LECTURE 11: SYMPLECTIC TORIC MANIFOLDS

Contents
1. Symplectic toric manifolds 1
2. Delzant’s theorem 4
3. Symplectic cut 8

1. Symplectic toric manifolds

¶ Orbit of torus actions.
Recall that in lecture 9 we showed \(\ker(d\mu_m) = (T_m(G \cdot m))^\omega_m \).

Proposition 1.1. Let \((M, \omega, \mathbb{T}^k, \mu)\) be a compact connected Hamiltonian \(\mathbb{T}^k\)-space, then for any \(m \in M\), then orbit \(\mathbb{T}^k \cdot m\) is an isotropic submanifold of \(M\).

Proof. The moment map \(\mu\) is \(\mathbb{T}^k\)-invariant, so on the orbit \(\mathbb{T}^k \cdot m\), \(\mu\) takes a constant value \(\xi \in \mathfrak{t}^*\). It follows that the differential \(d\mu_m : T_m M \to T_\xi \mathfrak{t}^* \simeq \mathfrak{t}^*\) maps the subspace \(T_m(\mathbb{T}^k \cdot m)\) to 0. In other words,

\[
T_m(\mathbb{T}^k \cdot m) \subset \ker(d\mu_m) = (T_m(\mathbb{T}^k \cdot m))^\omega_m.
\]

So \(\mathbb{T}^k \cdot m\) is an isotropic submanifold of \(M\).

¶ Effective torus actions.

Definition 1.2. An action of a Lie group \(G\) on a smooth manifold \(M\) is called effective (or faithful) if each group element \(g \neq e\) moves at least one point \(m \in M\), i.e.

\[
\bigcap_{m \in M} G_m = \{e\}.
\]

(Equivalently, if the group homomorphism \(\tau : G \to \text{Diff}(M)\) is injective.)

Remark. If a group action \(\tau\) of \(G\) on \(M\) is not effective, then \(\ker(\tau)\) is a normal subgroup of \(G\), and the action \(\tau\) induces a smooth action of \(G/\ker(\tau)\) on \(M\) which is effective.

A remarkable fact on effective \(\mathbb{T}^k\)-action is
Theorem 1.3. Suppose \mathbb{T}^k acts on M effectively. Then the set of points where the action is free,
\[
\widetilde{M} = \{ m \in M \mid G_m = \{ e \} \},
\]
is an open and dense subset in M.

An important consequence is

Corollary 1.4. Let $(M, \omega, \mathbb{T}^k, \mu)$ be a compact connected Hamiltonian \mathbb{T}^k-space, if the \mathbb{T}^k-action is effective, then $\dim M \geq 2k$.

Proof. Pick any point m in M where the \mathbb{T}^k-action is free, i.e. $(\mathbb{T}^k)_m = \{ e \}$. Then the orbit $\mathbb{T}^k \cdot m$ is diffeomorphic to $\mathbb{T}^k/(\mathbb{T}^k)_m = \mathbb{T}^k$, and thus has dimension k. But we have just seen that $\mathbb{T}^k \cdot m$ is an isotropic submanifold of M. So
\[
k = \dim(\mathbb{T}^k \cdot m) \leq \frac{1}{2} \dim M.
\]
\[\square\]

\section*{Symplectic Toric manifolds.}

Definition 1.5. A compact connected symplectic manifold (M, ω) of dimension $2n$ is called a symplectic toric manifold if it is equipped with an effective Hamiltonian \mathbb{T}^n-action.

Example. \mathbb{C}^n admits an effective Hamiltonian \mathbb{T}^n action,
\[
(t_1, \cdots, t_n) \cdot (z_1, \cdots, z_n) = (t_1z_1, \cdots, z_nt_n),
\]
and thus is a symplectic toric manifold.

Example. \mathbb{CP}^n admits an effective Hamiltonian \mathbb{T}^n action,
\[
(t_1, \cdots, t_n) \cdot [z_0 : z_1 : \cdots : z_n] = [z_0 : t_1z_1 : \cdots : t_nz_n]
\]
and thus is a symplectic toric manifold. The image of the moment map is the simplex in \mathbb{R}^n with $n + 1$ vertices $\frac{1}{2}e_i$ and $(0, \cdots, 0)$, where $e_i = (0, \cdots, 1, \cdots, 0)$.

Example. The products of toric manifolds is still toric.

Remark. A symplectic toric manifold is a special complete integrable system because for any $X, Y \in t$,
\[
\{ \mu^X, \mu^Y \}(m) = \omega_m(X_M(m), Y_M(m)) = 0.
\]
Delzant polytopes.

According to the Atiyah-Guillemin-Sternberg convexity theorem, the image of the moment map is always a convex polytope in \(\mathbb{R}^n \). The moment polytope of \(\mathbb{C}P^1 \), \(\mathbb{C}P^2 \) and \(\mathbb{C}P^1 \times \mathbb{C}P^1 \) are

\[
\begin{align*}
S^2 & \quad \mathbb{C}P^2 & \quad \mathbb{C}P^1 \times \mathbb{C}P^1
\end{align*}
\]

Definition 1.6. A polytope \(\Delta \in \mathbb{R}^n \) is called a Delzant polytope if

1. (simplicity) there are \(n \) edges meeting at every vertex \(p \).
2. (rationality) the edges meeting at \(p \) are of the form \(p + tu_i \), with \(u_i \in \mathbb{Z}^n \).
3. (smoothness) at each \(p \), \(u_1, \ldots, u_n \) form a \(\mathbb{Z} \)-basis of \(\mathbb{Z}^n \).

Obviously the previous examples are Delzant polytopes. More examples of Delzant polytopes

\[
\begin{align*}
(0,1) & \quad (1,1) \\
(0,0) & \quad (4,0)
\end{align*}
\]

The following polytopes are not Delzant:

\[
\begin{align*}
(0,2) & \quad (2,2) \\
(0,0) & \quad (3,0)
\end{align*}
\]

\[
\begin{align*}
(0,0,1) & \quad (0,1,0) \\
(0,0,0) & \quad (1,0,0)
\end{align*}
\]

Remark. Suppose a Delzant polytope has \(d \) faces. Let \(v_i \), \(1 \leq i \leq d \), be the primitive outward-pointing normal vectors to the faces of \(\Delta \), then \(\Delta \) can be described via a set of inequalities

\[
\langle x, v_i \rangle \leq \lambda_i, \quad i = 1, \ldots, d
\]

Moment polytopes are Delzant.

Now we are ready to prove

Theorem 1.7. For any symplectic toric manifold \((M, \omega) \), its moment polytope \(\Delta \) is a Delzant polytope.
Proof. Let $m \in M$ be a fixed point of the Hamiltonian torus action, then $p = \mu(m)$ is a vertex of the moment polytope. We have seen from the proof of the Atiyah-Guillemin-Sternberg convexity theorem that the moment polytope near p is

$$\{ p + \sum_{i=1}^{n} s_i w_i \mid s_i \geq 0 \}$$

where w_1, \ldots, w_n are the weights of the linearized isotropic action of the torus on $T_m M$. Thus Δ satisfies the conditions (1) and (2).

Suppose Δ does not satisfy the condition (3). Let W be the \mathbb{Z}-matrix whose row vectors are the vectors w_i’s. Then W is not invertible as a \mathbb{Z}-matrix. We take a vector $\tau \notin \mathbb{Z}^n$ such that $W \tau \in \mathbb{Z}^n$. (If W is not invertible, we can take τ be any non-integer vector in the kernel of W. If W is invertible as an \mathbb{R}-matrix but not invertible as a \mathbb{Z}-matrix, then W^{-1} can not map all \mathbb{Z}-vectors to \mathbb{Z} vectors). So we have

$$\langle w_i, \tau \rangle \in \mathbb{Z}$$

for all i.

Recall that in a neighborhood of m, there exists coordinate system (z_1, \cdots, z_n) so that the action of \mathbb{T}^n is given by

$$\exp(X) \cdot (z_1, \cdots, z_n) = (e^{2\pi i \langle w_1, X \rangle} z_1, \cdots, e^{2\pi i \langle w_n, X \rangle} z_n).$$

So $\exp(\tau)$ acts trivially on a neighborhood of m, but $\exp(\tau)$ is not the identity element in \mathbb{T}^n. This contradicts with the fact that in a dense open subset of M the action is free. So Δ satisfies (3). \qed

2. Delzant’s theorem

¶ Statement of main theorem.

The main result is the following classification for symplectic toric manifold, which says that symplectic toric manifolds are characterized by their moment polytopes:

Theorem 2.1 (Delzant, 1990). There is a one-to-one correspondence between symplectic toric manifolds (up to \mathbb{T}^n equivariant symplectomorphisms) and Delzant polytopes. More precisely,

1. The moment polytope of a toric manifold is a Delzant polytope.
2. Every Delzant polytope is the moment polytope of a symplectic toric manifold.
3. Two toric manifolds with the same moment polytope are equivariantly symplectomorphic.

The proof is divided into several steps:

Step 1: M toric $\Rightarrow \mu(M)$ Delzant. (Done as theorem 1.7.)

Step 2: Δ Delzant \Rightarrow construct compact connected symplectic manifold M_Δ.
Step 3: Check M_Δ is toric and $\mu(M_\Delta) = \Delta$.

Step 4: $\Delta(M_1) = \Delta(M_2) \iff M_1 \simeq M_2$.

Construction of M_Δ from Delzant polytope Δ.

Now let Δ be a Delzant polytope in \mathbb{R}^n. Suppose Δ has d facets, then by the algebraic description one can find primitive outward pointing vectors v_1, \ldots, v_d so that

$$\Delta = \{ x \in (\mathbb{R}^n)^* \mid \langle x, v_i \rangle \leq \lambda_i, i = 1, \ldots, d \}.$$

By translation we may assume $0 \in \Delta$, and thus $\lambda_i \geq 0$ for all i. We shall construct M_Δ as the symplectic quotient of \mathbb{R}^d by a Hamiltonian action of a torus N of dimension $d - n$.

▶ Step 2.a The $(d - n)$-torus N.

Let e_1, \ldots, e_d be the standard basis of \mathbb{R}^d. Define linear map

$$\pi : \mathbb{R}^d \to \mathbb{R}^n, \quad e_i \mapsto v_i.$$

Then since Δ is Delzant, π is onto and maps \mathbb{Z}^d onto \mathbb{Z}^n. So we get an induced surjective Lie group homomorphism

$$\pi : \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d \to \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n.$$

Let $N = \ker(\pi)$. It is a $(d - n)$-subtorus of \mathbb{T}^d.

Note that from the exact sequence of Lie group homomorphisms

$$0 \to N \xrightarrow{i} \mathbb{T}^d \xrightarrow{\pi} \mathbb{T}^n \to 0$$

one gets an exact sequence of Lie algebras

$$0 \to \mathfrak{n} \xrightarrow{i} \mathbb{R}^d \xrightarrow{\pi} \mathbb{R}^n \to 0,$$

and thus an exact sequence of dual Lie algebras

$$0 \to (\mathbb{R}^n)^* \xrightarrow{\pi^*} (\mathbb{R}^d)^* \xrightarrow{i^*} \mathfrak{n}^* \to 0.$$

▶ Step 2.b The Hamiltonian N-action on \mathbb{C}^d.

The standard \mathbb{T}^d-action on \mathbb{C}^d is given by

$$(e^{i\theta_1}, \ldots, e^{i\theta_d}) \cdot (z_1, \ldots, z_d) = (e^{i\theta_1}z_1, \ldots, e^{i\theta_d}z_d).$$

The action is Hamiltonian with moment map

$$\phi : \mathbb{C}^d \to (\mathbb{R}^d)^*, \quad \phi(z_1, \ldots, z_d) = -\frac{1}{2}(\lvert z_1 \rvert^2, \ldots, \lvert z_d \rvert^2) + c.$$

We choose $c = \lambda = (\lambda_1, \ldots, \lambda_d)$.

Since N is a sub-torus of \mathbb{T}^d, the induced N-action on \mathbb{C}^d is Hamiltonian with moment map $i^* \circ \phi : \mathbb{C}^d \to \mathfrak{n}^*$.

▶ Step 2.c The zero level set $Z = (i^* \circ \phi)^{-1}(0)$ is compact.

Let $\Delta' = \pi^*(\Delta)$. Then Δ is compact. We claim
Claim I: $\text{Im}(\pi^*) \cap \text{Im}(\phi) = \Delta'$.

According to this claim,

$$Z = (i^* \circ \phi)^{-1}(0) = \phi^{-1}(\ker(i^*)) = \phi^{-1}(\text{Im}(\pi^*)) = \phi^{-1}(\Delta').$$

So Z is compact since the map ϕ proper.

Proof of claim I: Obviously $\Delta' = \pi^*(\Delta) \subset \text{Im}(\pi^*)$. By the definition ϕ, $\text{Im}(\phi)$ consists of those points y with $\langle y, e_i \rangle \leq \lambda_i$. For any $x \in \Delta$,

$$\langle \pi^*(x), e_i \rangle = \langle x, v_i \rangle \leq \lambda_i.$$

So $\pi^*(\Delta) \subset \text{Im}(\phi)$, and thus $\Delta' \subset \text{Im}(\pi^*) \cap \text{Im}(\phi)$.

Conversely suppose $y = \pi^*(z) = \phi(w)$. Then

$$\langle z, v_i \rangle = \langle \pi^*(z), e_i \rangle \leq \lambda_i.$$

In other words, $z \in \Delta$. It follows $\text{Im}(\pi^*) \cap \text{Im}(\phi) \subset \Delta'$. □

\[\text{Step 2.d} \] N acts freely on Z.

For $z \in \mathbb{Z}^d$, let $I_z = \{ i \mid z_i = 0 \}$. Then

$$(\mathbb{T}^d)_z = \{ t \in \mathbb{T}^d \mid t_i = 1 \text{ for } i \notin I_z \}.$$

Claim II: The restriction map of π, $\pi : (\mathbb{T}^d)_z \to \mathbb{T}^n$, is injective.

This implies

$$N_z = N \cap (\mathbb{T}^d)_z = i(N) \cap (\mathbb{T}^d)_z = \ker(\pi) \cap (\mathbb{T}^d)_z = \ker(\pi|_{(\mathbb{T}^d)_z}) = \{1\}.$$

So the action is free.

Proof of claim II. Suppose $z \in Z = (i^* \circ \phi)^{-1}(0)$, i.e.

$$\phi(z) \in \ker(i^*) = \text{Im}(\pi^*).$$

Then $\phi(z) \in \text{Im}(\pi^*) \cap \text{Im}(\phi) = \Delta'$. So one can find $x \in \Delta$ so that $\phi(z) = \pi^*(x)$. Thus

$$i \in I_z \iff z_i = 0 \iff \langle \phi(z), e_i \rangle = \lambda_i \iff \langle \pi^*(x), e_i \rangle = \lambda_i \iff \langle x, v_i \rangle = \lambda_i.$$

In other words, x is a point in the intersection of facets whose normal vectors are v_i. As a consequence, we see that the set of vectors

$$\{ v_i \mid i \in I_z \}$$

are linearly independent.

Now let $[t], [s] \in (\mathbb{T}^d)_z$. If $\pi([t]) = \pi([s])$, then

$$\pi(t) - \pi(s) = \sum_{i \in I_z} (t_i - s_i)v_i \in \mathbb{Z}^n.$$

It follows that $t_i - s_i \in \mathbb{Z}$ for $i \in I_z$. So $[t] = [s]$. □
In conclusion, we see that $M_{\Delta} = \mathbb{C}^d / N = Z / N$ is a compact symplectic manifold of dimension $2d - 2(d - n) = 2n$.

Remark. Since M_{Δ} is constructed via \mathbb{C}^d which is Kähler, with more works one can prove that M_{Δ} is actually a Kähler manifold.

The moment polytope of M_{Δ} is Δ.

We need to show that M_{Δ} admits a Hamiltonian \mathbb{T}^n action which is effective. The action is actually very natural:

\begin{itemize}
 \item[\textbf{Step 3.a}] Hamiltonian \mathbb{T}^n-action on M_{Δ}.
 Suppose z is a point such that
 \[\phi(z) = \pi^*(x) \]
 for a vertex x of Δ. Then from the proof of claim I we see that $\dim(\mathbb{T}^d)_z$ equals the number of facets of Δ that meets at p, i.e.
 \[\dim(\mathbb{T}^d)_z = n. \]
 So by claim I, the map
 \[\pi : (\mathbb{T}^d)_z \to \mathbb{T}^n \]
 is bijective. By identifying \mathbb{T}^n with $(\mathbb{T}^d)_z$ we get an embedding $\tilde{j} : \mathbb{T}^n \hookrightarrow \mathbb{T}^d$ with
 \[\pi \circ \tilde{j} = \text{Id}. \]
 So \mathbb{T}^n acts on \mathbb{C}^d in a Hamiltonian way, with moment map $\tilde{j}^* \phi$. Moreover, this \mathbb{T}^n-action commutes with the N-action we constructed above. Thus by the reduction by stages arguments (presented by Chao'en last time), we get an induced Hamiltonian \mathbb{T}^n-action on M_{Δ}, whose moment map μ satisfies
 \[\mu \circ \text{pr} = \tilde{j}^* \circ \phi \circ j, \]
 where pr is the projection from Z to M_{Δ}, and j is the inclusion from Z to \mathbb{C}^d.
 \item[\textbf{Step 3.b}] The above \mathbb{T}^n-action is effective.
 Since the \mathbb{T}^d action is effective, this induced \mathbb{T}^n-action is also effective.
 \item[\textbf{Step 3.c}] The moment polytope of M_{Δ} is Δ.
\end{itemize}
Equivariantly symplectomorphic toric manifolds.

- **Step 4.a** If \((M_1, \omega_1, T^n, \mu_1)\) and \((M_2, \omega_2, T^n, \mu_2)\) are two equivariantly diffeomorphic toric manifolds, then \(\mu_1(M_1)\) and \(\mu_2(M_2)\) differ by a translation.

 In fact, if we let \(\Phi : M_1 \to M_2\) be the equivariant diffeomorphism. Then \(\Phi^* \mu_2\) is also a moment map for the \(T^n\)-action on \(M_1\), because

 \[
d\langle \Phi^* \mu_2, X \rangle = \Phi^* d\langle \mu_2, X \rangle = \Phi^* \iota_{X_{M_2}} \omega_2 = \iota_{X_{M_1}} \omega_1.
\]

 So there exists a constant \(\xi \in t^*\) so that \(\Phi^* \mu_2 = \mu_1 + \xi\). It follows that

 \[
 \mu_2(M_2) = \Phi^* \mu_2(M_1) = \mu_1(M_1) + \xi.
 \]

Now suppose \((M_1, \omega_1, T^n, \mu_1)\) and \((M_2, \omega_2, T^n, \mu_2)\) are two symplectic toric manifolds with \(\mu_1(M_1) = \mu_2(M_2)\). We would like to prove that there exists an equivariant diffeomorphism that sends \(M_1\) to \(M_2\).

- **Step 4.b** If \(\mu_1(M_1) = \mu_2(M_2)\), one can construct by induction a diffeomorphism that intertwines the torus actions and moment maps.

- **Step 4.c** Show that the cohomology class of \(\omega\) is determined by the moment polytope.

- **Step 4.d** Apply Moser’s trick.

 For more details, c.f. Kai Cieliebak’s notes, P. 40-45.

3. Symplectic cut

Student presentation