LECTURE 5: SUBMERSIONS, IMMERSIONS AND EMBEDDINGS

1. PROPERTIES OF THE DIFFERENTIALS

Recall that the tangent space of a smooth manifold M at p is the space of all
derivatives at p, i.e. all linear maps X, : C*°(M) — R so that the Leibnitz rule holds:

Xp(f9) = g9(p)Xp(f) + f(p) Xp(9)-

The differential (also known as the tangent map) of a smooth map f : M — N at
p € M is defined to be the linear map df, : T, M — T N such that

dfp(Xp)(9) = Xp(g o f)
for all X, € T,M and g € C*(N).
Remark. Two interesting special cases:

o If v : (—e,6) — M is a curve such that (0) = p, then dyy maps the unit
tangent vector 4 at 0 € R to the tangent vector ¥(0) = dvyo(%5) of v at p € M.

o If f: M — Ris asmooth function, we can identify T, R with R by identifying
a<L with a (which is merely the “derivative <> vector” correspondence). Then
for any X, € T,M, df,(X,) € R. Note that the map df, : T,M — R is linear.
In other words, df,, € T; M, the dual space of T,M. We will call df,, a cotangent
vector or a 1-form at p. Note that by taking g = Id € C*(R), we get

Xp(f) = dfp(Xp)-
For the differential, we still have the chain rule for differentials:

Theorem 1.1 (Chain rule). Suppose f : M — N and g : N — P are smooth maps,
then d(g o f)p = dgyp) © dfp.

Proof. For any X, € T,M and h € C*(P),
d(g © f)p(Xp)(h) = Xp(h ©go f) = dfp(Xp)(h © g) = dgf(p)(dfp(Xp>)(h>-
So the theorem follows. O

Obviously the differential of the identity map is the identity map between tangent
spaces. By repeating the proof of theorem 1.2 in lecture 2 we get

Corollary 1.2. If f : M — N s a diffeomorphism, then df, : T,M — Ty, N is an
1somorphism.

In particular, we have

Corollary 1.3. If dim M = n, then T,M is an n-dimensional linear space.
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Proof. Let {¢,U,V} be a chart near p. Then ¢ : U — V is a diffeomorphism. Tt

follows that dim T,M = dim T,U = dim T,)V = n. 0
In particular, we see that the tangent vectors d; := dp~!(52;) form a basis of T, M.
In coordinates, one has the following explicit formula for 0;:
- Of ot
0;:C¥(M) =R, 0(f)= T(@(P))-

We will abuse the notation and think of z* as a function on U (which really should be
2" 0 ). Then one can check that y {dz,,--- ,dz'} is the dual basis of {d1,---,0,},
and for any f € C*(M),

df, = (81f)dx; + o+ (Onf)dz),.
As in lecture 2, we have the following inverse function theorem:

Theorem 1.4 (Inverse Mapping Theorem). Suppose M and N are both smooth man-
ifolds of dimension n, and f : M — N a smooth map. Let p € M, and ¢ = f(p) € N.
If df, - T,M — T,N is an isomorphism, then f is a local diffeomorphism, i.e. it maps
a neighborhood Uy of p diffeomorphically to a neighborhood X, of q.

Proof. Take a chart {¢, U, V'} near p and a chart {1, X, Y} near f(p) so that f(U) = X.
Since ¢ : U — V and ¢ : X — Y are diffeomorphisms,

d(ipo fo 9071>w(p) = dipg o dfy o d‘P;(lp) TV =R = Ty =R"

is a linear isomorphism. It follows from the inverse function theorem in lecture 2
that there exist neighborhoods Vi of ¢(p) and Y; of ¥(q) so that ¢ o fop™!is a
diffeomorphism from V; to Y;. Take U; = ¢~ }(V;) and X; = ¢~ (Y}). Then

f=vto(pofop op
is a diffeomorphism from U; to X;. O

Again we cannot conclude global diffeomorphism even if df, is an isomorphism
at any point, since f might not be invertible. In fact, now we have a much simpler
example compared to the example we constructed in lecture 2: Consider f : S* — St
given by f(e??) = €2?. Then it is only a local diffeomorphism.

2. SUBMERSIONS, IMMERSIONS AND EMBEDDINGS

It is natural to ask: what if df, is not an isomorphism? Of course the simplest
cases are the full-rank cases.

Definition 2.1. Let f : M — N be a smooth map.

(1) fis a submersion at p if dfy, : T,M — Ty N is surjective.
(2) fis an immersion at p if df, : T,M — TN is injective.

We say f is a submersion/immersion if it is a submersion/immersion at each point.

Obviously
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e If f is a submersion, then dim M > dim N.
e If f is an immersion, then dim M < dim .
e If f is a submersion/immersion at p, then it is a submersion/immersion near p.

Example. If m > n, then
7:R™ = R"  (zh-- 2™ — (2t 2")
is a submersion
Example. If m < n, then
L R™ R (2t ™) e (2 2™,0,- -, 0)
is an immersion.

It turns out that any submersion/immersion locally looks like the above two maps.

Theorem 2.2 (Canonical Submersion Theorem). Let f: M — N be a submersion at
p € M, then m = dim M > n = dim N, and there exists charts (p1,Ur, V1) around p
and (Y1, X1,Y1) around ¢ = f(p) such that

Yrofopr! =mly.

Theorem 2.3 (Canonical Immersion Theorem). Let f : M — N be an immersion at
p € M, then m = dim M < n = dim N, and there exists charts (p1,Ur, V1) around p
and (Y1, X1,Y1) around q = f(p) such that

¢1 ofocpl_l = L|V1'

Proof of the Canonical Submersion Theorem. Take a chart {¢, U, V'} near p and a chart
{, X, Y} near f(p) so that f(U) C X. Since f is a submersion,

d(ipo fo 9071)@(1)) = dpg o dfy o d@;(lp) o)V =R™ = TygY =R"
OF!

is surjective. Denote F' = 1) o f o ¢!, Then the Jacobian matrix (5.7) is an m x n
matrix of rank n at ¢(p). By reordering the coordinates if necessary, we may assume
the sub-matrix .
o),
x
is nonsingular at ¢(p). Note that this re-ordering procedure can be done by modifying
(1, X,Y) to another chart (11, X1, Y1), and thus we really have F' = 1,0 fop™!. Define

G:V—=R™ (2',- 2™ (FY - F 2™ ™).

1<i<n1<j<n

Then obviously dG is nonsingular. By the inverse function theorem, there is a
neighborhood V; of ¢(p) so that G is a diffeomorphism from V; to G(V4). Let H be
the inverse of G on G(Vp). Note that ' = mo G. Let U, = ¢ (1), Vi = G(Vp), and
p1 = Gog. Then (¢1,U;,V}) is a chart near p, and

Yrofop;t=viofo(pltoH)=FoH=710GoH=r.
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Proof of the Canonical Immersion Theorem. Similarly we assume the sub-matrix

OF"
is nonsingular at ¢(p). Define
GZUXR”_WI_)R”7 (LUI,"' 7Im7y17"' 7yn_m) HF(I)—F(O: 707y17"' 7yn—m)~

Then dG is nonsingular at (¢(p),0,---,0). So G is a local diffeomorphism with a
smooth local inverse H, and

(HoY)ofop;'!=HoF=HoGoi=1.

Remark. More generally one has the following constant rank theorem:

Theorem 2.4 (Constant Rank Theorem). Let f : M — N be a smooth map
so that rank(df) = r near p. Then there exists charts (¢1,Uy, V1) around p
and (1, X1, Y1) near f(p) such that that

¢lofo¢;1(x17"'xm) = (xlv"' 7$Ta0a"' 70)
The proof will be left as an exercise.

Smooth maps are very useful in contructing nice subsets in smooth manifolds. For
example, we are interested in

o If f is an immersion, what can we say about the image f(M)?
e If f is a submersion, what can we say about level sets f~1(q)’s?

Let’s briefly discuss the first case. Let f : M — N be an immersion. Then lcally

f(M) is a very nice subset, as clarified by the canonical immersion theorem. However,
globally f(M) could be a “bad subset” of N.

Ezample. The following two graphs are the images of two immersions of R into R2.
For the first one, the immersion is not injective. For the second one, the immersion is
injective, while the image still have different topology than R.

Ezxample. A more complicated example: consider f : R — S! x S! defined by
F(t) = (eit’ ei\/it>‘
Then f is an immersion, and the image f(R) is a dense curve in the torus S' x S*.
We are more interested in nice immersions f : M — N where the image f(M),
with the subspace topology inherited from N, has the same topology as M.

Definition 2.5. Let M, N be smooth manifolds, and f : M — N an immersion. f is
called an embedding if it is a homeomorphism onto its image f(M), where the topology
on f(M) is the subspace topology as a subset of V.



