there exists a connected Lie subgroup K of G×H whose Lie algebra is

k = {(x, ρ(x)) | x ∈ g}.
We still have the facts that the composition map

ϕ : K ↪→ G×H pr1−→ G

is a Lie group homomorphism whose differential dϕ : k → g is bijective. It follows
that ϕ is a local isomorphism and a diffeomorphism, i.e. there is a neighborhood U
of e ∈ K, a neighborhood V of e ∈ G and a diffeomorphism ψ : V → U such that
ψ ◦ ϕ = 1U and ϕ ◦ ψ = 1V .

Similarly the map

φ : K ↪→ G×H pr2−→ H

is also a local diffeomorphism, and a local isomorphism. Now the composition φ ◦ ψ is
the local isomorphism we want. �

Theorem 2.4 (Lie’s third fundamental theorem). For any finite dimensional Lie al-
gebra g, there is a unique simply connected Lie group G whose Lie algebra is g.

The proof is based on the following amazing theorem whose proof is beyond the
scope of this course can can be found in books on Lie algebra representation theory.

Theorem 2.5 (Ado). Every finite dimensional Lie algebra is a Lie subalgebra of
gl(n,R) for n large enough.

Proof of Lie’s third fundamental theorem. According to Ado’s theorem g is a Lie sub-
algebra of some gl(n,R). So there is a connected linear Lie group G1 whose Lie algebra
is g. Let G be the simply connected covering of G1. Then G is a simply connected
Lie group. Its Lie algebra is g since any covering map is a local isomorphism. The
uniqueness follows from corollary 1.4. �


