1. Transversality

Last time, we showed that the pre-image of any regular value is a smooth submanifold. More generally, we can prove that the pre-image of submanifolds “in correct positions” are submanifolds:

Theorem 1.1. Let \(f : M \to N \) be a smooth map, and let \(S \subset N \) be an embedded submanifold so that for any \(p \in f^{-1}(S), \)
\[
\text{Im}(df_p) + T_{f(p)}S = T_{f(p)}N.
\]
Then \(f^{-1}(S) \) is an embedded submanifold in \(M \) whose codimension equals \(\text{codim}(S) \), and
\[
T_p(f^{-1}(S)) = df_p^{-1}(T_{f(p)}S).
\]

Definition 1.2. We will say \(f \) intersect \(S \) transversally, and denote by \(f \triangleleft S \).

Lemma 1.3. Suppose \(0 \) is the regular value of a smooth map \(g : N \to \mathbb{R}^k \), and \(S = g^{-1}(0) \). Then \(f \triangleleft S \) if and only if \(0 \) is a regular value of \(g \circ f \).

Proof. Take any \(p \in f^{-1}(S) \), then \(T_{f(p)}S = \ker(dg_{f(p)}) \) and \(dg_{f(p)}(T_{f(p)}N) = T_0\mathbb{R}^k \). So
\[
f \triangleleft S \iff df_p(T_pM) + T_{f(p)}S = T_{f(p)}N, \ \forall p \in f^{-1}(S)
\]
\[
\iff d(g \circ f)_p(T_pM) = T_0\mathbb{R}^k, \ \forall p \in (g \circ f)^{-1}(0)
\]
\[
\iff 0 \text{ is a regular value of } g \circ f,
\]
where the second “\(\iff \)” follows from the following linear algebra fact: Any linear map \(L : V \to W \) induces an injective linear map \(L : V/\ker(L) \to W \). So if \(V_1 \subset V \), and \(L(V_1) = L(V) \), then \(V = V_1 + \ker(L) \).

Proof of theorem 1.1. In PSet 2 you will prove that for any smooth manifold \(S \) on \(N \), there is a smooth map \(g : N \to \mathbb{R}^k \), where \(k \) is the codimension of \(S \), so that \(0 \) is a regular value of \(g \), and \(g^{-1}(0) = S \). Consider the composition \(g \circ f \). Then \(f^{-1}(S) = (g \circ f)^{-1}(0) \). Moreover, by the previous lemma, \(0 \) is a regular value of \(g \circ f \). So according to theorem 2.2 in lecture 6, \(f^{-1}(S) \) is an embedded submanifold of \(M \) whose codimension is \(k \), which is also the codimension of \(S \) in \(N \). Finally
\[
T_p(f^{-1}(S)) = (dg_{f(p)} \circ df_p)^{-1}(0) = df_p^{-1}(dg_{f(p)}^{-1}(0)) = df_p^{-1}(T_{f(p)}S).
\]
This completes the proof.

As a special case, if \(S_1, S_2 \) are submanifolds of \(M \), \(\iota : S_1 \hookrightarrow M \) is the canonical embedding, and \(\iota \triangleleft S_2 \), then for any \(p \in S_1 \cap S_2 \), \(T_pS_1 + T_pS_2 = T_pM \).
Definition 1.4. We say S_1 and S_2 intersect transversally if for any $p \in S_1 \cap S_2$,
$$T_p S_1 + T_p S_2 = T_p M.$$
In this case we write $S_1 \pitchfork S_2$.

So if $S_1 \pitchfork S_2$, then $\iota \pitchfork S_2$, and $S_1 \cap S_2 = \iota^{-1}(S_2)$, where $\iota : S_1 \hookrightarrow M$ is the inclusion. Moreover, the dimension of $S_1 \cap S_2$ equals $\dim S_1 - (\dim M - \dim S_2) = \dim S_1 + \dim S_2 - \dim M$.

Corollary 1.5. If S_1 and S_2 intersect transversally, then $S_1 \cap S_2$ is a smooth submanifold whose dimension equals $\dim S_1 + \dim S_2 - \dim M$, and for any $p \in S_1 \cap S_2$,
$$T_p (S_1 \cap S_2) = T_p S_1 \cap T_p S_2.$$

We will need the following theorem, which (together with Sard’s theorem below) roughly says that if a family of maps, when viewed as one map, is transverse to a submanifold, then most elements in the family are transverse to the submanifold.

Theorem 1.6. Let $F : S \times M \to N$ be a smooth map, $X \subset N$ be a smooth submanifold, and $F \pitchfork X$. For each $s \in S$, let $f_s : M \to N$ be the map $f_s(p) = F(s,p)$. Then for every regular value $s \in S$ of the projection map
$$\pi : F^{-1}(X) \to S, \quad \pi(s,p) = s,$$
one has $f_s \pitchfork X$.

Proof. Let s be any regular value of π. For any $p \in f_s^{-1}(X)$, we need to show
$$\text{Im}(df_s)_p + T_q X = T_q N,$$
where $q = f_s(p)$. Since $F \pitchfork X$, for any $Y_q \in T_q N$, there exists $(Z_s, Z_p) \in T_{(s,p)}(S \times M)$ and $Z_q \in T_q X$ such that
$$Y_q = (dF)_{(s,p)}(Z_s, Z_p) + Z_q.$$
But since s is a regular value of π, for $Z_s \in T_s S$, there exists $Z'_p \in T_p M$ so that $(Z_s, Z'_p) \in T_{(s,p)} F^{-1}(X)$. It follows
$$Y_q = (dF)_{(s,p)}(0, Z_p - Z'_p) + (dF)_{(s,p)}(Z_s, Z'_p) + Z_q.$$
The conclusion follows since $(dF)_{(s,p)}(0, Z_p - Z'_p) = (df_s)_p(Z_p - Z'_p) \in \text{Im}(df_s)_p$, and
$$(dF)_{(s,p)}(Z_s, Z'_p) \in dF_{(s,p)}(T_{(s,p)} F^{-1}(X)) \subset T_q X.$$

2. Morse functions

We start with

Definition 2.1. Let $f : M \to N$ be a smooth map.

1. We say $p \in M$ is a regular point of f if $df_p : T_p M \to T_{f(p)} N$ is surjective.
2. We say $q \in N$ is a regular value of f if any $p \in f^{-1}(q)$ is a regular point.
3. We say $p \in M$ is a critical point of f if it is not a regular point.
4. We say $q \in N$ is a critical value of f if it is not a regular value.
Remark. By definition, any \(q \in \mathbb{N} \setminus \text{Im}(f) \) is automatically a regular value.

Remark. Critical values are exactly the image of critical points, but the pre-image of critical values may contain regular points. We will denote the set of all critical points of \(f \) by \(\text{Crit}(f) \).

Next time we will prove that the set of critical values is very small: \(^1\)

Theorem 2.2 (Sard’s theorem). The set of all critical values has measure zero in \(\mathbb{N} \).

For the rest of today’s lecture, we will focus on the case where \(f : M \to \mathbb{R} \) is a smooth function. Then \(p \in M \) is a critical point if and only if \(df_p : T_pM \to \mathbb{R} \) is not surjective. Since \(df_p \) is linear, we must have \(df_p = 0 \). In other words,

\[p \text{ is a critical point of a smooth function } f \iff df_p = 0. \]

Example. Let \(M \) be compact, and \(p \) is a maximal or a minimal value point of \(f \). For any \(X_p \in T_pM \), we take a curve \(\gamma \) passing \(p \) so that \(X_p = \dot{\gamma}(0) \). Then \(t = 0 \) is extremal value point for the function \(f \circ \gamma(t) \). As a consequences, we see

\[0 = \left. \frac{d}{dt} \right|_{t=0} f(\gamma(t)) = df_p \left(\left. \frac{d}{dt} \right|_{t=0} \gamma(t) \right) = df_p(X_p). \]

It follows \(df_p = 0 \), i.e. \(p \) is a critical point.

Now suppose \(p \) is a critical point of \(f \). We would like to know: is \(p \) a local extremal value point? As in the Euclidean case, we need to introduce the conception of Hessian. We shall give several different ways to define the Hessian.

We start with a local description. Recall that for any local chart \((\varphi, U, V)\) of \(M \), we have \(df = (\partial_1 f)dx^1 + \cdots + (\partial_n f)dx^n \), where

\[\partial_i f(p) = \frac{\partial f \circ \varphi^{-1}}{\partial x^i}(\varphi(p)) \]

is a smooth function on \(U \), and

\[p \text{ is a critical point of a smooth function } f \iff \partial_i f(p) = 0, \ 1 \leq i \leq n. \]

Note that although \(\partial_i f \)'s depends on the choice of local charts, whether \(\partial_i f(p) = 0 \) for all \(i \), i.e. whether \(p \) is a critical point, is independent of the choice of local charts.

Now let \(p \) be a critical point. For any local chart \((\varphi, U, V)\) we will call the matrix

\[(\partial_i \partial_j f(p)) \]

the **Hessian matrix** of \(f \) at \(p \) (with respect to the given charts). Note that this matrix depends on the choice of local charts. However, one can prove that, at critical points, “whether this matrix is non-singular or not” is independent of the choice of local charts.

Definition 2.3. Let \(M \) be a smooth manifold and \(f : M \to \mathbb{R} \) a smooth function.

1. A critical point \(p \in M \) of \(f \) is **non-degenerate** if the Hessian is non-singular.
2. We say \(f \) is a **Morse function** if all its critical points are non-degenerate.

\(^1\)Of course we don’t have a natural measure on \(M \) yet. However, we will explain next time that the notion of “measure zero” is well-defined on manifolds.
Note that the Hessian matrix is symmetric, so it defines a bilinear form on T_pM (with respect to the canonical basis arising from the chart):

$$\text{Hess}_f : T_pM \times T_pM \rightarrow \mathbb{R}, \quad \text{Hess}_f \left(\sum X^i \partial_i, \sum Y^i \partial_i \right) = \sum_{i,j} \partial_i \partial_j f(p) X^i Y^j.$$

To see that this bilinear form is in fact independent of the choices of local charts, let’s give an intrinsic ways to define Hess_f. (We will give another “easier” intrinsic definition of Hess_f later. The advantage of the following point of view is that it gives a geometric interpretation of non-degeneracy. As a consequence, we can use this to deduce the existence of Morse functions.)

We will consider the cotangent bundle $T^*M = \bigcup_p \{p\} \times T^*_pM$.

In PSet 2 you are supposed to prove

- T^*M is a smooth manifold of dimension $2n$.
- The set $\{(p, 0) \mid p \in M\}$, still denoted by M for simplicity, is an n dimensional smooth submanifold of T^*M.
- For any $(p, \xi) \in T^*M$, the tangent space $T_{(p,0)}T^*M = T_pM \oplus T^*_pM$.

Now let f be a smooth function on M. Then for any $p \in M$, $df_p \in T^*_pM$. So we get a smooth map

$$s_f : M \rightarrow T^*M, \quad p \mapsto s_f(p) = (p, df_p).$$

Note that by definition, the set of critical points are exactly the intersection $M \cap \text{Im}(s_f)$, where we regard M as the “zero submanifold” of T^*M. Now pick any critical point p of f. For simplicity we denote $\Lambda_f = \text{Im}(s_f)$. Obviously s_f is an embedding, so Λ_f is an n dimensional submanifold of T^*M. Moreover, the tangent space of Λ_f at the critical point $(p, 0)$ is given by

$$T_{(p,0)}\Lambda_f = \text{Im}(ds_f)_p \subset T_{(p,0)}T^*M = T_pM \oplus T^*_pM.$$

So any vector in $T_{(p,0)}\Lambda_f$ can be written in the form (v, ξ), where $v \in T_pM$ and $\xi \in T^*_pM$.

Lemma 2.4. The projection map $\pi_1 : T_{(p,0)}\Lambda_f \rightarrow T_pM, \quad (v, \xi) \mapsto v$ is bijective.

Proof. Since both $T_{(p,0)}\Lambda_f$ and T_pM are n-dimensional vector spaces, and since π_1 is linear, it is enough to prove π_1 is injective. But this follows from the fact that Λ_f is a graph. \hfill \square

So if p is a critical point of f, then we get a linear map

$$\kappa : T_pM \rightarrow T^*_pM, \quad v \mapsto \pi_2(\pi_1^{-1}(v)),$$

where π_2 is the second projection $\pi_2 : T_pM \oplus T^*_pM \rightarrow T^*_pM$. The Hessian can be defined by κ:

$$\text{Hess}_f : T_pM \times T_pM \rightarrow \mathbb{R}, \quad \text{Hess}_f(X_p, Y_p) = \langle \kappa(X_p), Y_p \rangle.$$

One should check that with respect to basis that arising from a local chart, the matrix of Hess_f is exactly the matrix we give earlier.
Now we can give a geometric interpretation of the non-degeneracy condition.

Proposition 2.5. A critical point p of f is non-degenerate if and only if Λ_f intersect with M transversally at $(p,0)$.

Proof. By definition, p is a non-degenerate critical point if and only if κ is an isomorphism, i.e. $\ker(\kappa) = 0$. But by definition of κ,

$$\ker(\kappa) = \{v \in T_p M \mid (v, 0) \in T_{(p,0)} \Lambda_f\} = T_{(p,0)} \Lambda_f \cap T_p M.$$

So by dimension counting, $\ker(\kappa) = 0$ if and only if $T_{(p,0)} \Lambda_f + T_p M = T_{(p,0)} T^* M$, i.e. $\Lambda_f \cap M$ at $(p,0)$. \hfill \square

Since both Λ_f and M are n dimensional, we see $\text{Crit}(f) = M \cap \Lambda_f$ is zero dimensional if f is a Morse function. In particular, we get

Corollary 2.6. If f is a Morse function, then $\text{Crit}(f)$ is a discrete subset in M. In particular, if M is compact, then any Morse function has only finitely many critical points.