Notes for Functional Analysis

Wang Zuoqin (typed by Xiyu Zhai)

October 16, 2015

1 Lecture 11

1.1 The closed graph theorem

Definition 1.1. Let $f: X \to Y$ be any map between topological spaces. We define its graph to be the set

$$\Gamma_f = \{(x, f(x)) : x \in X\} \subset X \times Y.$$

We say f has closed graph if Γ_f is closed in $X \times Y$ (equipped with the product topology).

The closedness of the graph Γ_f is closely related to the continuity of f:

Proposition 1.2. Let X be a topological space, Y be a Hausdorff space. Suppose $f: X \to Y$ is continuous. Then Γ_f is closed.

Proof. Let $\Omega = X \times Y \setminus \Gamma_f$ be the complement of the set Γ_f in $X \times Y$. We want to prove that Ω is open.

Fix any $(x_0, y_0) \in \Omega$, then by definition, $(x_0, y_0) \notin \Gamma_f$, i.e.

$$y_0 \neq f(x_0)$$
.

Since Y is Hausdorff, one can find a neighborhood V of y_0 and a neighborhood W of $f(x_0)$ such that

$$V \cap W = \emptyset$$
.

By continuity of f, one can find a neighborhood U of X such that $U \subset f^{-1}(W)$, i.e.,

$$f(U) \subset W$$
.

So $f(U) \cap V = \emptyset$, i.e.

$$(U\times V)\cap\Gamma_f=\emptyset.$$

It follows that $U \times V \subset \Omega$ is a neighborhood of (x_0, y_0) in $X \times Y$. So Ω is open.

Remark 1.3. The Hausdorff property of the target space Y is necessary. In fact, if we consider

$$f = \mathrm{Id}: X \to X$$

where X is any topological space, then f is obviously continuous. The graph Γ_f of f is the diagonal

$$\triangle = \{(x, x)\} \subset X \times X.$$

It is easy to see that Γ_f is closed iff X is Hausdorff.

Remark 1.4. One can prove: If K is a compact set in a metric space, and $f: K \to K$ has closed graph, then f is continuous. (A widely used compact-Hausdorff argument)

As an application of the open mapping theorem, we can prove

Theorem 1.5 (The closed graph theorem). Let X, Y be F-spaces, and $L: X \to Y$ be a linear operator. Suppose Γ_L is closed in $X \times Y$, then L is continuous.

Proof. Let d_X, d_Y be compatible complete translation-invariant metrics on X and Y respectively. Then (exercise)

$$d((x_1, y_1), (x_2, y_2)) := d_X(x_1, x_2) + d_Y(y_1, y_2)$$

is a compatible complete translation-invariant metric on $X \times Y$, making $X \times Y$ into an F-space. (Note: need to check that the metric topology induced by d is the same thing as the product topology.)

Now consider the graph

$$\Gamma_L = \{(x, Lx) | x \in X\}.$$

Since L is linear, it is a vector subspace of $X \times Y$. As a closed subset of the complete metric space $X \times Y$ [Recall PSet 2-1 1(1)], the induced metric on Γ_f is complete, making Γ_f an F-space. (Note again that the induced topology of Γ_f as a subset of $X \times Y$ is compatible with the induced metric.)

Now consider the projection maps

$$\pi_1:\Gamma_L\to X, (x,Lx)\mapsto x$$

and

$$\pi_Y: X \times Y \to Y, (x, y) \mapsto y.$$

Obviously π_1 is linear and invertible. It is also continuous since it can be written as the composition of two continuous maps,

$$\pi_1 = \pi_X \circ \iota$$
,

where $\iota: \Gamma_L \to X \times Y$ is the inclusion map, which is continuous since the topology on Γ_L is the subspace topology inherited from $X \times Y$, and $\pi_X: X \times Y \to X$ is the projection

map, which is continuous since we are using product topology on $X \times Y$. By the Banach's inverse mapping theorem, π^{-1} is continuous.

Finally, by definition, we have

$$L = \pi_Y \circ \pi_1^{-1}.$$

Since both π_Y and π_1^{-1} are continuous, we conclude that L is continuous.

Remark 1.6. By definition,

$$\Gamma_L$$
 is closed \iff if $x_n \in X, x_n \to x, Lx_n \to y$, then $Lx = y$.

while

L is continuous
$$\iff$$
 if $x_n \in X, x_n \to x$, then $Lx_n \to y$ and $Lx = y$.

So the closed graph theorem is a powerful tool in proving continuity.

Remark 1.7. One can use the closed graph theorem to prove the Banach inverse mapping theorem. The argument is as follows:

$$X,Y$$
 are F-spaces, and $L:X\to Y$ is bijective,
linear, continuous $\Longrightarrow \Gamma_L$ is closed in $X\times Y$
 $\Longrightarrow \Gamma_{L^{-1}}$ is closed in $Y\times X$
 $\Longrightarrow L^{-1}$ is continuous.

One can also use the closed graph theorem to prove the following weaker version of the open mapping theorem:

Let X, Y be F-spaces, and $L: X \to Y$ be surjective, linear, continuous. Then L is open.

So there three statements are equivalent.

2 Closed graph operator

For simplicity, in what follows we assume that X, Y are Banach spaces. Let L be a linear map "from" X to Y. In many applications, the domain of L is NOT the whole space X. We will denote the domain of L by Dom(L), which is always assumed to be a vector subspace of X. So like before we have a linear operator

$$L:Dom(L)\subset X\to Y.$$

We can define the graph of L to be

$$\Gamma_L = \{(x, Lx) | x \in Dom(L)\} \subset X \times Y.$$

Definition 2.1. We say L is a closed graph operator if Γ_L is closed in $X \times Y$.

Note that by definition,

$$L: Dom(L) \subset X \to Y$$
 is a closed graph operator \iff if $x_n \to x, Lx_n \to Y$, then $x \in Dom(L)$, and $y = Lx$.

This is slightly different from the closedness of the graph of L whose domain is X.

Example 2.1. If $L: X \to Y$ is injective, continuous and linear (but not necessary bijective), then one can define an inverse L^{-1} with domain $Dom(L^{-1}) = Im(L)$, which is again a linear map. Moreover, in this case

$$L^{-1}: Im(L) \subset Y \to X$$

is also a closed graph operator.

Example 2.2. Let X = C([0,1]) equipped with the norm

$$||f|| = \max_{x \in [0,1]} |f|.$$

Let

$$L = \frac{d}{dx}$$

be the differential operator. Then the domain of L is

$$Dom(L) = \left\{ f \in C([0,1]) \left| \frac{df}{dx} \in C([0,1]) \right. \right\} = C^1([0,1]) \subset C([0,1]).$$

Then $\frac{d}{dx}$ is a closed graph operator. In fact, if $f_n \to f$ and $f'_n \to g$ under the norm given above, then the convergences are uniform. So from what we learned in mathematical analysis we conclude that $f \in C^1([0,1])$, and $\frac{df}{dx} = g$.

It is very important to notice that L is NOT a continuous operator, since it is not bounded. In fact, if we take $f(x) = x^n$, then

$$||(x^n)'|| = n||x^{n-1}|| = n = n||x^n|| \Longrightarrow ||L|| \ge n.$$

So the operator norm of L is infinity.

In general, the domain Dom(L) of an operator might not be a closed subset in X. This can be easily seen from the the example above, since $C^1([0,1])$ is not closed in C([0,1]). However, under suitable assumptions one can extend L to the closure of Dom(L) without changing the operator norm, and thus in those cases we can assume that the domain is closed.

Proposition 2.2. Let X be a normed vector space, Y be a Banach space, and

$$L: Dom(L) \subset X \to Y$$

be a continuous linear map. Then L can be extended to a continuous linear operator

$$\overline{L}:\overline{Dom(L)}\subset X\to Y$$

such that

- (1) $\overline{L}|_{Dom(L)} = L;$
- (2) $\|\overline{L}\| = \|L\|$.

Proof. For any $x \in \overline{Dom(L)}$, one can find a sequence $x_n \to x$ with $x_n \in Dom(L)$. We want to define the value of $\overline{L}(x)$.

Since $L: Dom(L) \to Y$ is continuous, it is bounded. So

$$||Lx|| \le ||L|| \cdot ||x||.$$

It follows

$$||Lx_n - Lx_m|| \le ||L|| \cdot ||x_n - x_m||.$$

Since $\{x_n\}$ is a convergent sequence and thus a Cauchy sequence, the sequence $\{Lx_n\}$ is also a Cauchy sequence. By the completeness of Y, there exists $y \in Y$ such that $Lx_n \to y$. We define

$$\overline{L}x = y.$$

We need to check that \overline{L} is well-defined. In fact, if there is another sequence $\tilde{x}_n \to x$ with $\tilde{x}_n \in Dom(L)$, then by the above argument, there is an $\tilde{y} \in Y$ such that $L\tilde{x}_n \to \tilde{y}$. However, if we consider the mixed sequence

$$x_1, \tilde{x}_1, x_2, \tilde{x}_2, x_3, \tilde{x}_3, \cdots,$$

then it is also a sequence in Dom(L) that converge to x. So the same arguments implies that the sequence

$$Lx_1, L\tilde{x}_1, Lx_2, L\tilde{x}_2, Lx_3, L\tilde{x}_3, \cdots$$

converges to some $\bar{y} \in Y$. Obviously one must have $y = \bar{y} = \tilde{y}$.

The linearity of L can be proved in the same way: if $x_n^{(1)} \to x^{(1)}$ and $x_n^{(2)} \to x^{(2)}$, then $\alpha x_n^{(1)} + \beta x_n^{(2)}$ is a sequence in Dom(L) that converges to $\alpha x^{(1)} + \beta x^{(2)}$. Then the continuity of vector addition implies that $L(\alpha x_n^{(1)} + \beta x_n^{(2)})$ converges to $\alpha \overline{L}(x^{(1)}) + \beta \overline{L}(x^{(2)})$.

Using the fact that if $x \in Dom(L)$, then the constant sequence x, x, x, \cdots converges to x, we see $\overline{L}(x) = L(x)$. This proves (1).

From (1) we get $||L|| \ge ||L||$. The other half of (2) follows from the continuity of norm:

$$\|\bar{L}x\| = \lim_{n \to \infty} \|Lx_n\| \le \lim_{n \to \infty} \|L\| \cdot \|x_n\| = \|L\| \cdot \|x\|.$$

Definition 2.3. We say an operator $L: Dom(L) \subset X \to Y$ admits a closure if $\overline{\Gamma}_L \subset X \times Y$ is the graph of an operator $\overline{L}: \overline{Dom(L)} \subset X \to Y$.

For example, the above theorem implies that if $L:Dom(L)\subset X\to Y$ is continuous linear, then L admits a closure.

Finally as an application of the closed graph theorem, we prove

Theorem 2.4. (Hörmander) Let X, Y, Z be Banach spaces, $L_1 : X \to Y$ and $L_2 : X \to Z$ be linear operators with $Dom(L_1) \subset Dom(L_2)$. Assume that L_1 is a closed graph operator and L_2 admits a closure, then there exists C > 0 such that for all $x \in Dom(L_1)$,

$$||L_2x||_Z \le C(||x||_X + ||L_1x||_Y).$$

Proof. By the assumption, Γ_{L_1} is a closed vector subspace of $X \times Y$, and thus a Banach space. Now we define a linear map $L_3 : \Gamma_{L_1} \to Z$ by

$$L_3((x, L_1x)) := L_2(x).$$

We claim that the graph of L_3 is closd. In fact, if $\{x_n\} \in Dom(L_1)$ is a sequence such that

$$(x_n, L_1(x_n)) \to (x, y)$$
 and $L_2(x_n) \to z$,

then the fact that L_1 is a closed graph operator implies $y = L_1x$. Moreover, since L_2 admits a closure and $Dom(L_1) \subset Dom(L_2)$, we see

$$z = \lim_{n \to \infty} L_2(x_n) = \overline{L}_2(x) = L_2(x).$$

Thus

$$L_3(x,y) = L_3(x, L_1(x)) = L_2(x) = z.$$

So we can apply the closed graph theorem to conclude that L_3 is continuous. In other words, there is a constant C so that for any $x \in Dom(L_1)$,

$$||L_2x||_Z = ||L_3((x, L_1x))||_Z \le C||(x, L_1x)||_{\Gamma_{L_1}} = C(||x||_X + ||L_1x||_Y).$$

Example 2.3. Let X = Y = Z = C([0,1]) and let $L_1 = \frac{d^2}{dx^2}$, $L_2 = \frac{d}{dx}$ then the theorem of Hormander implies that there exists C > 0 such that for any $f \in C^2([0,1])$,

$$||f'|| \le C(||f|| + ||f''||).$$