
LECTURE 13-14: ACTIONS OF LIE GROUPS AND LIE ALGEBRAS

1. Smooth actions of Lie groups

Definition 1.1. Let M be a smooth manifold and G a Lie group.

(1) An action of G on M is a homomorphism of groups τ : G → Diff(M), where
Diff(M) is the group of diffeomorphisms on M . In other words, τ associates to
any g ∈ G a diffeomorphism τ(g) : M →M such that for any g1, g2 ∈ G,

τ(g1g2) = τ(g1)τ(g2).

We will denote τ(g)(m) by g ·m for brevity.

(2) An action τ of G on M is smooth if the evaluation map

ev : G×M →M, (g,m) 7→ g ·m
is smooth.

In what follows by an action we always means a smooth action.

Remark. The Lie group action we defined above is the left action. One can also define
a right action of G on M to be an anti -homomorphism τ̂ : G→ Diff(M), i.e. for any
g1, g2 ∈ G we require

τ̂(g1g2) = τ̂(g2)τ̂(g1).

Any left action τ can be converted to a right action τ̂ by letting

τ̂g(m) = m · g := τ(g−1)m = g−1 ·m.

Example. S1 acts on R2 by rotations.

Example. A·~v := A~v defines a left action of GL(n,R) on Rn, and A·~v := (~vTA)T = AT~v
defines a right action of GL(n,R) on Rn.

By the remark above, A · ~v := A−1~v is also a right action of GL(n,R) on Rn, and
A · v := (AT )−1 · ~v is a left action of GL(n,R) on Rn.

Example. If X is a complete vector field on M , then

ρ : R→ Diff(M), t 7→ ρt = exp(tX)

is a smooth action of R on M , where exp(tX)(m) := γXm(t) is defined via the integral
curves of X. Conversely, every smooth action of R on M is given by this way.

Example. Any Lie group G acts on itself by many ways, e.g. by left multiplication, by
right multiplication and by conjugation. More generally, any Lie subgroup H of G can
act on G by left multiplication, right multiplication and conjugation.
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Example. Let g be the Lie algebra of G. Then the adjoint action of G on g is

Ad : G→ Aut(g) ⊂ Diff(g), g 7→ Adg.

For example, the adjoint action of GL(n,R) on gl(n,R) is

AdCX = CXC−1.

Similarly if g∗ is the dual of g, then the coadjoint action of G on g∗ is

Ad∗ : G→ Aut(g∗) ⊂ Diff(g∗), g 7→ Ad∗g,

where Ad∗g is defined by

〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉
for all ξ ∈ g∗, X ∈ g.

A smooth manifold M together with a G-action is called a G-manifold.

Definition 1.2. Let M,N be G-manifolds. A smooth map f : M → N is called
G-equivariant, or a G-map, if it commutes with the group actions, i.e.

f(g ·m) = g · f(m)

for all g ∈ G and m ∈M .

Example. Let G,H be Lie groups, and f : G→ H a Lie group homomorphism. G acts
on G itself by left translation. Define a left G-action on H by

g · h := f(g)h.

Then f is equivariant with respect to these actions.

Note that if one or both of the actions are right actions, the equivariance condition
above should be suitably modified.

2. Infinitesimal actions of Lie algebras

The group Diff(M) is in some sense an infinite-dimensional Lie group. What is its
“Lie algebra”, i.e. what is its “tangent space” at the identity element? Well, one can
regard a (local) flow on M as a “path” in Diff(M) that pass the identity map. The
“derivative” of such a path at the identity map is the vector field that generates the
flow. So one can regard Γ∞(M) as the “Lie algebra” of Diff(M).

Now suppose Lie group G acts smoothly on M . Then τ : G → Diff(M) is a
“Lie group homomorphism”. So it’s very natural to study its linearization, i.e. its
differential as a map between the corresponding “Lie algebras”. We pick an arbitrary
X ∈ g. Then the corresponding flow on M induced by τ is

ΦX : R×M →M, (t,m) 7→ exp(tX) ·m.
So the differential of τ is the map

dτ : g→ Γ∞(M), X 7→ XM
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with

XM(m) =
d

dt

∣∣∣∣
t=0

exp(tX) ·m

Definition 2.1. The map dτ is called the infinitesimal action of g on M .

Lemma 2.2. Let τ : G→ Diff(M) be a smooth action. Then

(1) For any X ∈ g, τ(exp tX) = exp(tXM).
(2) For any g ∈ G and X ∈ g, (AdgX)M = τ(g−1)∗XM .

Proof. (1) We need to check that

γm(t) := exp(tX) ·m

is the integral curve of XM . This follows from the definition of XM , since

γ̇m(t) =
d

dt
(exp tX ·m) =

d

ds

∣∣∣∣
s=0

(exp sX ◦ exp tX ·m) = XM(exp tX ·m).

(2) For m ∈M ,

(AdgX)M(m) =
d

dt

∣∣∣∣
t=0

exp(tAdgX) ·m

=
d

dt

∣∣∣∣
t=0

(g exp(tX)g−1) ·m

= dτ(g)g−1·m
d

dt

∣∣∣∣
t=0

exp(tX) · (g−1 ·m)

= dτ(g)g−1·mXM(g−1 ·m)

= τ(g−1)∗XM(m).

�

We will leave it as exercise for you to show that the map dτ is linear. It turns out
that it also behaves well under the Lie bracket operations:

Proposition 2.3. The infinitesimal action dτ is an anti-homomorphism from g to
Γ∞(M), i.e.

[X, Y ]M = −[XM , YM ], ∀X, Y ∈ g.

Proof. From Lemma 2.2 we see

(Adexp(tY )X)M = τ(exp(−tY ))∗XM = exp(−tYM)∗XM .

In view of Theorem 3.2 in lecture 6, the derivative of the left hand side at t = 0 is
[Y,X]M . On the other hand, by theorem 3.5 in Lecture 3, the derivative of the right
hand side at t = 0 is [XM , YM ]. This completes the proof. �
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Given an action of a Lie group G on M , in view of lemma 2.2 (1), near e one can
integrate the infinitesimal action to recover the Lie group action. Since any connected
Lie group is generated by group elements near e, we conclude

Proposition 2.4. An action of a connected Lie group on a manifold M is uniquely
determined by its infinitesimal action.

A natural question is, which Lie algebra anti-homomorphism can be integrate to Lie
group actions? Suppose the Lie algebra anti-homomorphism is induced by a G-action
on M , then G×M decompose into submanifolds

Lm = {(g, g ·m) | g ∈ G},
and each Lm projects diffeomorphically to G. So if we let Lm be the “leaf” containing
(e,m), then the point on Lm that projects to g must be (g, g ·m). In other words, the
“leaves” determine the Lie group action.

Theorem 2.5 (Palais). Let G be a connected and simply connected Lie group, ϕ : g→
Γ∞(M) a Lie algebra anti-homomorphism such that each XM := ϕ(X) is complete.
Then there exists a unique smooth action τ : G→ Diff(M) such that dτ = ϕ.

We first prove

Lemma 2.6. Let τ be the left multiplication action of G on G. Then for any X ∈ TeG,
XG = dτ(X) is the right invariant vector field XR generated by Xe.

Proof. Since

XG(e) =
d

dt

∣∣∣∣
t=0

exp(tX) · e = Xe,

it is enough to check XG is right invariant:

XG(gh) =
d

dt

∣∣∣∣
t=0

exp(tX)gh = (dRh)g
d

dt

∣∣∣∣
t=0

exp(tX)g = (dRh)gXG(g).

�

Proof of Palais’s theorem. Consider the Lie algebra anti-homomorphism

g→ Γ∞(G×M), X 7→ (XR, XM),

where XR is the right-invariant vector field on G generated by Xe. The image of this
map is an integrable distribution of dimension dimG on G×M . Let Lm be the maximal
connected integrable submanifold containing the point (e,m). Projecting to the first
factor, we get a smooth map πm : Lm → G whose tangent map takes (XR, XM) to
XR. Here we identify TeG, and thus g, with the set of right-invariant vector fields on
G. Since the tangent map is an isomorphism, the map πm is a local diffeomorphism.
We claim that πm is a diffeomorphism.

Since G is simply connected, it is enough to show that πm is a covering map.
Let U0 ⊂ g be a star-like neighborhood of 0 over which the exponential map is a
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diffeomorphism, and let U = exp(U0). Given (g,m′) ∈ Lm and X ∈ U0, the curve
t 7→ exp(tX)g is an integral curve of XR. Let ΦX

t be the flow of XM , then it follows
that t 7→ (exp(tX)g,ΦX

t (m′)) is an integral curve of (XR, XM), which has to lie in the
leaf Lm. Thus the set

{(exp(X)g,ΦX
1 (m′)) | X ∈ U0}

is an open neighborhood of (g,m′) in Lm and is mapped homeomorphically under πm
onto the right translation Ug. This also implies πm is surjective, since G is generated
by U . Finally such open neighborhoods does not intersect: in fact if (g,m′) and
((g,m′′) are two points in Lm so that such neighborhood intersect, then one can find
X and X ′ in U0 so that exp(X)g = exp(X ′)g and ΦX

1 (m′) = ΦX′
1 (m′′). Then we get

exp(X) = exp(X ′) and thus X = X ′, and thus m′ = m′′. In conclusion, we prove that
πm is a covering map, and thus a diffeomorphism.

Finally we define the G action on M by

g ·m = pr2(π
−1
m (g)),

where pr2 denotes the projection to the second factor map. The previous arguments
also shows that this is a Lie group action. In fact, suppose g = g1g2 · gk, where
gi = exp(Xi) with Xi ∈ U0. Then both (g, g ·m) and (g1g2 · · · gk, g1 · g2 · · · · · gk ·m)
are points in Lm that is maped to g = g1g2 · · · gk under the map πm. So we must have
g ·m = g1 · g2 · · · · · gk ·m. This implies the map τ defined τ(g)(m) := g ·m is smooth in
g and satisfies the group law τ(gh) = τ(g)τ(h). The smoothness in m follows from the
smooth dependence of integral curve with respect to initial data. So τ is a Lie group
action of G on M . By construction dτ = ϕ. The uniqueness follows from 2.4. This
completes the proof. �

3. Orbits and Stabilizers

Definition 3.1. Let τ : G→ Diff(M) be a smooth action.

(1) The orbit of G through m ∈M is

G ·m = {g ·m | g ∈ G}.
(2) The stabilizer (also called the isotropic subgroup) of m ∈M is the subgroup

Gm = {g ∈ G | g ·m = m}.
Example. Let S1 acts on R2 by rotations centered at the origin. Then the orbit of this
action through the origin is the orign itself, and the orbit through any other point is
the circle centered at the origin passing that point. The stabilizer of the origin is S1

itself, while the stabilizer of any other point is the trivial group {e}.
Proposition 3.2. Let τ : G→ Diff(M) be a smooth action, m ∈M . Then

(1) The orbit G ·m is an immersed submanifold.
(2) The stabilizer Gm is a Lie subgroup of G, with Lie algebra

gm = {X ∈ g | XM(m) = 0}.
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Proof. (1) Consider the evaluation map

evm : G→M, g 7→ g ·m.
It is equivariant with respect to the left G action on G and the G action on M :
evm ◦ Lg = τg ◦ evm. Taking derivatives of both sides, we get

(devm)gh ◦ (dLg)h = (dτg)h·m ◦ (devm)h.

Since (dLg)h and (dτg)h·m are both bijective, the rank of (devm)gh equals the rank of
(devm)h for any g and h. It follows that the map evm is of constant rank. By the
constant rank theorem, its image, evm(G) = G ·m, is an immersed submanifold of M .

(2) Again consider the evaluation map

evm : G→M, g 7→ g ·m,
then Gm = ev−1m (m), so it is a closed set in G. It is a subgroup since τ is a group
homomorphism. It follows that Gm is a Lie subgroup of G. As a consequence, the Lie
algebra gm of Gm is

gm = {X ∈ g | exp(tX) ∈ Gm,∀t ∈ R}.
It follows that exp(tX) ·m = m for X ∈ gm. Taking derivative at t = 0, we get

gm ⊂ {X ∈ g | XM(m) = 0}.
Conversely, if XM(m) = 0, then γ(t) ≡ m, t ∈ R, is an integral curve of the vector
field XM passing m. It follows that exp(tX) ·m = γ(t) = m, i.e. exp(tX) ∈ Gm for all
t ∈ R. So X ∈ gm. �


