
LECTURE 5: SUBMERSIONS, IMMERSIONS AND EMBEDDINGS

1. Properties of the Differentials

Recall that the tangent space of a smooth manifold M at p is the space of all
derivatives at p, i.e. all linear maps Xp : C∞(M)→ R so that the Leibnitz rule holds:

Xp(fg) = g(p)Xp(f) + f(p)Xp(g).

The differential (also known as the tangent map) of a smooth map f : M → N at
p ∈M is defined to be the linear map dfp : TpM → Tf(p)N such that

dfp(Xp)(g) = Xp(g ◦ f)

for all Xp ∈ TpM and g ∈ C∞(N).

Remark. Two interesting special cases:

• If γ : (−ε, ε) → M is a curve such that γ(0) = p, then dγ0 maps the unit
tangent vector d

dt
at 0 ∈ R to the tangent vector γ̇(0) = dγ0(

d
dt

) of γ at p ∈M .
• If f : M → R is a smooth function, we can identify Tf(p)R with R by identifying

a d
dt

with a (which is merely the “derivative ↔ vector” correspondence). Then
for any Xp ∈ TpM , dfp(Xp) ∈ R. Note that the map dfp : TpM → R is linear.
In other words, dfp ∈ T ∗pM , the dual space of TpM . We will call dfp a cotangent
vector or a 1-form at p. Note that by taking g = Id ∈ C∞(R), we get

Xp(f) = dfp(Xp).

For the differential, we still have the chain rule for differentials:

Theorem 1.1 (Chain rule). Suppose f : M → N and g : N → P are smooth maps,
then d(g ◦ f)p = dgf(p) ◦ dfp.

Proof. For any Xp ∈ TpM and h ∈ C∞(P ),

d(g ◦ f)p(Xp)(h) = Xp(h ◦ g ◦ f) = dfp(Xp)(h ◦ g) = dgf(p)(dfp(Xp))(h).

So the theorem follows. �

Obviously the differential of the identity map is the identity map between tangent
spaces. By repeating the proof of theorem 1.2 in lecture 2 we get

Corollary 1.2. If f : M → N is a diffeomorphism, then dfp : TpM → Tf(p)N is an
isomorphism.

In particular, we have

Corollary 1.3. If dimM = n, then TpM is an n-dimensional linear space.
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Proof. Let {ϕ,U, V } be a chart near p. Then ϕ : U → V is a diffeomorphism. It
follows that dimTpM = dimTpU = dimTf(p)V = n. �

In particular, we see that the tangent vectors ∂i := dϕ−1( ∂
∂xi

) form a basis of TpM .
In coordinates, one has the following explicit formula for ∂i:

∂i : C∞(M)→ R, ∂i(f) =
∂f ◦ ϕ−1

∂xi
(ϕ(p)).

We will abuse the notation and think of xi as a function on U (which really should be
xi ◦ ϕ). Then one can check that y {dx1p, · · · , dxnp} is the dual basis of {∂1, · · · , ∂n},
and for any f ∈ C∞(M),

dfp = (∂1f)dx1p + · · ·+ (∂nf)dxnp .

As in lecture 2, we have the following inverse function theorem:

Theorem 1.4 (Inverse Mapping Theorem). Suppose M and N are both smooth man-
ifolds of dimension n, and f : M → N a smooth map. Let p ∈ M , and q = f(p) ∈ N .
If dfp : TpM → TqN is an isomorphism, then f is a local diffeomorphism, i.e. it maps
a neighborhood U1 of p diffeomorphically to a neighborhood X1 of q.

Proof. Take a chart {ϕ,U, V } near p and a chart {ψ,X, Y } near f(p) so that f(U) = X.
Since ϕ : U → V and ψ : X → Y are diffeomorphisms,

d(ψ ◦ f ◦ ϕ−1)ϕ(p) = dψq ◦ dfp ◦ dϕ−1ϕ(p) : Tϕ(p)V = Rn → Tψ(q)Y = Rn

is a linear isomorphism. It follows from the inverse function theorem in lecture 2
that there exist neighborhoods V1 of ϕ(p) and Y1 of ψ(q) so that ψ ◦ f ◦ ϕ−1 is a
diffeomorphism from V1 to Y1. Take U1 = ϕ−1(V1) and X1 = ψ−1(Y1). Then

f = ψ−1 ◦ (ψ ◦ f ◦ ϕ−1) ◦ ϕ
is a diffeomorphism from U1 to X1. �

Again we cannot conclude global diffeomorphism even if dfp is an isomorphism
at any point, since f might not be invertible. In fact, now we have a much simpler
example compared to the example we constructed in lecture 2: Consider f : S1 → S1

given by f(eiθ) = e2iθ. Then it is only a local diffeomorphism.

2. Submersions, Immersions and Embeddings

It is natural to ask: what if dfp is not an isomorphism? Of course the simplest
cases are the full-rank cases.

Definition 2.1. Let f : M → N be a smooth map.

(1) f is a submersion at p if dfp : TpM → Tf(p)N is surjective.
(2) f is an immersion at p if dfp : TpM → Tf(p)N is injective.

We say f is a submersion/immersion if it is a submersion/immersion at each point.

Obviously
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• If f is a submersion, then dimM ≥ dimN .
• If f is an immersion, then dimM ≤ dimN .
• If f is a submersion/immersion at p, then it is a submersion/immersion near p.

Example. If m ≥ n, then

π : Rm → Rn, (x1, · · · , xm) 7→ (x1, · · · , xn)

is a submersion

Example. If m ≤ n, then

ι : Rm → Rn, (x1, · · · , xm) 7→ (x1, · · · , xm, 0, · · · , 0)

is an immersion.

It turns out that any submersion/immersion locally looks like the above two maps.

Theorem 2.2 (Canonical Submersion Theorem). Let f : M → N be a submersion at
p ∈ M , then m = dimM ≥ n = dimN , and there exists charts (ϕ1, U1, V1) around p
and (ψ1, X1, Y1) around q = f(p) such that

ψ1 ◦ f ◦ ϕ−11 = π|V1 .

Theorem 2.3 (Canonical Immersion Theorem). Let f : M → N be an immersion at
p ∈ M , then m = dimM ≤ n = dimN , and there exists charts (ϕ1, U1, V1) around p
and (ψ1, X1, Y1) around q = f(p) such that

ψ1 ◦ f ◦ ϕ−11 = ι|V1 .

Proof of the Canonical Submersion Theorem. Take a chart {ϕ,U, V } near p and a chart
{ψ,X, Y } near f(p) so that f(U) ⊂ X. Since f is a submersion,

d(ψ ◦ f ◦ ϕ−1)ϕ(p) = dψq ◦ dfp ◦ dϕ−1ϕ(p) : Tϕ(p)V = Rm → Tψ(q)Y = Rn

is surjective. Denote F = ψ ◦ f ◦ ϕ−1. Then the Jacobian matrix (∂F
i

∂xj
) is an m × n

matrix of rank n at ϕ(p). By reordering the coordinates if necessary, we may assume
the sub-matrix

(
∂F i

∂xj
), 1 ≤ i ≤ n, 1 ≤ j ≤ n

is nonsingular at ϕ(p). Note that this re-ordering procedure can be done by modifying
(ψ,X, Y ) to another chart (ψ1, X1, Y1), and thus we really have F = ψ1◦f ◦ϕ−1. Define

G : V → Rm, (x1, · · · , xm) 7→ (F 1, · · · , F n, xn+1, · · · , xm).

Then obviously dGϕ(p) is nonsingular. By the inverse function theorem, there is a
neighborhood V0 of ϕ(p) so that G is a diffeomorphism from V0 to G(V0). Let H be
the inverse of G on G(V0). Note that F = π ◦ G. Let U1 = ϕ−1(V0), V1 = G(V0), and
ϕ1 = G ◦ ϕ. Then (ϕ1, U1, V1) is a chart near p, and

ψ1 ◦ f ◦ ϕ−11 = ψ1 ◦ f ◦ (ϕ−1 ◦H) = F ◦H = π ◦G ◦H = π.

�
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Proof of the Canonical Immersion Theorem. Similarly we assume the sub-matrix

(
∂F i

∂xj
), 1 ≤ i ≤ m, 1 ≤ j ≤ m

is nonsingular at ϕ(p). Define

G : U × Rn−m → Rn, (x1, · · · , xm, y1, · · · , yn−m) 7→ F (x) + (0, · · · , 0, y1, · · · , yn−m).

Then dG is nonsingular at (ϕ(p), 0, · · · , 0). So G is a local diffeomorphism with a
smooth local inverse H, and

(H ◦ ψ) ◦ f ◦ ϕ−11 = H ◦ F = H ◦G ◦ ι = ι.

�

Remark. More generally one has the following constant rank theorem:

Theorem 2.4 (Constant Rank Theorem). Let f : M → N be a smooth map
so that rank(df) = r near p. Then there exists charts (ϕ1, U1, V1) around p
and (ψ1, X1, Y1) near f(p) such that that

ψ1 ◦ f ◦ ϕ−11 (x1, · · ·xm) = (x1, · · · , xr, 0, · · · , 0).

The proof will be left as an exercise.

Smooth maps are very useful in contructing nice subsets in smooth manifolds. For
example, we are interested in

• If f is an immersion, what can we say about the image f(M)?
• If f is a submersion, what can we say about level sets f−1(q)’s?

Let’s briefly discuss the first case. Let f : M → N be an immersion. Then lcally
f(M) is a very nice subset, as clarified by the canonical immersion theorem. However,
globally f(M) could be a “bad subset” of N .

Example. The following two graphs are the images of two immersions of R into R2.
For the first one, the immersion is not injective. For the second one, the immersion is
injective, while the image still have different topology than R.

Example. A more complicated example: consider f : R→ S1 × S1 defined by

f(t) = (eit, ei
√
2t).

Then f is an immersion, and the image f(R) is a dense curve in the torus S1 × S1.

We are more interested in nice immersions f : M → N where the image f(M),
with the subspace topology inherited from N , has the same topology as M .

Definition 2.5. Let M,N be smooth manifolds, and f : M → N an immersion. f is
called an embedding if it is a homeomorphism onto its image f(M), where the topology
on f(M) is the subspace topology as a subset of N .


