LECTURE 10: DYNAMICS OF VECTOR FIELDS

1. Integral Curves

Suppose M is a smooth manifold. Recall that a smooth curve in M is a smooth map $\gamma : I \to M$, where I is an interval in \mathbb{R}. For any $a \in I$, the tangent vector of γ at the point $\gamma(a)$ is

$$\dot{\gamma}(a) = \frac{d\gamma}{dt}(a) := d\gamma_a(\frac{d}{dt}),$$

where $\frac{d}{dt}$ is the standard coordinate tangent vector of \mathbb{R}.

Definition 1.1. Let X be a smooth vector field on M. We say that a smooth curve $\gamma : I \to M$ is an integral curve of X if for any $t \in I$,

$$\dot{\gamma}(t) = X_{\gamma(t)}.$$

Example. Consider the coordinate vector field $X = \frac{\partial}{\partial x^1}$ on \mathbb{R}^n. Then the integral curves of X are the straight lines parallel to the x^1-axis, parametrized as $\gamma(t) = (c_1 + t, c_2, \ldots, c_n)$.

To check this, we notice that for any smooth function f on \mathbb{R}^n,

$$d\gamma \left(\frac{d}{dt} \right) f = \frac{d}{dt} (f \circ \gamma) = \nabla f \cdot \frac{d\gamma}{dt} = \frac{\partial f}{\partial x^1}.$$

Example. Consider the vector field $X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$ on \mathbb{R}^2. Then if $\gamma(t) = (x(t), y(t))$ is an integral curve of X, we must have for any $f \in C^\infty(\mathbb{R}^2)$,

$$x'(t) \frac{\partial f}{\partial x} + y'(t) \frac{\partial f}{\partial y} = \nabla f \cdot \frac{d\gamma}{dt} = X_{\gamma(t)} f = x(t) \frac{\partial f}{\partial y} - y(t) \frac{\partial f}{\partial x},$$

which is equivalent to the system

$$x'(t) = -y(t), \quad y'(t) = x(t).$$

The solution to this system is

$$x(t) = a \cos t - b \sin t, \quad y(t) = a \sin t + b \cos t.$$

These are circles centered at the origin in the plane parametrized by the angle (with counterclockwise orientation).

Remark. In general, a re-parametrization of an integral curve is no longer an integral curve. However, it is not hard to see that if $\gamma : I \to M$ is an integral curve of X, then

- Let $I_a = \{ t \mid t + a \in I \}$ and $\gamma_a(t) := \gamma(t + a)$, then $\gamma_a : I_a \to M$ is an integral curve of X.
- Let $I^a = \{ t \mid at \in I \}$ and $\gamma^a(t) := \gamma(at)$, then $\gamma^a : I^a \to M$ is an integral curve for $X^a = aX$.

Remark. Suppose \(\varphi: M \to N \) is smooth, and \(X \in \Gamma^\infty(TM), Y \in \Gamma^\infty(TN) \) are \(\varphi \)-related. If \(\gamma \) is an integral curve of \(X \), then \(\varphi \circ \gamma \) is an integral curve of \(Y \), since
\[
d(\varphi \circ \gamma) = d\varphi(a) \circ d\gamma(a) = d\varphi(a)X_{\varphi(a)} = Y_{\varphi(a)}.
\]

Let \((\varphi, U, V) \) be a local chart on \(M \) and let \(X = \sum_i X^i \partial_i \) be a smooth vector field. Since \(\partial_i(x^j) = \delta^j_i \), we have \(X(x^i) = \sum_i X^i \partial_i(x^j) = X^j \) and thus \(X = \sum_i (X^i \partial_i) \). Now let \(\gamma: I \to M \) be an integral curve of \(X \). Then we get
\[
\dot{\gamma}(t) = d\gamma_t \left(\frac{d}{dt} \right) = \sum_i d\gamma_t(x^i) \partial_i = \sum_i (x^i \circ \gamma)'(t) \partial_i
\]
So the integral curve equation \(\dot{\gamma}(t) = X_{\gamma(t)} \) becomes
\[
\sum_i (x^i \circ \gamma)'(t) \partial_i = \sum_i X^i(\gamma(t)) \partial_i
\]
for all \(t \in I \), i.e.
\[
(x^i \circ \gamma)'(t) = X^i(\gamma(t)) = X^i \circ \varphi^{-1}(x^1(\gamma(t)), \ldots, x^n(\gamma(t)))
\]
for all \(t \in I \) and all \(1 \leq i \leq n \). This is a system of first order ODEs on the functions \(y^i = x^i \circ \gamma \). Conversely, any solution to this system of ODEs defines an integral curve of the vector field \(X \) inside the open set \(U \).

According to the fundamental theorem of ODEs, we conclude

Corollary 1.2. Suppose \(X \) is a smooth vector field on \(M \). Then for any point \(p_0 \in M \), there exists a neighborhood \(U \) of \(p_0 \), an \(\varepsilon > 0 \) and a smooth map
\[
\Gamma: (-\varepsilon, \varepsilon) \times U \to M
\]
so that for any \(p \in U \), the curve \(\gamma_p: (-\varepsilon, \varepsilon) \to M \) defined by
\[
\gamma_p(t) := \Gamma(t, p)
\]
is an integral curve of \(X \) with \(\gamma(0) = p \). Moreover, this integral curve is unique in the sense that \(\sigma: I \to M \) is another integral curve of \(X \) with \(\sigma(0) = p \), then \(\sigma(t) = \gamma_p(t) \) for \(t \in I \cap (-\varepsilon, \varepsilon) \).

As a consequence of the uniqueness, any integral curve has a **maximal defining interval**. We are interested in those vector fields whose maximal defining interval is \(\mathbb{R} \).

Definition 1.3. A vector field \(X \) on \(M \) is **complete** if for any \(p \in M \), there is an integral curve \(\gamma: \mathbb{R} \to M \) such that \(\gamma(0) = p \).

As in the case of functions, we can define the **support** of a vector field by
\[
\text{supp}(X) = \{ p \in M \mid X(p) \neq 0 \}.
\]

Theorem 1.4. If \(X \) is a compactly supported vector field on \(M \), then it is complete.
Proof. Let $C = \text{supp}(X)$. Then any integral curve starting at $q \in M \setminus C$ stays at q. Thus every integral curve starting at $p \in C$ stays in C. It follows that for any $q \in C$, there is an interval $I_q = (-\varepsilon_q, \varepsilon_q)$, a neighborhood U_q of q in C and a smooth map

$$\Gamma : I_q \times U_q \to C$$

such that for all $p \in U_q$,

$$\gamma_p(t) = \Gamma(t, p)$$

is an integral curve of X with $\gamma_p(0) = p$. Since $\bigcup_q U_q = C$, and C is compact, one can find a finite many points q_1, \ldots, q_N in C so that $\{U_{q_1}, \ldots, U_{q_N}\}$ cover C. Let $I = \bigcap_k I_{q_k} = (-\varepsilon_0, \varepsilon_0)$, then for any $q \in C$, there is an integral curve $\gamma_q : I \to C$. Now suppose the maximal defining interval for $p \in C$ is I_p. I claim that $I_p = \mathbb{R}$. In fact, if $I_p \neq \mathbb{R}$, without loss of generality, we may assume that $\sup I_p = c < \infty$. Then from $q = \gamma_p(c - \frac{\varepsilon_0}{2})$, there is an integral curve $\gamma_q : (-\varepsilon_0, \varepsilon_0) \to M$ of X. By uniqueness, $\gamma_q(t) = \gamma_p(t + c - \frac{\varepsilon_0}{2})$. It follows that the defining interval of γ_p extends to $c + \frac{\varepsilon_0}{2}$. A contradiction. □

Corollary 1.5. Any smooth vector field on a compact manifold is complete.

Proof. The set Supp(X), as a closed set in the compact manifold, is compact. □

2. Flows generated by vector fields

Now suppose M is a smooth manifold and X is a complete vector field on M. Then for any $p \in M$, there is a unique integral curve $\gamma_p : \mathbb{R} \to M$ such that $\gamma_p(0) = p$. From this one can, for any $t \in \mathbb{R}$, define a map

$$\phi_t : M \to M, \quad p \mapsto \gamma_p(t).$$

Lemma 2.1. $\phi_t : M \to M$ is bijective with $\phi_t^{-1} = \phi_{-t}$.

Proof. Notice that for any $p \in M$ and any $t, s \in \mathbb{R}$,

$$\gamma_1(t) = \phi_t \circ \phi_s(p) \quad \text{and} \quad \gamma_2(t) = \phi_{t+s}(p)$$

are both integral curves for X starting at the same point

$$\gamma_1(0) = \phi_s(p) = \gamma_2(0).$$

By uniqueness of integral curves, we have

$$\phi_t \circ \phi_s = \phi_{t+s}.$$

Since $\phi_0 = \text{Id}$, we conclude that $\phi_t^{-1} = \phi_{-t}$, so in particular ϕ_t is bijective. □

Lemma 2.2. The map

$$\Phi : \mathbb{R} \times M \to M, \quad (t, p) \mapsto \phi_t(p)$$

is smooth.
Proof. We have seen that the integral curves depend on the initial condition smoothly. In other words, for any \(p \in M \), there is a neighborhood \(U_p \) of \(p \) and an interval \(I_p = (-\varepsilon_p, \varepsilon_p) \) such that \(\Phi|_{I_p \times U_p} \) is smooth. To show that \(\Phi \) is smooth near a point \((t_0, p) \in \mathbb{R} \times M \) for larger \(t_0 \), we notice that \(\phi_t(p) = \gamma_p(t) \) is smooth on \(t \), so the set \(K = \gamma_p([-\varepsilon_p, t_0 + \varepsilon_p]) \) is compact. It follows that one can find finitely many points \(p_1, \ldots, p_N \) in \(K \) so that the open sets \(U_{p_1}, \ldots, U_{p_N} \) cover \(K \). As a result, the set \(U_0 = \bigcup U_{p_k} \) is an open neighborhood of \(K \), and \(I_0 = \bigcap I_{p_k} = (-\varepsilon_0, \varepsilon_0) \) is an interval containing 0, such that \(\Phi \) is smooth in \(U_0 \times I_0 \). It follows that if \(|t - t_0| < \varepsilon_0 \), and if we take \(N \) large enough so that \(\frac{t_0}{N} < \varepsilon_0 \), then
\[
\Phi(t, p) = \Phi(t_0 + s, p) = \Phi(t_0/N, \Phi(t_0/N, \cdots, \Phi(t_0/N, \Phi(s, p))))
\]
is smooth in both \(t \) and \(p \).

It follows that \(\phi_t \)'s are diffeomorphisms for all \(t \). In other words, the family of maps \(\{\phi_t\} \) is a family of diffeomorphisms of \(M \). They are called one-parameter subgroup of diffeomorphisms since they satisfies the group law \(\phi_t \circ \phi_s = \phi_{t+s} \). Notice that the group law can also be rewritten in terms of the map \(\Phi \) as
\[
\Phi(t + s, p) = \Phi(t, \Phi(s, p)).
\]

Definition 2.3. We will call \(\Phi : \mathbb{R} \times M \to M \), \((t, p) \mapsto \phi_t(p) \) the flow of \(X \).

Example. The flow generated by the vector field \(X = \frac{\partial}{\partial x} \) is the translation
\[
\Phi : \mathbb{R} \times \mathbb{R}^n, \quad (t, x^1, x^2, \cdots, x^n) \mapsto (t + x^1, x^2, \cdots, x^n).
\]
More generally, the flow generated by a constant vector field \(X = \sum c^i \frac{\partial}{\partial x^i} \) is
\[
\Phi : \mathbb{R} \times \mathbb{R}^n, \quad (t, x^1, x^2, \cdots, x^n) \mapsto (c^1 t + x^1, \cdots, c^n t + x^n).
\]

Example. If we identify \(\mathbb{R}^2 \) with \(\mathbb{C} \), then the flow generated by the vector field
\[
X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}
\]
is the counterclockwise rotation
\[
\Phi : \mathbb{R} \times \mathbb{C} \to \mathbb{C}, \quad (t, z) \mapsto e^{it} z.
\]
Note that this vector field is tangent to circles centered at the origin. We will denote the induced vector fields on such circles by \(\frac{d}{d\theta} \).

Remark. If \(X \) is not complete, one can also derive a similar theory of local flow generated by \(X \). In that case the group law still holds for small \(t \) and \(s \).

Remark. Sometimes we will denote \(\phi_t = \exp(tX) \) to emphasis the \(X \)-dependence. In this case the group law becomes
\[
\exp(tX) \exp(sX) = \exp((s + t)X).
\]
Note that in general \(\exp(tX) \exp(sY) \neq \exp(sY) \exp(tX) \), unless \(X, Y \) commutes, i.e. \([X, Y] = 0 \).