
LECTURE 3: SMOOTH FUNCTIONS

1. Smooth Functions

Let M be a smooth manifold.

Definition 1.1. We say a function f : M → R is smooth if for any chart {ϕα, Uα, Vα}
in A that defines the smooth structure of M , f ◦ ϕ−1α is a smooth function on Vα.

Example. Each coordinate function fi(x
1, · · · , xn+1) = xi is a smooth function on Sn,

since

fi ◦ ϕ−1± (y1, · · · , yn) =

{
2yi

1+|y|2 , 1 ≤ i ≤ n

±1−|y|2
1+|y|2 , i = n+ 1

are smooth functions on Rn.

We will denote the set of all smooth functions on M by C∞(M). Note that this
is a (commutative) algebra, i.e. it is a vector space equipped with a (commutative)
bilinear “multiplication operation”: If f, g are smooth, so are af + bg and fg.

Now suppose f ∈ C∞(M). As usual, the support of f is by definition the set

supp(f) = {p ∈M | f(p) 6= 0}.
We say that f is compactly supported, denoted by f ∈ C∞0 (M), if the support of f is a
compact subset in M . Obviously

• If f, g ∈ C∞0 (M), then af + bg ∈ C∞0 (M).
• If f ∈ C∞0 (M) and g ∈ C∞(M), then fg ∈ C∞0 (M).

So C∞0 (M) is an ideal of C∞(M). Note that if M is compact, then any smooth function
is compactly supported.

Example (Bump function). First suppose x ∈ R. We know that the function

f1(x) =

{
e−1/x, x > 0
0, x ≤ 0

is smooth, is strictly positive for all positive x, and vanishes for all negative x. It
follows that the function

f2(x) =
f1(x)

f1(x) + f1(1− x)
.

is smooth, vanishes for all x ≤ 0, equals 1 for all x ≥ 1, and 0 ≤ f2(x) ≤ 1 for all x.

Finally for any x ∈ Rn, we let

f3(x) = f2(2− |x|),

1
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then f3 is a smooth function on Rn, which vanishes for all |x| ≥ 2, and 1 for all |x| ≤ 1,
and 0 ≤ f3(x) ≤ 1 for all x.

With the help of these Euclidean bump functions, we can show that on any smooth
manifold, there exists many many “bump” functions:

Theorem 1.2. Let M be a smooth manifold, K ⊂M is a compact subset, and U ⊂M
an open subset that contains K. Then there is a “bump” function ϕ ∈ C∞0 (M) so that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on K and supp(ϕ) ⊂ U .

Proof. For each q ∈ K, there is a chart {ϕq, Uq, Vq} near q so that Uq ⊂ U and Vq
contains the open ball B3(0) of radius 3 centered at 0 in Rn. Let Ũq = ϕ−1q (B1(0)), and
let

fq(p) =

{
f3(ϕq(p)), p ∈ Uq,
0, p /∈ Uq.

Then fq ∈ C∞0 (M), supp(fq) ⊂ Up and f ≡ 1 on Ũq. (Why?)

Now the family of open sets {Ũq}q∈K is an open cover of K. Since K is compact,

there is a finite sub-cover {Ũq1 , · · · , ŨqN}. Let ψ =
∑N

i=1 fqi . Then ψ is a smooth and
compactly supported function on M so that ψ ≥ 1 on K and supp(ψ) ⊂ U . It follows
that the function ϕ(p) = f2(ψ(p)) satisfies all the conditions we required. �

As a simple consequence, we see that as a vector space, C∞0 (M) (and thus C∞(M))
is infinitely dimensional.

2. Partition of unity

As we have just seen, for a compact subset K ⊂ M , one can always cover it by
finitely many nice neighborhoods on which we can construct nice “local” functions.
By adding these (finitely many) local functions, we can get nice global functions on
M that behaves nicely on K. It turns out that the same idea applies to the whole
manifold M : we can generate an infinite collection of smooth functions on M , and
add them to get a global smooth function, provided that near each point, there are
only finitely many functions in our collection that are nonzero. More importantly, we
can use such a collection of functions to “glue” geometric/analytic objects that can be
defined locally using charts.

Definition 2.1. Let M be a smooth manifold, and {Uα} be an open cover of M . A
partition of unity subordinate to the cover {Uα} is a collection of smooth functions
{ρα} so that

(1) 0 ≤ ρα ≤ 1 for all α.
(2) supp(ρα) ⊂ Uα for all α.
(3) Each point p ∈M has a neighborhood which intersects supp(ρα) for only finitely

many α. 1

1So in particular, there are only countable ρα’s whose support are non-empty.
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(4)
∑

α ρα(p) = 1 for all p ∈M .

Thanks to the local finiteness condition (3), for each p there is a small neighborhood
on which the sum in (4) is in fact a finite sum. So although we might have uncountable
many indices α, the sum in (4) is a well-defined smooth function on M .

The main theorem in this lecture is

Theorem 2.2 (Existence of partition of unity). Let M be a smooth manifold, and
{Uα} an open cover of M . Then there exists a partition of unity subordinate to {Uα}.

The proof depends on the following technical lemma whose proof we will postpone
for a while:

Lemma 2.3. Let M be any topological manifold. For any open cover U = {Uα} of M ,
one can find two countable family of open covers V = {Vj} and W = {Wj} of M so
that

• For each j, V j is compact and V j ⊂ Wj.
• W is a refinement of U : For each j, there is an α = α(j) so that Wj ⊂ Uα.
• W is a locally finite cover: Any p ∈ M has a neighborhood W such that W ∩
Wj 6= ∅ for only finitely many Wj’s.

Remark. A topological space X is called paracompact if every open cover admits a
locally finite open refinement.

Proof of theorem 2.2. By theorem 1.2, we can find nonnegative functions ϕj ∈ C∞0 (M)
so that ϕj ≡ 1 on V j and supp(ϕj) ⊂ Wj. Since W is a locally finite cover, ϕ =

∑
ϕj

is a well-defined smooth function on M . Since each ϕj is nonnegative, and V is a cover
of M , ϕ is strictly positive on M . It follows that the functions ψj =

ϕj

ϕ
are smooth

and satisfy 0 ≤ ψj ≤ 1 and
∑

j ψj = 1.

Next let’s re-index the family {ψj} to get the demanded partition of unity. For
each j, we fix an index α(j) so that Wj ⊂ Uα(j), and define

ρα =
∑
α(j)=α

ψj.

Note that the right hand side is a finite sum near each point, so it does define a smooth
function. Clearly the family {ρα} is a partition of unity subordinate to {Uα}. �

Remark. As applications of partition of unity theorem, we will

• Define the integral of differential forms in each local chart, and glue them using
P.O.U. to get the integral of differential forms on M .
• Construct a metric structure in each local chart, and glue them using P.O.U.

to get a global metric structure (the Riemannian metric) on M .
• Construct a connection structure in each local chart, and glue them using P.O.U.

to get a global connection structure on M .
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As an immediate corollary of partition of unity, we can generalize theorem 1.2 to
closed subsets:

Corollary 2.4. Let M be a smooth manifold, A ⊂ M is a closed subset, and U ⊂ M
an open subset that contains A. Then there is a “bump” function ϕ ∈ C∞(M) so that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on A and supp(ϕ) ⊂ U .

Proof. Let {ρ1, ρ2} be a partition of unity subordinate to the open cover {U,M \ A}.
Then ϕ = ρ1 is what we need: ρ1 = 1 on A since ρ2 = 0 on A. �

It remains to prove lemma 2.3. First we prove

Lemma 2.5. For any topological manifold M , there exists a countable collection of
open sets {Xi} so that

(1) For each j, the closure Xj is compact.
(2) For each j, Xj ⊂ Xj+1.
(3) M = ∪jXj.

Proof. Since M is second countable, there is a countable basis of the topology of M .
Out of this countable sequence of open sets, we pick those that have compact closure,
and denote them by Y1, Y2, · · · . Since M is locally Euclidean, it is easy to see that
Y = {Yj} is an open cover of M .

We let X1 = Y1. Since Y is an open cover of X1 which is compact, there exists
finitely many open sets Yi1 , · · · , Yik so that X1 ⊂ Yi1∪· · ·∪Yik . Let X2 = Yi1∪· · ·∪Yik .
Obviously X2 is compact. Repeat this procedure again and again, we could get a
desired sequence of open sets X1, X2, X3, · · · . �

Proof of lemma 2.3. For each p ∈M , there is an j and an α(p) so that p ∈ Xj+1 \Xj

and p ∈ Uα(p). Since M is locally Euclidean, one can always choose open neighborhoods

Vp,Wp of p so that V p is compact and

V p ⊂ Wp ⊂ Uα(p) ∩ (Xj+2 \Xj−1).

Now for each j, since the “stripe” Xj+1 \ Xj is compact, one can choose finitely

many points pj1, · · · , p
j
kj

so that Vpj1
, · · · , Vpjkj

is an open cover of Xj+1 \Xj. Denote all

these Vpjk
’s by V1, V2, · · · , and the corresponding Wpjk

’s by W1,W2, · · · . Then V = {Vk}
andW = {Wk} are open covers of M that satisfies all the conditions in lemma 2.3. For
example, the local finiteness property of W follows from the fact that there are only
finitely many Wk’s (that corresponds to j and j − 1 above) intersect Xj+1 \Xj−1. �

The subsets described by lemma 2.5 is called an exhaustion of M . More generally,
a real-valued continuous function f on M is called an exhausion function for M if for
any c ∈ R, the sublevel set f−1((−∞, c]) is compact. (So the sublevel sets gives a
“continuous exhaustion” of M by compact sets). As an another immediate application
of P.O.U, we have
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Proposition 2.6. There exists a positive exhausion function on any smooth manifold.

Proof. Let Vj be as constructed in lemma 2.3. Then {Vj} is a locally finite open
covering of M . Let {ρj} be a partition of unity subordinate to this covering. Let aj be
any sequence of numbers so that aj ≥ 1 and limj→∞ aj = +∞. We claim that

f(p) :=
∑

ajρj(p)

is a positive exhaustion function.

In fact, f is well-defined and smooth since the covering {Vj} is locally finite. It is
positive since aj ≥ 1 and

∑
ρj = 1. It is an exhaustion function since for any c, we

can take N so that aj > c for all j > N . Then it follows that

f−1((−∞, c]) ⊂ ∪Nj=1V j. (check this!)

Since ∪Nj=1V j is compact and f−1((−∞, c]) is closed, f−1((−∞, c]) has to be compact.
�

We end with two questions:

• [Easy] Where do we used the second countable condition in proving P.O.U.?
• [Hard] Where do we used the Hausdorff condition in proving P.O.U.?


