LECTURE 6: SMOOTH SUBMANIFOLDS

1. Smooth submanifolds as images

Let M be a smooth manifold of dimension n, and $k < n$.

Definition 1.1. A subset $S \subset M$ is a k-dimensional (embedded/regular) smooth submanifold of M if for every $p \in S$, there is a chart (φ, U, V) around p in M such that

$$\varphi(U \cap S) = V \cap (\mathbb{R}^k \times \{0\}) = \{x \in \varphi(U) \mid x^{k+1} = \cdots = x^n = 0\}.$$

We will call $\text{codim}(S) = n - k$ the codimension of S.

Example. The sphere S^n is a smooth submanifold of \mathbb{R}^{n+1}. Can you construct a local chart of \mathbb{R}^{n+1} near every point of S^n which satisfies the condition in the definition 1.1?

Example. For any smooth map $f : M \to N$, the graph

$$\Gamma_f = \{(p, q) \mid q = f(p)\}$$

is a smooth submanifold of $M \times N$.

Recall that an embedding of a smooth manifold M into a smooth manifold N is an immersion $f : M \to N$ (meaning that df_p is injective for all $p \in M$) so that M is homeomorphic to $f(M) \subset N$.

It is not surprising that a smooth submanifold (with the subspace topology) is always a smooth manifold by itself, and the inclusion map from the submanifold to the ambient manifold is always an embedding:

Theorem 1.2. Let S be a k-dimensional submanifold of M. Then with the subspace topology, S admits a unique smooth structure so that

1. S is a smooth manifold of dimension k.
2. The inclusion map $\iota : S \hookrightarrow M$ is a smooth embedding.

Proof. With the subspace topology, S satisfies the Hausdorff and second-countable conditions. To construct local charts on S, we denote

$$\pi : \mathbb{R}^n \to \mathbb{R}^k, \quad (x^1, \ldots, x^n) \mapsto (x^1, \ldots, x^k)$$

$$j : \mathbb{R}^k \hookrightarrow \mathbb{R}^n, \quad (x^1, \ldots, x^k) \mapsto (x^1, \ldots, x^k, 0, \ldots, 0).$$

Fix any chart (φ, U, V) of M satisfying definition 1.1. Let $X = U \cap S$, $Y = \pi \circ \varphi(X)$ and $\psi = \pi \circ \varphi$. Then $\psi|_X^{-1} = \varphi^{-1} \circ j$. So (ψ, X, Y) is a chart on S. Moreover, charts of this type are compatible, since the transition map

$$\psi_\beta \circ \psi_\alpha^{-1} = \pi \circ \varphi_\beta \circ \varphi_\alpha^{-1} \circ j = \pi \circ \varphi_{\alpha, \beta} \circ j$$

is smooth.
We need to check that the inclusion map \(\iota : S \hookrightarrow M \) is an embedding. Obviously if we endow \(\iota(S) \) with the subspace topology, the map \(\iota : S \rightarrow \iota(S) \) is a homeomorphism. It is an immersion because in each pair of charts as constructed above, \(\iota = \varphi^{-1} \circ \iota \circ \psi \).

We refer to theorem 5.31 in Lee's book (page 114) for the uniqueness of the topology/smooth structures on \(S \) that makes \(\iota \) an embedding. \(\Box \)

It turns out that smooth submanifolds are exactly the image of embeddings:

Theorem 1.3. Let \(f : M \rightarrow N \) be an embedding. Then the image \(f(M) \) is a smooth submanifold of \(N \).

Proof. Let \(p \in M \) and \(q = f(p) \). Since \(f \) is an immersion, the canonical immersion theorem implies that there exists charts \((\varphi_1, U_1, V_1) \) near \(p \) and \((\psi_1, X_1, Y_1) \) near \(q \) such that on \(V_1 \), \(\psi_1 \circ f \circ \varphi_1^{-1} \) is the canonical embedding \(j : \mathbb{R}^m \rightarrow \mathbb{R}^n \) restricted to \(V_1 \), i.e.

\[
\psi_1 \circ f = j \circ \varphi_1
\]
on \(U_1 \). Since \(f \) is a homeomorphism onto its image, \(f(U_1) \) is open in \(f(M) \subset N \). In other words, there exists an open set \(X \subset N \) such that \(f(U_1) = f(M) \cap X \). Replace \(X_1 \) by \(X_1 \cap X \), and \(Y_1 \) by \(\psi_1(X_1 \cap X) \). Then for this new chart \((\psi_1, X_1, Y_1) \),

\[
\psi_1(X_1 \cap f(M)) = Y_1 \cap \psi_1(f(U_1)) = Y_1 \cap j(\varphi_1(U_1)) = Y_1 \cap (\mathbb{R}^m \times \{0\}).
\]

\(\Box \)

Now let \(S \subset M \) be a submanifold, and \(p \in S \). Since \(\iota : S \hookrightarrow M \) is an embedding, \(d\iota_p : T_pS \rightarrow T_pM \) is injective. We might identify \(T_pS \) as the vector subspace \(d\iota_p(T_pS) \) of \(T_pM \) for every \(p \in S \). In other words, we can identify any vector \(X_p \in T_pS \) with the vector \(\tilde{X}_p = d\iota_p(X_p) \) in \(T_pM \) so that for any \(f \in C^\infty(M) \),

\[
\tilde{X}_p(f) = (d\iota_p(X_p))f = X_p(f \circ \iota) = X_p(f|_S).
\]

A natural question is: which vectors in \(T_pM \) can be regarded as vectors in \(T_pS \)?

Theorem 1.4. Suppose \(S \subset M \) is a submanifold, and \(p \in S \). Then

\[
T_pS = \{X_p \in T_pM \mid X_p(f) = 0 \text{ for all } f \in C^\infty(M) \text{ with } f|_S = 0 \}.
\]

Proof. Obviously if \(X_p \in T_pS \), then for \(f \in C^\infty(M) \) with \(f|_S = 0 \), \(\tilde{X}_p(f) = 0 \).

Conversely, if \(X_p \in T_pS \) satisfies \(X_p(f) = 0 \) for all \(f \) that vanishes on \(S \), we need to show \(X_p \in T_pS \). Take a coordinate chart \((\varphi, U, V) \) on \(M \) such that near \(p \), \(S \) is given by \(x^{k+1} = \cdots = x^n = 0 \). Then \(T_pM \) is the span of \(\partial_1, \ldots, \partial_n \), while \(T_pS \) is the subspace spanned by \(\partial_1, \ldots, \partial_k \). In other words, a vector \(X_p = \sum X^i \partial_i \) lies in \(T_pS \) if and only if \(X^i = 0 \) for \(i > k \).

Now let \(h \) be a smooth bump function supported in \(U \) that equals 1 in a neighborhood of \(p \). For any \(j > k \), consider the function \(f_j(x) = h(x)x^j(\varphi(x)) \), extended to be zero on \(M \setminus U \). Then \(f_j|_S = 0 \). So

\[
0 = X_p(f_j) = \sum X^i \frac{\partial(h(\varphi^{-1}(x))x^j)}{\partial x^i}(\varphi(p)) = X^j
\]
for any $j > k$. It follows that $X_p \in T_p S$. \qed

Remark. Note the difference between an immersion and an embedding:

- If $f : M \to N$ is an immersion, then by the canonical immersion theorem, any point $p \in M$ has a neighborhood in M whose image is nice in N.
- If $f : M \to N$ is an embedding, then by theorem 1.3, any point $q \in f(M)$ has a neighborhood in $f(M)$ that is nice in N.

We will call the image of an injective immersion an **immersed submanifold**. Unlike embedded submanifolds, the two topologies of an immersed submanifold $f(M)$, one from the topology of M via the map f and the other from the subspace topology of N, might be different, as we have seen from the examples we constructed last time.

Remark. More generally, we have

Theorem 1.5. If $f : M \to N$ is a smooth map with constant rank k (i.e. df_p is of constant rank k at any point $p \in M$), then the image of f is an immersed submanifold with tangent space the image of the tangent map df_p.

2. Smooth submanifolds as level sets

Recall that a smooth map $f : M \to N$ is a submersion at $p \in M$ if the differential $df_p : T_p M \to T_{f(p)} N$ is surjective.

Definition 2.1. Suppose $f : M \to N$ is a smooth map between smooth manifolds. A point $q \in N$ is called a **regular value** if f is a submersion at each $p \in f^{-1}(q)$.

One can regard the next theorem as a generalization of the implicit function theorem we mentioned in lecture 2.

Theorem 2.2. If q is a regular value of a smooth map $f : M \to N$, then $S = f^{-1}(q)$ is a submanifold of M of dimension $\dim M - \dim N$. Moreover, for every $p \in S$, $T_p S$ is the kernel of the map $df_p : T_p M \to T_q N$.

Proof. Let $p \in S = f^{-1}(q)$. Then by the canonical submersion theorem, there are charts (φ_1, U_1, V_1) centered at p and (ψ_1, X_1, Y_1) centered at q such that $f(U_1) \subset X_1$, and $\pi = \psi_1 \circ f \circ \varphi_1^{-1}$. It follows that φ_1 maps $U_1 \cap f^{-1}(q)$ onto $V_1 \cap \pi^{-1}(0)$. So $f^{-1}(q)$ is a submanifold of M.

Now denote the inclusion by $\iota : S \to M$. Then for any $p \in S$, $f \circ \iota(p) = q$. In other words, $f \circ \iota$ is a constant map on S. So $df_p \circ d\iota(p) = 0$, i.e. $df_p = 0$ on the image of $d\iota_p : T_p S \hookrightarrow T_p M$, or in other words, $T_p S \subset \ker(df_p)$. By dimension counting we conclude that $T_p S$ coincides with the kernel of df_p. \qed

Example. Consider the map

$$f : \mathbb{R}^{n+1} \to \mathbb{R}, \quad (x^1, \ldots, x^{n+1}) \mapsto (x^1)^2 + \cdots + (x^{n+1})^2.$$

Then $S^n = f^{-1}(1)$. Since the Jacobian

$$Jf(x) = 2(x^1, \ldots, x^{n+1}) \neq 0$$

we conclude that S^n is a regular value of f. Moreover, S^n is a submanifold of \mathbb{R}^{n+1} of dimension n. Thus S^n is a smooth submanifold of \mathbb{R}^{n+1}.
on S^n, we conclude that S^n is an n-dimensional submanifold of \mathbb{R}^{n+1}. Moreover, for any $a = (a^1, \ldots, a^{n+1}) \in S^n$,

$$T_{a}S^n = \{ v \in \mathbb{R}^{n+1} | v \cdot a = 0 \}.$$

Remark. The theorem above can be generalized to smooth maps of constant ranks.

Theorem 2.3 (Constant rank level set theorem). Let M, N be smooth manifold, and $f : M \to N$ be a smooth map with constant rank k. Then each level set of f is a closed submanifold of codimension k in M.

The proof is left as an exercise.