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Contents

1. Almost complex manifolds 1

2. Complex manifolds 5

3. Kähler manifolds 9

4. Dolbeault cohomology 11

1. Almost complex manifolds

¶ Almost complex structures.

Recall that a complex structure on a (real) vector space V is automorphism
J : V → V such that

J2 = −Id.

Roughly speaking, a complex structure on V enable us to “multiply
√
−1” on V

and thus convert V into a complex vector space.

Definition 1.1. An almost complex structure J on a (real) manifold M is an assign-
ment of complex structures Jp on the tangent spaces TpM which depend smoothly
on p. The pair (M,J) is called an almost complex manifold.

In other words, an almost complex structure on M is a (1, 1) tensor field J :
TM → TM so that J2 = −Id.

Remark. As in the symplectic case, an almost complex manifold must be 2n dimen-
sional. Moreover, it is not hard to prove that any almost complex manifold must
be orientable. On the other hand, there does exists even dimensional orientable
manifolds which admit no almost complex structure. There exists subtle topologi-
cal obstructions in the Pontryagin class. For example, there is no almost complex
structure on S4 (Ehresmann and Hopf).

Example. As in the symplectic case, any oriented surface Σ admits an almost com-
plex structure: Let

ν : Σ→ S2

be the Gauss map which associates to every point x ∈ Σ the outward unit normal
vector ν(x). Define Jx : TxΣ→ TxΣ by

Jxu = ν(x)× u,
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where × is the cross product between vectors in R3. It is quite obvious that Jx is
an almost complex structure on Σ.

Example. We have seen that on S6 there is no symplectic structure since H2(S6) = 0.
However, there exists an almost complex structure on S6. More generally, every ori-
ented hypersurface M ⊂ R7 admits an almost complex structure. The construction
is almost the same as the previous example: first of all, there exists a notion of
“cross product” for vectors in R7: we identify R7 as the imaginary Cayley numbers,
and define the vector product u× v as the imaginary part of the product of u and
v as Cayley numbers. Again we define

Jxu = ν(x)× u,

where ν : M → S6 is the Gauss map that maps every point to its unit out normal.
Then J is an almost complex structure. Details left as an exercise.

Remark. S2 and S6 are the only spheres that admit almost complex structures.

¶ Compatible triple.

Now let (M,ω) be a symplectic manifold, and J an almost complex structure
on M . Then at each tangent space TpM we have the linear symplectic structure ωp

and the linear complex structure Jp. Recall from lecture 1 that Jp is tamed by ωp if
the quadratic form ωp(v, Jpv) is positive definite, and Jp is compatible with ωp if it
is tamed by ωp and is a linear symplectomorphism on (TpM,ωp), or equivalently,

gp(v, w) := ωp(v, Jpw)

is an inner product on TpM .

Definition 1.2. We say an almost complex structure J on M is compatible with a
symplectic structure ω on M if at each p, Jp is compatible with ωp.

Equivalently, J is compatible with ω if and only if the assignment

gp : TpM × TpM → R, gp(u, v) := ωp(u, Jv)

defines a Riemannian structure on M . So on M we get three structures: a symplectic
structure ω, an almost complex structure J and a Riemannian structure g, and they
are related by

g(u, v) = ω(u, Jv),

ω(u, v) = g(Ju, v),

J(u) = g̃−1(ω̃(u)),

where g̃ and ω̃ are the linear isomorphisms from TM to T ∗M that is induced by g
and ω respectively. Such a triple (ω, g, J) is called a compatible triple.
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¶ Almost complex = almost symplectic.

According to proposition 3.4 and its corollary in lecture 1 we get immediately

Proposition 1.3. For any symplectic manifold (M,ω), there exists an almost com-
plex structure J which is compatible with ω. Moreover, the space of such almost
complex structures is contractible.

Remark. Obviously the proposition holds for any non-degenerate 2-form ω on M
which does not have to be closed. Such a pair (M,ω) is called an almost symplectic
manifold.

Conversely, one can prove (exercise)

Proposition 1.4. Given any almost complex structure on M , there exists an almost
symplectic structure ω which is compatible with J . Moreover, the space of such
almost symplectic structures is contractible.

So the set of almost symplectic manifolds coincides with the set of almost com-
plex manifolds.

Example. For the almost complex structures on surfaces (or hypersurfaces in R7)
that we described above,

ωx(v, w) = 〈ν(x), v × w〉
defines a compatible almost symplectic structure (which is symplectic for surfaces
but not symplectic for S6).

The following question is still open:

Donaldson’s question: Let M be a compact 4-manifold and J an almost complex
structure on M which is tamed by some symplectic structure ω. Is there a symplectic
form on M that is compatible with J?

An important progress was made by Taubes who answered the problem affirma-
tively for generically almost complex structures with b+ = 1.

¶ Almost complex submanifolds.

Almost complex structure provides a method to construct symplectic submani-
folds.

Definition 1.5. A submanifold X of an almost complex manifold (M,J) is an
almost complex submanifold if J(TX) ⊂ TX.

Proposition 1.6. Let (M,ω) be a symplectic manifold and J a compatible almost
complex structure on M . Then any almost complex submanifold of (M,J) is a
symplectic submanifold of (M,ω).

Proof. Let ι : X → M be the inclusion. Then ι∗ω is a closed 2-form on X. It is
non-degenerate since

ωx(u, v) = gx(Jxu, v)
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and gx|TxX is nondegenerate. �

¶ The splitting of tangent vectors.

Let (M,J) be an almost complex manifold. Denote by TCM = TM ⊗ C the
complexified tangent bundle. We extend J linearly to TCM by

J(v ⊗ z) = Jv ⊗ z, v ∈ TM, z ∈ C.

Then again J2 = −Id, but now on a complex vector space TpM ⊗C instead of on a
real vector space. So for each p ∈ M the map Jp has eigenvalues ±i, and we have
an eigenspace decomposition

TM ⊗ C = T1,0 ⊕ T0,1,

where

T1,0 = {v ∈ TM ⊗ C | Jv = iv}

is the +i-eigenspace of J and

T0,1 = {v ∈ TM ⊗ C | Jv = −iv}

is the −i-eigenspace of J . We will call vectors in T1,0 the J-holomorphic tangent
vectors and vectors in T0,1 the J-anti-holomorphic tangent vectors.

Lemma 1.7. J-holomorphic tangent vectors are of the form v⊗1−Jv⊗ i for some
v ∈ TM , while J-anti-holomorphic tangent vectors are of the form v ⊗ 1 + Jv ⊗ i
for some v ∈ TM .

Proof. Obviously for any v ∈ TM ,

J(v ⊗ 1− Jv ⊗ i) = Jv ⊗ 1 + v ⊗ i = i(v ⊗ 1− Jv ⊗ i)

while

J(v ⊗ 1 + Jv ⊗ i) = Jv ⊗ 1− v ⊗ i = −i(v ⊗ 1 + Jv ⊗ i).

The conclusion follows from dimension counting. �

As a consequence, we see

Corollary 1.8. If we write v = v1,0 + v0,1 according to the splitting above, then

v1,0 =
1

2
(v − iJv), v0,1 =

1

2
(v + iJv).
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¶ The splitting of differential forms.

Similarly one can split the complexified cotangent space T ∗M ⊗ C as

T ∗M ⊗ C = T 1,0 ⊕ T 0,1,

where

T 1,0 = (T1,0)
∗ = {η ∈ T ∗M ⊗ C | η(Jw) = iη(w),∀w ∈ TM ⊗ C}

= {ξ ⊗ 1− (ξ ◦ J)⊗ i | ξ ∈ T ∗M}

is the dual space of T1,0, and

T 0,1 = (T0,1)
∗ = {η ∈ T ∗M ⊗ C | η(Jw) = −iη(w),∀w ∈ TM ⊗ C}

= {ξ ⊗ 1 + (ξ ◦ J)⊗ i | ξ ∈ T ∗M}

is the dual space of T0,1. More over, any covector η has a splitting

η = η1,0 + η0,1,

where

η1,0 =
1

2
(η − iη ◦ J), η0,1 =

1

2
(η + iη ◦ J).

The splitting of covectors gives us a splitting of k-forms

Ωk(M,C) = ⊕l+m=kΩl,m(M,C),

where Ωl,m(M,C) = Γ∞(ΛlT 1,0 ∧ ΛmT 0,1) is the space of (l,m)-forms on M .

For β ∈ Ωl,m(M,C) ⊂ Ωk(M,C), we have dβ ∈ Ωk+1(M,C). So we have a
splitting

dβ = (dβ)k+1,0 + (dβ)k,1 + · · ·+ (dβ)1,k + (dβ)0,k+1.

Definition 1.9. For β ∈ Ωl,m(M,C),

∂β = (dβ)l+1,m, ∂̄β = (dβ)l,m+1.

Note that for functions we always have

df = ∂f + ∂̄f,

while for more general differential forms we don’t have d = ∂ + ∂̄.

2. Complex manifolds

¶ Complex manifolds.

Recall that a smooth manifold is a topological space that locally looks like Rn,
with diffeomorphic transition maps.

Definition 2.1. A complex manifold of complex dimension n is a manifold that
locally homeomorphic to open subsets in Cn, with biholomorphic transition maps.
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Obviously any complex manifold is a real manifold, but the converse is not true.
As in the symplectic case, a complex manifold must be of even dimensional if view
as a real manifold, and must be orientable. In fact, we have

Proposition 2.2. Any complex manifold has a canonical almost complex structure.

Proof. Let M be a complex manifold and (U, V, ϕ) be a complex chart for M , where
U is an open set in M , and V an open set in Cn. We denote ϕ = (z1, · · · , zn), with
zi = xi +

√
−1yi. Then (x1, · · · , xn, y1, · · · , yn) is a coordinate system on U when

we view M as a real manifold. So

TpM = R-span of

{
∂

∂xi
,
∂

∂yi

∣∣∣∣ i = 1, · · · , n
}
.

We define J on U by the recipe

J(
∂

∂xi
) =

∂

∂yi
, J(

∂

∂yi
) = − ∂

∂xi

for i = 1, · · · , n, and extends to TpM by linearity. Obviously J2 = −Id. It remains
to prove that J is globally well-defined, i.e. it is independent of the choice of complex
coordinate charts.

Suppose (U ′, V ′, ϕ′) is another coordinate chart, with ϕ′ = (w1, · · · , wn) and
wi = ui +

√
−1vi. Then on the overlap U ∩ U ′ the transition map

ψ : ϕ(U ∩ U ′)→ ϕ′(U ∩ U ′), z 7→ w = ψ(z)

is biholomorphic. If we write the map as

ui = ui(x, y), vi = vi(x, y)

in real coordinates, then the real tangent vectors are related by

∂

∂xk
=
∑
j

∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj

∂

∂yk
=
∑
j

∂uj
∂yk

∂

∂uj
+
∂vj
∂yk

∂

∂vj
,

while the Cauchy-Riemann equation gives

∂uj
∂xk

=
∂vj
∂yk

,
∂uj
∂yk

= − ∂vj
∂xk

.

It follows that

J ′(
∂

∂xk
) = J ′(

∑
j

∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj
) =

∑
j

∂vj
∂yk

∂

∂vj
+
∂uj
∂yk

∂

∂uj
=

∂

∂yk
.

Since J ′ = −Id, we must also have J ′( ∂
∂yi

) = − ∂
∂xi

. It follows J ′ = J . �
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Conversely, not every almost complex manifold admits a complex structure.
One example is CP2#CP2#CP2. We have seen that S2 and S6 are the only spheres
that admits almost complex structure. We will see below that S2 admits a complex
structure. One of the major open question in complex geometry is

Open problem: Is there a complex structure on S6?

¶ Differential forms on complex manifolds.

Now suppose M is a complex manifold and J its canonical almost complex
structure. Then in local coordinates

TpM ⊗ C = C-span of

{
∂

∂xi
,
∂

∂yi

∣∣∣∣ i = 1, · · · , n
}
.

and the two eigenspaces of J are

T1,0 = C-span of

{
1

2

(
∂

∂xi
− i ∂

∂yi

) ∣∣∣∣ i = 1, · · · , n
}
,

T0,1 = C-span of

{
1

2

(
∂

∂xi
+ i

∂

∂yi

) ∣∣∣∣ i = 1, · · · , n
}
,

We define
∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
,

then

T1,0 = C-span of

{
∂

∂zj

∣∣∣∣ j = 1, · · · , n
}
, T0,1 = C-span of

{
∂

∂z̄j

∣∣∣∣ j = 1, · · · , n
}
,

Similarly if we put

dzj = dxj + idyj, dz̄j = dxj − idyj,
then

T 1,0 = C-span of {dzj | j = 1, · · · , n} , T 0,1 = C-span of {dz̄j | j = 1, · · · , n} ,
Note that under these notions, the fact df = ∂f + ∂f̄ is given explicitly as

df =
∑
j

(
∂f

∂xj
dxj +

∂f

∂yj
dyj

)
=
∑
j

(
∂f

∂zj
dzj +

∂f

∂z̄j
dz̄j

)
.

As a consequence, any (l,m)-form β ∈ Ωl,m(M,C) can be expressed locally as

β =
∑

|J |=l,|K|=m

bJ,KdzJ ∧ dz̄K

for some smooth functions bJ,K ∈ C∞(U,C), where we use the notion dzJ to represent
dzj1 ∧ · · · ∧ dzjl for a multi-index J = (j1, · · · , jl), and likewise for dz̄K . This nice
local expression implies

Theorem 2.3. On complex manifolds d = ∂ + ∂̄ for any (l,m)-forms.
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Proof. The local expression above for β ∈ Ωl,m(M,C) gives

dβ =
∑

|J |=l,|K|=m

dbJ,K ∧ dzJ ∧ dz̄K .

The conclusion follows from the facts dbJ,K = ∂bJ,K + ∂̄bJ,K and

∂bJ,K =
∑ ∂bJ,K

∂zj
dzj, ∂̄bJ,K =

∑ ∂bJ,K
∂z̄j

dz̄j.

�

¶ Integrability.

The canonical almost complex structure on a complex manifold that we con-
structed above is just the map “multiplication by

√
−1” in coordinate charts.

Definition 2.4. An almost complex structure J on M is called integrable if it
is a complex structure, i.e. there exists local complex coordinates on M so that
(M,J) = (Cn,

√
−1).

So a complex structure is an integrable almost complex structure.

It is hard to use the definition above to detect whether an almost complex
structure is complex or not. However, we do have a very useful criteria.

Definition 2.5. The Nijenhuis tensor NJ is

NJ(u, v) = [Ju, Jv]− J [Ju, v]− J [u, Jv]− [u, v].

We will leave the proof of the next two exercises as an exercise.

Proposition 2.6. NJ is a tensor, i.e. Nj(fu, gv) = fgNj(u, v) for vector fields u, v
and smooth functions f, g.

Proposition 2.7. One has NJ(u, v) = −8Re([u1,0, v1,0])0,1).

As a consequence, we get

Corollary 2.8. NJ = 0⇐⇒ [T1,0, T1,0] ⊂ T1,0.

On a complex manifold [ ∂
∂zj
, ∂
∂zk

] = 0. It follows

Corollary 2.9. NJ = 0 for the canonical almost complex structure J on complex
manifolds.

The following theorem is a hard theorem which gives an easy-to-use characteri-
zation of integrability of almost complex structures:

Theorem 2.10 (Newlander-Nirenberg). Let J be an almost complex structure on
M . Then

J is integrable⇐⇒ NJ = 0⇐⇒ d = ∂ + ∂̄.
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An an example, we immediately get

Theorem 2.11. Any almost complex structure on a surface is integrable.

Proof. A direct computation gives NJ(v, v) = 0 and NJ(v, Jv) = 0. Details left as
an exercise. �

3. Kähler manifolds

¶ Kähler manifolds.

Definition 3.1. A Kähler manifold is a triple (M,ω, J), where ω is a symplectic
form on M , and J an integrable complex structure on M which is compatible with
ω. In this case we will call ω a Kähler form.

Example. (Cn,Ω0, J0) is a Kähler manifold.

Example. Any oriented surface Σ carries a Kähler structure: one just choose ω to
be the area form and choose J to be an almost complex structure that is compatible
with ω.

Example. Complex tori M = Cn/Zn: Since both the symplectic structure and the
complex structure on Cn are invariant under translations along real directions, the
standard symplectic and complex structures on Cn give us a Kähler structure on M .

Remark. By definition a Kähler manifold is both a symplectic manifold and a com-
plex manifold. In 1976 Thurston constructed an example that is both symplectic
and complex, but admits no Kähler structure.

People also constructed symplectic manifolds which do not admit any com-
plex structure (Fernandez-Gotay-Gray 1988), and complex manifolds that admits
no symplectic structure (Hopf surface S1 × S3 ' C2 − {0}/{(z1, z2) ∼ (2z1, 2z2)}).

¶ The Kähler form.

Now let ω be a Kähler form on M . Then ω is a real-valued non-degenerate
closed 2-form on M . Let’s see what does these conditions give us:

• Since M is complex, locally

ω =
∑

ajkdzj ∧ dzk +
∑

bjkdzj ∧ dz̄k +
∑

cjkdz̄j ∧ dz̄k.

• Since J is a symplectomorphism,

J∗ω = ω.

On the other hand it is easy to check J∗dzj = idzj and J∗dz̄j = −idz̄j. So

J∗ω =
∑
−ajkdzj ∧ dzk +

∑
bjkdzj ∧ dz̄k −

∑
cjkdz̄j ∧ dz̄k.

It follows
ω =

∑
bjkdzj ∧ dz̄k,
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i.e. ω ∈ Ω1,1(M,C) ∩ Ω2(M). We will write bjk = i
2
hjk, so that

ω =
i

2

∑
hjkdzj ∧ dz̄k, hjk ∈ C∞(U).

• Since ω is real-valued, ω̄ = ω. But

ω̄ = − i
2

∑
hjkdz̄j ∧ dzk =

i

2

∑
hkjdzj ∧ dz̄k,

so at each point p ∈M the matrix (hjk(p)) is Hermitian.
• Moreover, one can check

ωn = n!(
i

2
)n det(hjk)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,

so the non-degeneracy condition of ω is equivalent to the fact that the matrix
(hjk) is non-singular.
• The tamed condition ω(v, Jv) > 0 for each v 6= 0 implies that at each p, the

matrix (hjk) is positive definite.
• Finally, since 0 = dω = ∂ω+ ∂̄ω, and ∂ω ∈ Ω2,1(M,C) and ∂̄ω ∈ Ω1,2(M,C),

we get

∂ω = 0, ∂̄ω = 0.

In conclusion, we get

Theorem 3.2. Kähler forms are ∂- and ∂̄-closed (1, 1) forms which are given locally
by

ω =
i

2

∑
hjkdzj ∧ dz̄k, hjk ∈ C∞(U),

where at each p, the matrix (hjk) is a positive-definite Hermitian matrix.

In general one cannot hope that two symplectic forms in the same cohomolo-
gy class are symplectomorphic, unless they are connected by a path of symplectic
structures. As an application of the previous theorem, we have

Corollary 3.3. Let M be compact and ω1, ω2 be Kähler forms on M with [ω1] =
[ω2] ∈ H2(M), then (M,ω1) and (M,ω2) are symplectomorphic.

Proof. On a local chart

ωi =
i

2

∑
hijkdzj ∧ dz̄k, hijk ∈ C∞(U).

We let

ωt =
i

2

∑
((1− t)h1jk + th0jk)dzj ∧ dz̄k, hijk ∈ C∞(U).

Then ((1 − t)h1jk + th0jk) is a positive definite Hermitian matrix, so ωt’s are all
symplectic. Now apply Moser’s trick. �



LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS 11

4. Dolbeault cohomology

Student presentation.


