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1. ALMOST COMPLEX MANIFOLDS

€ Almost complex structures.

Recall that a complex structure on a (real) vector space V' is automorphism
J :V — V such that
J? = —Id.
Roughly speaking, a complex structure on V' enable us to “multiply v/—1"7 on V
and thus convert V' into a complex vector space.

Definition 1.1. An almost complex structure J on a (real) manifold M is an assign-
ment of complex structures J, on the tangent spaces 7, M which depend smoothly
on p. The pair (M, J) is called an almost complex manifold.

In other words, an almost complex structure on M is a (1,1) tensor field J :
TM — TM so that J* = —Id.

Remark. As in the symplectic case, an almost complex manifold must be 2n dimen-
sional. Moreover, it is not hard to prove that any almost complex manifold must
be orientable. On the other hand, there does exists even dimensional orientable
manifolds which admit no almost complex structure. There exists subtle topologi-
cal obstructions in the Pontryagin class. For example, there is no almost complex
structure on S* (Ehresmann and Hopf).

Example. As in the symplectic case, any oriented surface ¥ admits an almost com-
plex structure: Let

vy — 52
be the Gauss map which associates to every point x € ¥ the outward unit normal
vector v(z). Define J, : 1,3 — T,% by

Jou = v(z) X u,
1
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where X is the cross product between vectors in R3. It is quite obvious that .J, is
an almost complex structure on .

Ezample. We have seen that on S° there is no symplectic structure since H?(S®) = 0.
However, there exists an almost complex structure on S®. More generally, every ori-
ented hypersurface M C R” admits an almost complex structure. The construction
is almost the same as the previous example: first of all, there exists a notion of
“cross product” for vectors in R”: we identify R” as the imaginary Cayley numbers,
and define the vector product v x v as the imaginary part of the product of u and
v as Cayley numbers. Again we define

Jou =v(x) X u,

where v : M — S® is the Gauss map that maps every point to its unit out normal.
Then J is an almost complex structure. Details left as an exercise.

Remark. S? and S° are the only spheres that admit almost complex structures.

€ Compatible triple.

Now let (M,w) be a symplectic manifold, and J an almost complex structure
on M. Then at each tangent space T,,M we have the linear symplectic structure w,
and the linear complex structure J,. Recall from lecture 1 that .J, is tamed by w, if
the quadratic form wy, (v, Jyv) is positive definite, and J, is compatible with w, if it
is tamed by w, and is a linear symplectomorphism on (7,M,w,), or equivalently,

gp(v, w) = wp(v> Jpw>
is an inner product on T, M.

Definition 1.2. We say an almost complex structure J on M is compatible with a
symplectic structure w on M if at each p, J, is compatible with w,.

Equivalently, J is compatible with w if and only if the assignment
gy T,M xT,M =R, g,(u,v) :=w,(u, Jv)

defines a Riemannian structure on M. So on M we get three structures: a symplectic
structure w, an almost complex structure J and a Riemannian structure g, and they
are related by

g(u,v) = w(u, Jv),
w(u,v) = g(Ju,v),
J(u) = g~ H(@(u)),

where g and @ are the linear isomorphisms from T'M to T*M that is induced by g
and w respectively. Such a triple (w, g, J) is called a compatible triple.
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€ Almost complex = almost symplectic.

According to proposition 3.4 and its corollary in lecture 1 we get immediately

Proposition 1.3. For any symplectic manifold (M,w), there exists an almost com-
plex structure J which is compatible with w. Moreover, the space of such almost
complex structures is contractible.

Remark. Obviously the proposition holds for any non-degenerate 2-form w on M
which does not have to be closed. Such a pair (M, w) is called an almost symplectic
manifold.

Conversely, one can prove (exercise)

Proposition 1.4. Given any almost complex structure on M, there exists an almost
symplectic structure w which is compatible with J. Moreover, the space of such
almost symplectic structures is contractible.

So the set of almost symplectic manifolds coincides with the set of almost com-
plex manifolds.

Ezample. For the almost complex structures on surfaces (or hypersurfaces in R)
that we described above,

we(v,w) = (v(x),v X w)
defines a compatible almost symplectic structure (which is symplectic for surfaces
but not symplectic for S°).

The following question is still open:

Donaldson’s question: Let M be a compact 4-manifold and J an almost complex
structure on M which is tamed by some symplectic structure w. Is there a symplectic
form on M that is compatible with J7

An important progress was made by Taubes who answered the problem affirma-
tively for generically almost complex structures with bt = 1.

€ Almost complex submanifolds.

Almost complex structure provides a method to construct symplectic submani-
folds.

Definition 1.5. A submanifold X of an almost complex manifold (M, J) is an
almost complezx submanifold if J(TX) C TX.

Proposition 1.6. Let (M,w) be a symplectic manifold and J a compatible almost
complex structure on M. Then any almost complex submanifold of (M,J) is a
symplectic submanifold of (M,w).

Proof. Let + : X — M be the inclusion. Then (*w is a closed 2-form on X. It is
non-degenerate since

w$<u7 U) = gz(JzU, U)
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and g, |r,x is nondegenerate. O

€[ The splitting of tangent vectors.

Let (M, J) be an almost complex manifold. Denote by TcM = TM ® C the
complexified tangent bundle. We extend J linearly to TcM by

Jovz)=Jv®z, wveTM,zeC.

Then again J? = —Id, but now on a complex vector space T, M ® C instead of on a
real vector space. So for each p € M the map J, has eigenvalues +i, and we have
an eigenspace decomposition

TM®C="T,® T,
where
To={veTM&®C| Jv=iv}
is the +i-eigenspace of J and

Toa={veTMxC| Jv=—iv}

is the —i-eigenspace of J. We will call vectors in 17y the J-holomorphic tangent
vectors and vectors in Tp ; the J-anti-holomorphic tangent vectors.

Lemma 1.7. J-holomorphic tangent vectors are of the form v®1— Jv®1 for some
v € TM, while J-anti-holomorphic tangent vectors are of the form v ® 1 + Jv ® 1
for some v e TM.

Proof. Obviously for any v € T M,
Jo@l-—Juvi)=Jrel+vei=ilvel—-Jv®i)
while
Jol+Joi)=Jvel—v®i=—i(v® 1+ Jv®1i).
The conclusion follows from dimension counting. U
As a consequence, we see

Corollary 1.8. If we write v = vy + Vo1 according to the splitting above, then

1 1
V1,0 = 5(” —1Jv), Vo,1 = 5(@ +iJv).
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q[ The splitting of differential forms.

Similarly one can split the complexified cotangent space T*M ® C as

T"MeC=T"aT",
where
T =(Tyo) = {neT"M ®C | n(Jw) = in(w),Yw € TM ® C}
={{®@1-(§o)®i|{ T M}
is the dual space of T, and
T = (Tp)* = {neT*M @ C | n(Jw) = —in(w),Vw € TM @ C}
={{@1+({oJ)®i| €T M}
is the dual space of Tj ;. More over, any covector n has a splitting
n=n""+n""
where
= %(n —inolJ), N = %(n +ino.J).
The splitting of covectors gives us a splitting of k-forms
QF(M,C) = @1k Q"™(M, C),

where Q4™ (M, C) = I'°(A'TH0 A AmT91) is the space of (I, m)-forms on M.

For 8 € Q'™(M,C) c QF(M,C), we have d3 € Q*(M,C). So we have a
splitting

dB = (dB)*0 + (dB)* + - + (dB)"" + (dB)™.

Definition 1.9. For 3 € Q'™(M,C),
05 = (), 3B = (dB) .
Note that for functions we always have
df = 0f +0f,

while for more general differential forms we don’t have d = 0 + 0.

2. COMPLEX MANIFOLDS

€ Complex manifolds.
Recall that a smooth manifold is a topological space that locally looks like R,
with diffeomorphic transition maps.

Definition 2.1. A complex manifold of complex dimension n is a manifold that
locally homeomorphic to open subsets in C", with biholomorphic transition maps.
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Obviously any complex manifold is a real manifold, but the converse is not true.
As in the symplectic case, a complex manifold must be of even dimensional if view
as a real manifold, and must be orientable. In fact, we have

Proposition 2.2. Any complex manifold has a canonical almost complex structure.

Proof. Let M be a complex manifold and (U, V, ) be a complex chart for M, where
U is an open set in M, and V' an open set in C". We denote ¢ = (21, - , 2,,), with
zi = x; + v/ —1ly;. Then (x1,-++ ,Zp, %1, ,Yn) IS a coordinate system on U when

we view M as a real manifold. So
We define J on U by the recipe
g, 0 0 0

for i =1,--- ,n, and extends to T,M by linearity. Obviously J* = —Id. It remains
to prove that J is globally well-defined, i.e. it is independent of the choice of complex
coordinate charts.

o 0
T,M = R-span of {amz @yz

Suppose (U', V' ') is another coordinate chart, with ¢’ = (wq, - ,w,) and
w; = u; ++/—1v;. Then on the overlap U N U’ the transition map

vipUNU) = UNU), 2z w=1(z)
is biholomorphic. If we write the map as
u; = ui(z,y), v =wvi(z,y)

in real coordinates, then the real tangent vectors are related by

0 ou; (91)- 0
_Z J J

8_ oxx au] 8xk 8_%

o _ Zauj Lo 0
OYp Qyy, Ouj ayk ov;’
while the Cauchy-Riemann equation gives

Ouj _ 0y 0wy 0y

8xk a 8yk’ 8yk ark:
It follows that

_ g Zauj 82)] Zavj 8uj J i

éhsk Oxy, Ou; &%’k (% Oy, Ov; ayk au] Yy

Since J' = —Id, we must also have J’(a%) = —2. It follows J' = J. O
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Conversely, not every almost complex manifold admits a complex structure.
One example is CP*#CP?#CP?. We have seen that S? and S° are the only spheres
that admits almost complex structure. We will see below that S? admits a complex
structure. One of the major open question in complex geometry is

Open problem: Is there a complex structure on S%?

¢ Differential forms on complex manifolds.

Now suppose M is a complex manifold and .J its canonical almost complex
structure. Then in local coordinates
1=1,--- ,n} .

g 0
T,M @ C = C-span of {8_331’ 8_yz

and the two eigenspaces of J are

T = C-span of {

E
2 .
To1 = C-span of {% ( 8’ +1 (‘3')

We define

then

Ty = C-span of { i
' 8Zj

Similarly if we put

jzl,---,n}, To1 = C-span of {i
’ 82’]'

j:]-)"'an}a

de = dl’j + idyj, dfj = dCL’j — idyj,
then
T = C-span of {dz; | j=1,---,n}, T% =C-spanof {dz; |j=1,---,n},
Note that under these notions, the fact df = df + Of is given explicitly as
of of of of _
df = ——dx; + ——dy; | = ——dz; + —dz; | .
f ; ((’*)x] K + 8yj y]> ; (82‘] K + 8@- K
As a consequence, any (I, m)-form 3 € Q"™ (M, C) can be expressed locally as
B: Z bJ7KdZJ/\d2K
|T|=L,| K |=m

for some smooth functions b; x € C*°(U, C), where we use the notion dz; to represent
dzj, N --- A\ dzj, for a multi-index J = (ji,--- , i), and likewise for dzx. This nice
local expression implies

Theorem 2.3. On complex manifolds d = 0 + O for any (I, m)-forms.
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Proof. The local expression above for 3 € Q4™ (M, C) gives
A=Y dbjx Adzy Ndzk.

|JI=L| K [=m

The conclusion follows from the facts db; x = 0bj i + Ob sk and

817]7]( 5 8bJ,K _
8[)(]’[( = 8zj de, 8[)(]’[( = Z 82j de.

€ Integrability.
The canonical almost complex structure on a complex manifold that we con-
structed above is just the map “multiplication by +/—1” in coordinate charts.

Definition 2.4. An almost complex structure J on M is called integrable if it
is a complex structure, i.e. there exists local complex coordinates on M so that

(M, J) = (C",/=1).

So a complex structure is an integrable almost complex structure.

It is hard to use the definition above to detect whether an almost complex
structure is complex or not. However, we do have a very useful criteria.

Definition 2.5. The Nijenhuis tensor Ny is
Ny(u,v) = [Ju, Jv] = J[Ju,v| — J[u, Jv] — [u,v].

We will leave the proof of the next two exercises as an exercise.

Proposition 2.6. N; is a tensor, i.e. N;(fu,gv) = fgN;(u,v) for vector fields u,v
and smooth functions f,g.

Proposition 2.7. One has Nj(u,v) = —8Re([u1,0,v1,0])01)-

As a consequence, we get

Corollary 2.8. N; =0 < [TL(), TLO] C TLO'

On a complex manifold [, %] = 0. It follows

Corollary 2.9. N; = 0 for the canonical almost complex structure J on complex
manifolds.

The following theorem is a hard theorem which gives an easy-to-use characteri-
zation of integrability of almost complex structures:

Theorem 2.10 (Newlander-Nirenberg). Let J be an almost complex structure on
M. Then B
J is integrable <= N; =0 <= d = 0 + 0.
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An an example, we immediately get

Theorem 2.11. Any almost complex structure on a surface is integrable.

Proof. A direct computation gives Nj(v,v) = 0 and N;(v, Jv) = 0. Details left as
an exercise. O

3. KAHLER MANIFOLDS

€ Kahler manifolds.

Definition 3.1. A Kdhler manifold is a triple (M, w, J), where w is a symplectic
form on M, and J an integrable complex structure on M which is compatible with
w. In this case we will call w a Kahler form.

Ezample. (C™,Qy, Jy) is a Kéhler manifold.

Example. Any oriented surface X carries a Kahler structure: one just choose w to
be the area form and choose J to be an almost complex structure that is compatible
with w.

Ezample. Complex tori M = C"/Z™: Since both the symplectic structure and the
complex structure on C" are invariant under translations along real directions, the
standard symplectic and complex structures on C" give us a Kéhler structure on M.

Remark. By definition a Kahler manifold is both a symplectic manifold and a com-
plex manifold. In 1976 Thurston constructed an example that is both symplectic
and complex, but admits no Kahler structure.

People also constructed symplectic manifolds which do not admit any com-
plex structure (Fernandez-Gotay-Gray 1988), and complex manifolds that admits
no symplectic structure (Hopf surface S x S§% ~ C? — {0}/{ (21, 22) ~ (221, 229)}).

q The Kahler form.

Now let w be a Kéhler form on M. Then w is a real-valued non-degenerate
closed 2-form on M. Let’s see what does these conditions give us:

e Since M is complex, locally
w = Z a;pdz; N dzy + Z bjrdz; N\ dzy, + Z cikdz; N dz.
e Since J is a symplectomorphism,
J'w=w.
On the other hand it is easy to check J*dz; = idz; and J*dz; = —idz;. So
Jw=Y " —ajdz; Ndz+ Y bipdz; AdzZ — Y cjpdz; A dz.

It follows
w=Y bidz; Adz,
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iLe. we QY(M,C)NQ*(M). We will write b, = Lhji, so that
W= %Zhjkdzj Ndz,  hj € C(U).
e Since w is real-valued, @ = w. But
_ { — { — _
W = —5 Z hjdej A de = 5 Z hkdej N de,

so at each point p € M the matrix (hj;z(p)) is Hermitian.
e Moreover, one can check

W = n!(%)” det(hy)dzy Adzy A -+ A dzg A dZp,

so the non-degeneracy condition of w is equivalent to the fact that the matrix
(hji) is non-singular.

e The tamed condition w(v, Jv) > 0 for each v # 0 implies that at each p, the
matrix (hjj) is positive definite.

e Finally, since 0 = dw = Jw + dw, and dw € Q**(M,C) and dw € QV2(M, C),
we get

In conclusion, we get

Theorem 3.2. Kdihler forms are 0- and O-closed (1,1) forms which are given locally
by
i = 00
w=y > hjdz Adz, g€ CF(U),

where at each p, the matriz (hj) is a positive-definite Hermitian matriz.

In general one cannot hope that two symplectic forms in the same cohomolo-
gy class are symplectomorphic, unless they are connected by a path of symplectic
structures. As an application of the previous theorem, we have

Corollary 3.3. Let M be compact and wy,ws be Kahler forms on M with [wy] =
[wo] € H2(M), then (M,w;) and (M,ws) are symplectomorphic.

Proof. On a local chart
wi = %Z Wodz Adz, bl € CO(U),

We let .
- ) 1 0 _ ) 00

Then ((1 — t)hj, + thY,) is a positive definite Hermitian matrix, so w;’s are all
symplectic. Now apply Moser’s trick. O
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4. DOLBEAULT COHOMOLOGY

Student presentation.
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