
LECTURE 25-26: CARTAN’S THEOREM OF MAXIMAL TORI

1. Maximal Tori

By a torus we mean a compact connected abelian Lie group, so a torus is a Lie
group that is isomorphic to Tn = Rn/Zn.

Definition 1.1. Let G be a compact connected Lie group. A subgroup T ⊂ G is a
maximal torus if T is a torus and there is no other torus T ′ with T $ T ′ ⊂ G.

Remark. Let G be a compact Lie group, and T ⊂ G a torus in G. Consider the
conjugation action of G on itself,

c(g) : G→ G, h 7→ ghg−1.

Obviously c(g)(T ) = gTg−1 is again a torus in G for any g ∈ G. Moreover, this
conjugation action preserves the inclusion relation. It follows that if T is a maximal
torus, so is gTg−1.

Example. Consider G = U(n). Then the subgroup T of all diagonal matrices in U(n)
is clearly isomorphic to Tn. It is actually a maximal torus, for if there is a strictly
larger one, then one can find some element g of U(n) that commutes with all elements
of T . But T contains diagonal matrices with n distinct eigenvalues, and any matrix
commutes with such matrices must be diagonal, so we get a contradiction. Note that
any unitary matrix is unitarily diagonalizable, i.e. any g ∈ U(n) is conjugate to some
element in this maximal torus by a unitary matrix. In other words, we have

U(n) =
⋃

g∈U(n)

gTg−1.

It turns out that the same decomposition holds for any compact Lie group.

Theorem 1.2 (Cartan’s Theorem). Let G be a compact connected Lie group, T a
maximal torus of G. Then G =

⋃
g∈G gTg

−1.

Proof. Let t be the Lie algebra of T . We will prove

• If G is compact, then exp : g→ G is surjective.
• We have the decomposition in the level of Lie algebra: g =

⋃
g∈G Adgt.

It follows

G = exp(g) =
⋃
g∈G

exp(Adgt) =
⋃
g∈G

c(g)(exp(t)) =
⋃
g∈G

gTg−1.

�

1



2 LECTURE 25-26: CARTAN’S THEOREM OF MAXIMAL TORI

Remarks. (1) We are proving the Cartan’s theorem using the fact that exp is sur-
jective for compact Lie groups. Conversely, if Cartan’s theorem holds, i.e. every
g ∈ G is contained in some maximal torus, then exp is surjective on G since
the exponential map is surjective on tori. So Cartan’s theorem is equivalent to
the fact that exp is surjective.

(2) We sketch two other proofs of the Cartan’s theorem here. For more details, c.f.
D.Bump, Lie Groups, Chapter 16-17.
• Geometric proof: On any compact Lie group G there exists a bi-invariant

Riemannian metric, under which the geodesics are translations of the one-
parameter subgroups t 7→ exp(tX). Now the theorem follows from the fact
that any compact connected Riemannian manifold is geodesically complete.
• Topologically proof: The map G/T × T → G, (g, t) 7→ gtg−1 has mapping

degree |W |, where W = N(T )/T is the Weyl group of G with respect to T
(We will study this later). In particular, the map above is surjective.

(3) In general for noncompact Lie groups exp is not surjective and thus Cartan’s
theorem does not hold. For example, consider G = SL(2,R). Then

A =

{(
a 0
0 a−1

)
| a > 0

}
and

N =

{(
1 b
0 1

)
| b ∈ R

}
are both maximal connected abelian subgroups of G. Note that any element of
A has trace a + a−1 while any element in N has trace 2. So unless a = 1, an
element of A cannot be conjugate to an element in N .

Corollary 1.3. Let G be a compact connected Lie group and T a maximal torus of G.
Then any g ∈ G is conjugate to some t ∈ T .

Since any representation is uniquely determined by its character, which is a conju-
gate invariant function, we conclude

Corollary 1.4. Let G be a compact connected Lie group, T a maximal torus of G,
and (π1, V1), (π2, V2) are two finite dimensional complex representations of G. Then
π1 ' π2 if and only if π1|T ' π2|T .

Remark. Recall that any representation of a torus T can be decomposed into irreducible
representations, which are characterized by their weights. So any representation of G
is determined by a subset of the weight lattice Z∗T , with multiplicity. This is called
the weight system of the representation. In particular, if we take the representation to
be the (complexified) adjoint representation Ad ⊗ C, then any nonzero vector in the
weight system is called a root. The set of roots is called the root system of G, which
plays an important role in the classification theory of compact Lie groups.
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2. Cartan Subalgebras

Since we are going to prove Cartan’s decomposition via the corresponding Lie
algebra decomposition, it is natural to study

Definition 2.1. Let g be the Lie algebra of a compact Lie group. Then any maximal
abelian subalgebra of g is called a Cartan subalgebra of g.

Remark. Obviously if t ⊂ g is a (maximal) abelian Lie subalgebra, then for any g ∈ G,
Adg(t) is a (maximal) abelian Lie subalgebra.

Proposition 2.2. Let G be a compact Lie group. Then there is a one-to-one corre-
spondence between maximal tori in G and Cartan subalgebras in g.

Proof. This follows from the following facts:

• There is a one-to-one correspondence between conected Lie subgroups of G and
Lie subalgebras of g (Lecture 10).
• A connected Lie group T is abelian if and only if its Lie algebra t is abelian

(Lecture 8).
• The closure of any connected abelian Lie subgroup is still connected and abelian

=⇒ a maximal connected abelian Lie subgroup must be compact, and thus a
maximal torus.

�

Since any one dimensional subspace of g is abelian, it is clear that Cartan subal-
gebras of g exist. It follows that maximal tori always exist. In fact,

Corollary 2.3. Let G be a compact Lie group. Then any torus in G is contained in a
maximal torus.

Proof. Let T1 ⊂ G be a torus. Then its Lie algebra t1 = Lie(T1) is an abelian Lie
subalgebra of g. Since dim g is finite, one can always find a Cartan subalgebra t of g
that contains t1. The corresponding connected Lie subgroup T is obviously a maximal
torus in G that contains T1. �

Remark. Any g ∈ G close to e has the form exp(X) for some X ∈ g, thus sits in the
one-dimensional connected abelian Lie subgroup {exp(tX) | t ∈ R}. So any g ∈ G in a
small neighborhood of e sits in some maximal torus. As we have seen earlier, Cartan’s
theorem asserts that this holds for all g ∈ G.

In the rest of this section, we are going to prove the linear version of Cartan’s
decomposition: g =

⋃
g∈G Adgt. We first study the structure of Cartan’s subalgebras:

Lemma 2.4. Let G be a compact Lie group and t a Cartan subgroup of g. Then there
exists X ∈ t such that t = ker(adX).
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Proof. Since t is abelian, t ⊂ ker(adX)) for any X ∈ t. In particular, if {X1, · · · , Xn}
is a basis of t, then t ⊂ ∩iker(adXi

). In fact, in this case we must have

t = ∩iker(adXi
),

otherwise we can take a vector X̃ ∈ ∩iker(adXi
) \ t, then

t̃ = span{X1, · · · , Xn, X̃}
is an abelian subalgebra of g which is strictly larger than t, a contradiction. In what
follows we will show

ker(adX1) ∩ ker(adX2) = ker(adX1+tX2)

for some t ∈ R, and thus by induction, t = ker(adX1+t1X2+···+tn−1Xn) for some ti ∈ R,
completing the proof.

Take an inner product on g that is invariant under the adjoint G-action on g, i.e.

〈AdgY1,AdgY2〉 = 〈Y1, Y2〉
for any g ∈ G and Y1, Y2 ∈ g. Taking derivative, it follows that for any X ∈ g,

〈adXY1, Y2〉 = −〈Y1, adXY2〉,
i.e. adX is skew-symmetric. Let tX = ker(adX) and uX = image(adX). Then it
follows that uX ⊂ (tX)⊥, and by dimension counting, uX = (tX)⊥. Note that uX is an
adX-invariant subspace of g.

Now suppose X1, X2 ∈ t. Obviously tX1 ∩ tX2 ⊂ tX1+X2 . If uX1 ∩ uX2 = {0},
then tX1 ∩ tX2 = tX1+X2 , otherwise there is a Y ∈ g such that adX1+X2(Y ) = 0 while
adX1(Y ) = adX2(−Y ) 6= 0, a contradiction.

Finally we suppose uX1 ∩ uX2 6= 0. Since X1, X2 commute, the Jacobi identity
implies that adX1 and adX2 commute. So adX2 preserves the adX1-invariant subspaces
uX1 . As a consequence, the intersection uX1 ∩ uX2 is invariant under adX1+tX2 for any
t ∈ R. Let

p(t) = det(adX1+tX2|uX1
∩uX2

).

Then p(t) is a polynomial in t, and is not identically zero since p(0) 6= 0. It follows
that there exists a t1 6= 0 such that p(t1) 6= 0, i.e. adX1+t1X2 is invertible on uX1 ∩ uX2 .
This implies tX1 ∩ tX2 = tX1+t1X2 , for otherwise there exists Y ∈ g such that

0 6= [X1, Y ] = −t1[X2, Y ] ∈ uX1 ∩ uX2 ,

and thus

adX1+t1X2([X1, Y ]) = [X1 + t1X2, [X1, Y ]] = −[X1, [Y,X1 + t1X2]] = 0.

Contradiction with the fact that adX1+t1X2 is invertible on uX1 ∩ uX2 . �

Remark. So any Cartan subalgebra is of the form ker(adX). Such elements X ∈ g are
called regular elements. Obviously if X is a regular element, so is tX for t 6= 0.

Theorem 2.5. Let G be a compact Lie group, and t a Cartan subalgebra of g. Then
g =

⋃
g∈G Adgt, i.e. for any X ∈ g, there exists g ∈ G such that Adg(X) ∈ t.
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Proof. According to the previous lemma, there exits Y ∈ g such that t = ker(ad(Y )).
Fix an Ad-invariant inner product 〈·, ·〉 on g, and consider the continuous function on
G defined by

f(g) = 〈Y,Adg(X)〉,

Since G is compact and f is continuous, f attains its maximum at some g0 ∈ G. It
follows that for any Z ∈ g, the function

t 7→ 〈Y,Adexp(tZ)(Adg0X)〉

has a maximum at t = 0. Taking derivative at t = 0, we get

〈Y, adZ(Adg0X)〉 = 0,

i.e.

〈Y, adAdg0X
(Z)〉 = 0

for all Z ∈ g. Since adZ is skew-symmetric, we have

〈adAdg0X
(Y ), Z〉 = 0

for all Z ∈ g. So adAdg0X
(Y ) = 0, i.e. Adg0(X) ∈ ker(adY ) = t. �

Corollary 2.6. Let G be a compact Lie group, and t ⊂ g a Cartan subalgebra. Then
any Cartan subalgebra t′ of g is of the form Adg(t) for some g ∈ G.

Proof. Suppose t = ker(adX) and t′ = ker(adX′). Then there exists g ∈ G such that
AdgX

′ ∈ t. It follows

Adg(t
′) = {AdgY | [Y,X ′] = 0}

= {AdgY | [AdgY,AdgX
′] = 0} = ker(AdgX

′).

Since AdgX
′ ∈ t and t is abelian, we have Adg(t

′) ⊃ t. But t is maximal abelian, so
Adg(t

′) = t. �

Corollary 2.7. Let G be a compact Lie group and T ⊂ G a maximal torus. Then any
maximal torus of G is of the form gTg−1.

Proof. Suppose T ′ is a maximal torus in G, then t′ is a Cartan subalgebra of g. By the
previous lemma, t′ = Adg(t) for some g ∈ G. It follows

gTg−1 = c(g)(T ) = c(g) exp(t) = exp(Adg(t)) = exp(t′) = T ′.

�

Remark. In particular, we see that any two maximal tori in a compact Lie group G
have the same dimension. It is called the rank of G.
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3. Surjectivity of the exponential map

In this section we are going to prove

Theorem 3.1. Let G be a compact connected Lie group. Then the exponential map
exp is surjective.

Proof. We prove this by induction on the dimension of G. If dimG = 1, then we have
seen that G must be abelian, and thus exp is surjective.

Now suppose dimG = n > 1, and the theorem holds for any Lie group of dimension
less than n. Let t be a Cartan subalgebra of g. Then

exp g =
⋃
g∈G

exp(Adgt) =
⋃
g∈G

c(g) exp t =
⋃
g∈G

c(g)T,

where T is the maximal torus with Lie algebra t. So exp g, as the image of the compact
set G× T under the continuous map

G× T → G, (g, t) 7→ gtg−1,

is compact and therefore closed in G. We will show that it is also open, and thus equals
G by connectivity.

Fix any 0 6= X0 ∈ g, and write g0 = exp(X0). We need to show that exp g contains
a neighborhood of g0. Let

A = ZG(g0)
0 = {g ∈ G | g0gg−10 = g}0,

the connected component of the centralizer of g0 in G. It is easy to see that A is a
closed Lie subgroup of G whose Lie algebra is given by

a = Zg(g0) := {Y ∈ g | Adg0Y = Y }.
Note that exp(tX0) ∈ A for any t ∈ R. In particular, g0 ∈ A.

Case 1: dim a = dim g. Then a = g, and A = G. So g0 ∈ Z(G). Let t be any
Cartan subalgebra containing X0. Then for any X ∈ t and g ∈ G,

g0 exp(AdgX) = g0c(g)(exp(X)) = c(g)(exp(X0) exp(X)) = exp(Adg(X0 +X)).

Since g and X are arbitrary, we get

g0 exp(g) ⊂ exp(g).

But exp(g) contains a neighborhood U of e. So exp(g) must also contains g0U , a
neighborhood of g0.

Case 2: dim a < dim g. Since X0 ∈ a, we have 1 ≤ dim a < n. By induction
assumption, A = exp(a). So⋃

g∈G

g−1Ag =
⋃
g∈G

exp(Adga) ⊂ exp(g).

We will show that
⋃

g∈G g
−1Ag contains a neighborhood of g0. It follows that exp(g)

contains a neighborhood of g0.
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As before we will take an Ad-invariant inner product on g. Let b = a⊥. Then both
a and b are Adg−1

0
invariant. In particular, Adg−1

0
− Id is an invertible endomorphism

of b. Consider the smooth map ϕ : g = a⊕ b→ G given by

ϕ(X, Y ) = g−10 exp(Y )g0 exp(X) exp(−Y ).

Then

(dϕ)(0,0)(X, 0) =
d

dt

∣∣∣∣
t=0

ϕ(tX, 0) = X

and

(dϕ)(0,0)(0, Y ) =
d

dt

∣∣∣∣
t=0

ϕ(0, tY ) = Adg−1
0
Y − Y.

It follows that dϕ is an isomorphism at (0, 0) = 0 ∈ g. Thus ϕ is a diffeomorphism from
a neighborhood of 0 ∈ g to a neighborhood of e ∈ G. Since Lg0 is a diffeomorphism,
the set

{exp(Y )g0 exp(X) exp(−Y ) | X ∈ a, Y ∈ b}
contains a neighborhood of g0 in G. Note that exp(Y ) ∈ G, g0 ∈ A, and exp(X) ∈ A
for any X ∈ a, we conclude that

⋃
g∈G g

−1Ag contains a neighborhood of g0 in G. �

4. Applications of Catan’s theorem to Centralizers

We have seen in pset 2 that the centralizer

Z(G) = {g ∈ G | gh = hg, ∀h ∈ G}

of G is a normal Lie subgroup of G. Now we give a characterization.

Corollary 4.1. If G is a compact connected Lie group, then Z(G) is the intersection
of all maximal tori in G.

Proof. Suppose g ∈ Z(G), then for any maximal torus T , there is some h ∈ G such
that hgh−1 ∈ T . But hgh−1 = g, so g ∈ T for any maximal torus T .

Conversely suppose g lies in any maximal torus. For any h ∈ G, there is a maximal
torus T such that h ∈ T . Since T is abelian, hg = gh. So g ∈ Z(G). �

In general for any subgroup H ⊂ G, the centralizer

ZG(H) = {g ∈ G | gh = hg, ∀h ∈ H}

is a Lie subgroup of G.

Corollary 4.2. Supposer G is compact, and A ⊂ G is a connected abelian Lie subgroup.
Then ZG(A) is the union of all maximal tori in G that contains A. In particular, ZG(A)
is connected.
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Proof. Note that ZG(A) = ZG(Ā). So we may assume that A is a torus, otherwise we
may replace A by Ā.

Suppose T is a maximal torus containing A. Then by definition T ⊂ ZG(A). So
ZG(A) contains the union of all maximal tori in G that contains A.

Conversely, let g ∈ ZG(A), or equivalently, A ⊂ ZG(g). Then ZG(g)0 is a compact
connected Lie group, and A ⊂ ZG(g)0 since e ∈ A and A is connected. Let T1 be a
maximal torus in ZG(g)0 that contains A. Since exp is surjective, there exists X ∈ g
such that g = exp(X) ∈ ZG(g)0. So by definition, g ∈ Z(ZG(g)0). By the previous
corollary, g ∈ T1. In other words, we find a torus T1 ⊂ ZG(g)0 ⊂ G that contains both
A and g. In particular, if T is any maximal torus in G that contains T1, then g ∈ T .
This completes the proof. �

As a consequence, we get the following characterizations of maximal tori:

Corollary 4.3. Let G be a compact connected Lie group and T a torus in G. Then
the following are equivallent:

(1) T is a maximal torus.
(2) ZG(T ) = T .
(3) G =

⋃
g∈G gTg

−1.

Proof. (1)⇔(2): This is an obvious consequence of corollary 4.2.

(1)⇒(3): This is part of Cartan’s theorem.

(3)⇒(1): Suppose G =
⋃

g∈G gTg
−1. Then the map

G/ZG(T )× T → G, (gZG(T ), t) 7→ gtg−1

is surjective. In particular, dimG/ZG(T ) + dimT ≥ dimG. So dimZG(T ) ≤ dimT .
This implies T is maximal, since if T is not maximal, then Z(T ) contains all maximal
torus that contains T , and thus dimZ(T ) > dimT . �

5. The Maximal Tori of Classical Groups

5.1. G = U(n) or SU(n). Recall that

T =


eit1 . . .

eitn

 : ti ∈ R


is a maximal torus in U(n).

Similarly one can study G = SU(n) = U(n) ∩ SL(n,C). Then a maximal torus is
given by

T̃ =


eit1 . . .

eitn

 : ti ∈ R, t1 + · · ·+ tn = 0

 .
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5.2. G = SO(n).

Next let’s study the special orthogonal group SO(n), which is the identity compo-
nent of O(n). We first assume n = 2l is even. Then

T = SO(2)× · · · × SO(2) =




cos t1 − sin t1
sin t1 cos t1

. . .
cos tl − sin tl
sin tl cos tl

 : ti ∈ R


is a torus in SO(n). Moreover, from linear algebra we know that any orthogonal matrix
is conjugate using orthogonal matrices to a matrix in T . In other words,

SO(n) =
⋃

g∈SO(n)

gTg−1.

It follows that T is a maximal torus in O(n).

Similarly for n = 2l + 1 an odd number, a maximal torus of SO(n) is

T = SO(2)×· · ·×SO(2)×{1} =





cos t1 − sin t1
sin t1 cos t1

. . .
cos tl − sin tl
sin tl cos tl

1

 : ti ∈ R


5.3. G = Sp(n).

Now consider the compact symplectic group Sp(n) = Sp(2n,C) ∩ U(2n). Sp(n)

consists of unitary matrices of the form

(
A −B̄
B Ā

)
. There is a canonical inclusion

U(n)→ Sp(n), A 7→
(
A 0
0 Ā

)
.

We denote by T the image of the maximal torus of U(n) described above under this
inclusion, i.e.

T =





eit1

. . .
eitn

e−it1

. . .
e−itn


: ti ∈ R


.

It is easy to see that T is a torus in Sp(n) and is maximal.


