LECTURE 23-24: PETER-WEYL THEOREM AND ITS APPLICATIONS

1. SOME FUNCTIONAL ANALYSIS

Let H be a (complex) Hilbert space, i.e. a (finite or infinite dimensional) vector space with an inner product, such that H is complete with respect to the induced metric $|v| = \langle v, v \rangle^{1/2}$. A linear operator $T : H \rightarrow H$ is said to be bounded if there exists $C > 0$ such that $|Tv| \leq C|v|$, $\forall v \in H$.

Definition 1.1. Let H be a Hilbert space, and $T : H \rightarrow H$ a bounded operator.

1. T is self-adjoint if for any $v, w \in H$, $\langle Tv, w \rangle = \langle v, Tw \rangle$.
2. T is compact if for any bounded sequence v_1, v_2, \cdots in H, the sequence Tv_1, Tv_2, \cdots has a convergent subsequence.

We say that $\lambda \in \mathbb{C}$ is an eigenvalue of an operator T on H, with eigenvector $0 \neq v \in H$, if $Tv = \lambda v$. We will denote the set of all eigenvalues of T by $\text{Spec}(T)$, and the eigenspace for $\lambda \in \text{Spec}(T)$ by H_λ. Self-adjoint operators on Hilbert spaces are the (infinite dimensional) generalization of $n \times n$ Hermitian matrices acting on \mathbb{C}^n. For example, we have

Lemma 1.2. If T is self-adjoint, then

1. $\text{Spec}(T) \subset \mathbb{R}$,
2. for any $\lambda \neq \mu \in \text{Spec}(T)$, $H_\lambda \perp H_\mu$.

Proof. If $\lambda \in \text{Spec}(T)$ with eigenvector v, and T is self-adjoint, then $\lambda \langle v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle$. So $\lambda = \bar{\lambda}$, i.e. $\lambda \in \mathbb{R}$.

Similarly if $\lambda \neq \mu \in \text{Spec}(T)$, $0 \neq v \in H_\lambda$ and $0 \neq w \in H_\mu$, then $\lambda \langle v, w \rangle = \langle Tv, w \rangle = \langle v, Tw \rangle = \langle v, \mu w \rangle = \mu \langle v, w \rangle$. So $\langle v, w \rangle = 0$, i.e. $v \perp w$. \hfill \Box

The following spectral theorem for compact self-adjoint operators in Hilbert space will play a crucial rule in the proof of Peter-Weyl theorem.

Theorem 1.3 (The Spectral Theorem). Let T be a compact self-adjoint operator on a Hilbert space H, and denote by $N(T) = \text{Ker}(T)$ the null space of T. Then

1. The set of nonzero eigenvalues is a countable set (and thus discrete).
(2) If the set $\text{Spec}(T) = \{\lambda_1, \lambda_2, \cdots\}$ is not a finite set, then $\lim_{k \to \infty} \lambda_k = 0$.

(3) For each eigenvalue $0 \neq \lambda \in \text{Spec}(T)$, dim $H_\lambda < \infty$.

(4) Denote by $v_1^{(k)}, \cdots, v_{n(k)}^{(k)}$ an orthonormal basis of H_{λ_k}, where $n(k) = \text{dim } H_{\lambda_k}$.

Then

$$\{v_j^{(k)} \mid 1 \leq j \leq n(k), k = 1, 2, \cdots\}$$

form an orthonormal basis of $N(T)^\perp$.

2. Convolutions on Compact Lie Groups

Let G be a compact Lie group with the normalized Haar measure dg, and $C(G)$ the ring of continuous functions on G. Since G has total volume 1, we have inequalities

$$\|f\|_1 \leq \|f\|_2 \leq \|f\|_\infty$$

for any $f \in C(G)$, where $\|\cdot\|_p$ is the L^p norm, i.e.

$$\|f\|_p = \left(\int_G |f(g)|^p \, dg \right)^{1/p},$$

and

$$\|f\|_\infty = \sup_{g \in G} |f(g)|.$$

It follows that $C(G) \subset L^\infty(G) \subset L^2(G) \subset L^1(G)$. Recall that $L^2(G)$ is a Hilbert space, with inner product

$$\langle f_1, f_2 \rangle = \int_G f_1(g) \overline{f_2(g)} \, dg.$$

Definition 2.1. For any $f_1 \in C(G)$ and $f_2 \in L^1(G)$, we can define the convolution by

$$(f_1 * f_2)(g) := \int_G f_1(gh^{-1}) f_2(h) \, dh.$$

Remark. Use the change of variable $h \mapsto h^{-1}g$ one can

$$(f_1 * f_2)(g) = \int_G f_1(h) f_2(h^{-1}g) \, dh.$$

Now for any $\phi \in C(G)$ and any $f \in L^1(G)$, we define

$$T_\phi(f) = \phi * f.$$

Proposition 2.2. For any $\phi \in C(G)$ and $f \in L^1(G)$, $T_\phi(f) \in C(G)$, and

$$\|T_\phi(f)\|_\infty \leq \|\phi\|_\infty \cdot \|f\|_1.$$

In particular, the operator T_ϕ is a bounded operator on $L^2(G)$.
Proof. Since ϕ is uniformly continuous, there exists a neighborhood U of e such that $|\phi(g) - \phi(kg)| < \varepsilon$ for all $g \in G$ and $k \in U$. It follows that for any $g, g' \in G$ with $g^{-1}g' \in U$,

$$|T_\phi f(g) - T_\phi f(g')| = \left| \int_G (\phi(gh^{-1}) - \phi(g'h^{-1}))f(h)dh \right|$$

$$\leq \int_G |\phi(gh^{-1}) - \phi(g'h^{-1})| |f(h)|dh \leq \varepsilon\|f\|_1.$$

So $T_\phi f$ is a continuous function. Moreover,

$$\|T_\phi(f)\|_\infty = \sup_{g \in G} \left| \int_G \phi(g) f(h)dh \right| \leq \|\phi\|_\infty \int_G |f(h)|dh = \|\phi\|_\infty \|f\|_1.$$

The main result in this section is

Proposition 2.3. Let $\phi \in C(G)$. Then

1. The operator T_ϕ is a compact operator on $L^2(G)$.
2. If $\phi(g^{-1}) = \overline{\phi}(g)$, then T_ϕ is self-adjoint on $L^2(G)$.

Before proving this let’s first remind you the classical Ascoli-Arzela theorem. Recall that a subset $U \subset C(X)$ is equicontinuous if for any $x \in X$ and $\varepsilon > 0$, there exists a neighborhood N of x such that $|f(x) - f(y)| < \varepsilon$ holds for all $y \in N$ and all $f \in U$.

Theorem 2.4 (Ascoli-Arzela). Let X be compact, $U \subset C(X)$ a bounded and equicontinuous subset. Then every sequence in U has a uniformly convergent subsequence.

Proof of Proposition 2.3. (1) It suffices to show that any sequence in

$$\mathcal{B} = \{T_\phi(f) \mid f \in L^2(G), \|f\|_2 \leq 1\}$$

has a convergent subsequence. According to the fact $\|f\|_2 \leq \|f\|_\infty$ and the Arzela-Ascoli theorem, it suffices to show that \mathcal{B} is bounded and equicontinuous in $(C(G), \|\cdot\|_\infty)$. The boundedness follows from the previous proposition. Now let’s show the equicontinuity: Since G is compact, ϕ is uniformly continuous, i.e. $\forall \varepsilon > 0$, there exists a neighborhood U of $e \in G$ such that $|\phi(kg) - \phi(g)| < \varepsilon$ for all $g \in G$ and $k \in U$. So if $\|f\|_2 \leq 1$,

$$|(\phi * f)(kg) - (\phi * f)(g)| = \left| \int_G (\phi(kgh^{-1}) - \phi(gh^{-1}))f(h)dh \right|$$

$$\leq \int_G |\phi(kgh^{-1}) - \phi(gh^{-1})| |f(h)|dh$$

$$\leq \varepsilon\|f\|_1 \leq \varepsilon$$

holds for all $k \in N$ and all $f \in L^2(G)$ with $\|f\|_2 \leq 1$.

(2) We have by definition
\[\langle T \phi(f_1), f_2 \rangle = \int_G \int_G \phi(gh^{-1}) f_1(h) \overline{f_2(g)} dg dh \]
while
\[\langle f_1, T \phi(f_2) \rangle = \int_G \int_G \overline{\phi(hg^{-1})} f_1(h) f_2(g) dg dh. \]
So if \(\phi(g^{-1}) = \overline{\phi(g)} \), \(T \phi \) is self-adjoint. \(\square \)

3. The Peter-Weyl Theorem

The right translation \(R(g) \) of \(G \) induces a linear \(G \)-action on \(C(G) \), given by
\[(R(g)f)(x) = f(xg). \]

Lemma 3.1. Suppose \(\phi \in C(G) \), and \(\lambda \in \text{Spec}(T \phi) \). Then the \(\lambda \)-eigenspace \(H_\lambda \) is \(G \)-invariant.

Proof. For any \(f \in H_\lambda \) and any \(g \in G \),
\[(T \phi R(g)f)(x) = \int_G \phi(xh^{-1}) f(hg) dh = \int_G \phi(xgh^{-1}) f(h) dh = R(g)(T \phi f)(x) = \lambda R(g)f(x). \] \(\square \)

Recall that a matrix coefficient of \(G \) associated to a representation \((V, \pi)\) is a function on \(G \) of the form \(L(\pi(g)v) \) for some \(v \in V \) and \(L \in V^* \).

Lemma 3.2. A function \(f \in C(G) \) is a matrix coefficient on \(G \) if and only if the functions \(R(g)f \) span a finite dimensional vector space.

Proof. It is easy to check that if \(f \in C(G)_\pi \) for some finite dimensional representation \(\pi \), then \(R(g)f \in C(G)_\pi \) for any \(g \). It follows that \(R(g)f \)'s span a vector space of dimension no more than \(n^2 \), where \(n = \dim \pi \).

Conversely, suppose the functions \(R(g)f \) span a finite dimensional vector space \(V \), then \((R,V) \) is a finite dimensional representation of \(G \), and if we define a functional \(L : V \to \mathbb{C} \) by \(L(\phi) = \phi(e) \), it is clear that \(f \in V \) and
\[L(R(g)f) = f(g), \]
so as a function \(f \) is a matrix coefficient of \(G \) associated to this representation. \(\square \)

Definition 3.3. Given representation \((V, \pi)\), we will denote by \(R(\pi) \) the linear span of all matrix coefficients in \(C(G)_\pi \).

Now we are ready to prove

Theorem 3.4 (Peter-Weyl Theorem). Let \(G \) be a compact Lie group. Then the matrix coefficients of \(G \) are dense in \(C(G) \).
Proof. Let $f \in C(G)$ be a continuous function on G. Since G is compact, f is uniformly continuous, i.e. there exists a neighborhood U of e in G such that for any $g \in U$ and $h \in G$,

$$|f(g^{-1}h) - f(h)| < \varepsilon/2.$$

Now let ϕ be a nonnegative (real-valued) function supported in U such that $\int_{G} \phi(g)dg = 1$ and $\phi(g) = \phi(g^{-1})$. It follows that T_ϕ is a self-adjoint compact operator on $L^2(G)$, and for any $h \in G$,

$$|(T_\phi f)(h) - f(h)| = \left| \int_{G} (\phi(g)f(g^{-1}h) - \phi(g)f(h))dg \right| \leq \int_{U} |\phi(g)||f(g^{-1}h) - f(h)|dg \leq \frac{\varepsilon}{2}.$$

It follows by the spectral theorem that for all $\lambda \in \text{Spec}(T_\phi)$, H_λ are finite dimensional for $\lambda \neq 0$, mutually orthogonal, and span $L^2(G)$. So if we write $f = \sum_{\lambda} f_\lambda$, where $f_\lambda \in H_\lambda$, then $\sum_{\lambda} \|f_\lambda\|_2^2 = \|f\|_2^2 < \infty$. In particular, one can find δ such that

$$\sqrt{\sum_{0<|\lambda|<\delta} \|f_\lambda\|_2^2} < \frac{\varepsilon}{2\|\phi\|_\infty}.$$

Now let $\tilde{f} = T_\phi(\sum_{|\lambda|\geq\delta} f_\lambda)$. Then $\tilde{f} \in \bigoplus_{|\lambda|\geq\delta} H_\lambda$, and moreover for any $g \in G$, $R(g)\tilde{f} \in \bigoplus_{|\lambda|\geq\delta} H_\lambda$. Since $\bigoplus_{|\lambda|\geq\delta} H_\lambda$ is a finite dimensional vector space, we conclude that \tilde{f} is a matrix coefficient of G. Note that

$$T_\phi(f) - \tilde{f} = T_\phi(f_0 + \sum_{0<|\lambda|<\delta} f_\lambda) = T_\phi(\sum_{0<|\lambda|<\delta} f_\lambda),$$

so

$$\|T_\phi(f) - \tilde{f}\|_\infty \leq \|\phi\|_\infty \cdot \| \sum_{0<|\lambda|<\delta} f_\lambda\|_2 \leq \frac{\varepsilon}{2}.$$

It follows

$$\|f - \tilde{f}\|_\infty \leq \|f - T_\phi f\|_\infty + \|T_\phi f - \tilde{f}\|_\infty < \varepsilon. \quad \square$$

Since $C(G)$ is dense in $L^2(G)$, we immediately get

Corollary 3.5. Let G be a compact Lie group. Then the matrix coefficients of G are dense in $L^2(G)$.

Since any representation of G is completely reducible, and the matrix coefficients for distinct irreducible representations are orthogonal, we can restate Peter-Weyl theorem as

Theorem 3.6 (Peter-Weyl). Let G be a compact Lie group and \hat{G} be the set of equivalence classes of irreducible representations of G. Then

$$L^2(G) = \bigoplus_{\rho \in \hat{G}} R(\rho),$$

where the right hand side denote the closure in L^2 of $\bigoplus_{\rho} R(\rho)$.

Last time we have seen through examples that irreducible characters generate a dense subspace of class functions. Now we can prove this for all compact groups:

Theorem 3.7 (Peter-Weyl theorem for class functions). *Suppose G is compact. Then the irreducible characters of G generate a dense subspace of the space of continuous class functions on G.***

Proof. Suppose ϕ is a class function. For any $\varepsilon > 0$, by the Peter-Weyl theorem, one can find a representation (V, π) of G and a matrix coefficient $f \in C(G)_{\pi}$ such that $\|\phi - f\|_{\infty} < \varepsilon$. Consider the function defined on G by

$$\psi(x) = \int_{G} f(gxg^{-1})dg.$$

Obviously ψ is a class function, and $\|\phi - \psi\|_{\infty} < \varepsilon$. We claim that ψ is a linear combination of irreducible characters, thus prove the theorem.

In fact, since G is compact, $(V, \pi) = \bigoplus_{i} (V_{i}, \pi_{i})$ is a direct sum of finitely many irreducible representations. Since $f \in C(G)_{\pi} = \bigoplus_{i} C(G)_{\pi_{i}}$, we can write

$$f(g) = \sum_{i} L_{i}(\pi_{i}(g)v_{i})$$

for some $v_{i} \in V_{i}$ and $L_{i} \in V_{i}^{\ast}$. So

$$\psi(x) = \sum_{i} L_{i} \left(\int_{G} \pi_{i}(g)\pi_{i}(x)\pi_{i}(g^{-1})v_{i} \, dg \right).$$

We have already shown in the proof of Schur’s orthogonality that the map

$$v_{i} \mapsto \int_{G} \pi_{i}(g)\pi_{i}(x)\pi_{i}(g^{-1})v_{i} \, dg,$$

as the “average” of $\pi_{i}(x)$, is a linear equivariant map on V_{i}. So

$$\int_{G} \pi_{i}(g)\pi_{i}(x)\pi_{i}(g^{-1})v_{i} \, dg = \lambda(x)v_{i}$$

for some $\lambda(x) \in \mathbb{C}$. Computing the trace as we did before, we conclude

$$\lambda(x) = \frac{1}{\dim V_{i}} \text{Tr}(\pi_{i}(x)) = \frac{1}{\dim V_{i}} \chi_{\pi_{i}}(x).$$

It follows that

$$\psi(x) = \sum_{i} \frac{1}{\dim V_{i}} L_{i}(v_{i})\chi_{\pi_{i}}(x)$$

is a linear combination of irreducible characters. \qed

Corollary 3.8. *For any class function f in $L^{2}(G)$,

$$f = \sum_{\pi \in \hat{G}} \langle f, \chi_{\pi} \rangle \chi_{\pi}$$*
as an L^2 function with respect to L^2-convergence, and
$$\|f\|^2_2 = \sum_{\pi \in \hat{G}} \langle f, \chi_{\pi} \rangle^2.$$

4. Faithful Representations

Definition 4.1. A representation (V, π) of G is **faithful** if as a linear action, π is effective, i.e. the group homomorphism $\pi : G \to \text{GL}(V)$ is injective.

Lemma 4.2. Let G be a compact Lie group. Then for any $g \neq e$, there exists a representation (V, π) of G such that $\pi(g) \neq \text{Id}$.

Proof. Take any function $f \in C(G)$ such that $f(e) = 0$ and $f(g) = 1$. Then there is a representation (V, π) of G and a matrix coefficient $\phi \in C(G)_r$ such that $\|f - \phi\|_{\infty} < \frac{1}{3}$. So in particular $\phi(e) \neq \phi(g)$. Since $\phi(x) = L(\pi(x)v)$ for some fixed $v \in V$ and $L \in V^*$, we must have $\pi(g) \neq \pi(e) = \text{Id}$. □

Theorem 4.3. Any compact Lie group possesses a faithful representation.

Proof. According to the previous lemma, for any $g_1 \in G^0$ (the connected component of G containing e), $g_1 \neq e$, there exists a representation (V_1, π_1) of G such that $\pi_1(g_1) \neq \text{Id}$. The kernel $\text{Ker}(\pi_1)$ is a closed subgroup of G, thus a Lie group by itself. Moreover, since $G^0 \not\subseteq \text{Ker}(\pi_1)$, we must have $\dim \text{Ker}(\pi_1) < \dim G$. If $\dim \text{Ker}(\pi_1) \neq 0$, we do this procedure again, i.e. take an element $g_2 \in \text{Ker}(\pi_1)^0$ and a representation (V_2, π_2) such that $\pi_2(g_2) \neq \text{Id}$. It follows that $\text{Ker}(\pi_1 \oplus \pi_2)$ is a compact Lie subgroup in G with $\dim \text{Ker}(\pi_1 \oplus \pi_2) < \dim \text{Ker}(\pi_1)$. Continuing this procedure, we will get a sequence of representations $(V_i, \pi_i), 1 \leq i \leq N$, of G, such that $\dim \text{Ker}(\pi_1 \oplus \cdots \oplus \pi_N) = 0$. Since G is compact, $\text{Ker}(\pi_1 \oplus \cdots \oplus \pi_N) = \{h_1, \cdots, h_M\}$ is a finite set. Now we choose representations $(W_i, \rho_i), 1 \leq i \leq M$ such that $\rho_i(h_i) \neq \text{Id}$. It follows that the representations $\pi_1 \oplus \cdots \oplus \pi_N \oplus \rho_1 \oplus \cdots \oplus \rho_M$ is a faithful representation of G. □

As a corollary, we will prove that any compact Lie group is a linear Lie group:

Corollary 4.4. Any compact Lie group is isomorphic to a closed subgroup of $U(N)$ for N large.

Proof. Take a faithful representation (V, π) of G. Since G is compact, there exists a G-invariant inner product on V. It follows $\pi : G \to \text{GL}(V)$ maps G into $U(V) \simeq U(N)$. The injectivity of π implies that G is isomorphic to its image, a closed subgroup of $U(N)$. □

Remark. There exists noncompact Lie groups that does not admit any finite dimensional faithful representation, and thus are not linear Lie groups. One example of such Lie groups is the **metaplectic group** Mp_{2n}, the double cover of the symplectic group Sp_{2n}. Although it doesn’t have any finite dimensional faithful representation, it does have faithful infinite dimensional representations, such as the **Weil representation**.