LECTURE 14: LIE GROUP ACTIONS

1. Smooth actions

Let M be a smooth manifold, $\text{Diff}(M)$ the group of diffeomorphisms on M.

Definition 1.1. An action of a Lie group G on M is a homomorphism of groups $\tau : G \to \text{Diff}(M)$. In other words, for any $g \in G$, $\tau(g)$ is a diffeomorphism from M to M such that

$$\tau(g_1g_2) = \tau(g_1) \circ \tau(g_2).$$

The action τ of G on M is smooth if the evaluation map $ev : G \times M \to M, \quad (g,m) \mapsto \tau(g)(m)$ is smooth. We will denote $\tau(g)(m)$ by $g \cdot m$.

Remark. What we defined above is the left action. One can also define a right action $\hat{\tau} : G \to \text{Diff}(M)$, i.e. such that $\hat{\tau}(g_1g_2) = \hat{\tau}(g_2) \circ \hat{\tau}(g_1)$.

Any left action τ can be converted to a right action $\hat{\tau}$ by requiring $\hat{\tau}_g(m) = \tau(g^{-1})m$.

Example. S^1 acts on \mathbb{R}^2 by counterclockwise rotation.

Example. Any linear group in $\text{GL}(n, \mathbb{R})$ acts on \mathbb{R}^n as linear transformations.

Example. If X is a complete vector field on M, then

$$\rho : \mathbb{R} \to \text{Diff}(M), \quad t \mapsto \rho_t = \exp(tX)$$

is a smooth action of \mathbb{R} on M. Conversely, every smooth action of \mathbb{R} on M is given by this way: one just take $X(p)$ to be $X(p) = \dot{\gamma}_p(t)$, where $\gamma_p(t) := \rho_t(p)$.

Example. Any Lie group G acts on itself by many ways, e.g. by left multiplication, by right multiplication and by conjugation. For example, the conjugation action of G on G is given by

$$g \in G \leadsto c(g) : G \to G, x \mapsto gxg^{-1}.$$

More generally, any Lie subgroup H of G can act on G by left multiplication, right multiplication and conjugation.

Example. Any Lie group G acts on its Lie algebra $\mathfrak{g} = T_eG$ by the adjoint action:

$$g \in G \leadsto \text{Ad}_g = (dc(g))_e : \mathfrak{g} \to \mathfrak{g}.$$

For example, one can show that the adjoint action of $\text{GL}(n, \mathbb{R})$ on $\mathfrak{gl}(n, \mathbb{R})$ is given by $A \leadsto \text{Ad}_A : \mathfrak{gl}(n, \mathbb{R}) \to \mathfrak{gl}(n, \mathbb{R}), X \mapsto AXA^{-1}$. Similarly one can define the coadjoint action of G on \mathfrak{g}^\ast.

Now suppose Lie group G acts smoothly on M.

Definition 1.2. For any $X \in \mathfrak{g}$, the induced vector field X_M on M associated to X is

$$X_M(m) = \left. \frac{d}{dt} \right|_{t=0} \exp(tX) \cdot m.$$

Lemma 1.3. For each $m \in M$ and $X \in \mathfrak{g}$,

$$X_M(m) = (ev_m)_e(X),$$

where ev_m is the restricted evaluation map

$$ev_m : G \to M, g \mapsto g \cdot m.$$

Proof. For any smooth function f we have

$$(ev_m)_e(X)f = X_e(f \circ ev_m) = \left. \frac{d}{dt} \right|_{t=0} f(\exp(tX) \cdot m) = X_M(m)(f).$$

\square

Remark. So from any smooth Lie group action of G on M we get a map

$$d\tau : \mathfrak{g} \to \Gamma^\infty(M), \quad X \mapsto X_M.$$

This can be viewed as the differential of the map $\tau : G \to \text{Diff}(M)$. One can prove that $d\tau$ is a Lie algebra anti-homomorphism. It is called the *infinitesimal action* of \mathfrak{g} on M. (There is a natural way to regard $\Gamma^\infty(M)$, an infinitely dimensional Lie algebra, as the “Lie algebra” of $\text{Diff}(M)$.)

Lemma 1.4. The integral curve of X_M starting at $m \in M$ is

$$\gamma_m(t) = \exp(tX) \cdot m.$$

Proof. By definition, we have $\gamma_m(0) = m$, and

$$\dot{\gamma}_m(t) = \left. \frac{d}{dt} \right|_{t=0} \exp(tX \cdot m) = \left. \frac{d}{ds} \right|_{s=0} (\exp sX \circ \exp tX \cdot m) = X_M(\gamma_m(t)).$$

\square

As a consequence, we see that the induced vector field is “natural”:

Corollary 1.5. Let $\tau : G \to \text{Diff}(M)$ be a smooth action. Then for any $X \in \mathfrak{g}$,

$$\tau(\exp tX) = \exp(tX_M),$$

where $\rho_t = \exp(tX_M)$ is the flow on M generated by X_M.
2. Orbits and the Quotient Space

Definition 2.1. Let $\tau : G \to \text{Diff}(M)$ be a smooth action.

1. The *orbit* of G through $m \in M$ is
 \[G \cdot m = \{ g \cdot m \mid g \in G \} \subset M. \]
2. The *stabilizer* (also called the *isotropic subgroup*) of $m \in M$ is the subgroup
 \[G_m = \{ g \in G \mid g \cdot m = m \} < G. \]

Proposition 2.2. Let $\tau : G \to \text{Diff}(M)$ be a smooth action, $m \in M$. Then

1. The orbit $G \cdot m$ is an immersed submanifold whose tangent space at m is
 \[T_m(G \cdot m) = \{ X_M(m) \mid X \in \mathfrak{g} \}. \]
2. The stabilizer G_m is a Lie subgroup of G, with Lie algebra
 \[\mathfrak{g}_m = \{ X \in \mathfrak{g} \mid X_M(m) = 0 \}. \]

Proof.

1. By definition,
 \[\text{ev}_m \circ L_g = \tau_g \circ \text{ev}_m. \]
 Taking derivative at $h \in G$, we get
 \[(d\text{ev}_m)_h \circ (dL_g)_h = (d\tau_g)_{h \cdot m} \circ (d\text{ev}_m)_h. \]
 Since $(dL_g)_h$ and $(d\tau_g)_{h \cdot m}$ are bijective, the rank of $(d\text{ev}_m)_{gh}$ equals the rank of $(d\text{ev}_m)_h$ for any g and h. It follows that the map ev_m is of constant rank. By the constant rank theorem, its image, $\text{ev}_m(G) = G \cdot m$, is an immersed submanifold of M.

 The tangent space of $G \cdot m$ at m is the image under $d\text{ev}_m$ of $T_eG = \mathfrak{g}$. But for any $X \in \mathfrak{g}$, we have $(d\text{ev}_m)_e(X) = X_M(m)$. So the conclusion follows.

2. Consider the map
 \[\text{ev}_m : G \to M, g \mapsto g \cdot m, \]
 then $G_m = \text{ev}_m^{-1}(m)$, so it is a closed set in G. It is a subgroup since τ is a group homomorphism. It follows from Cartan’s theorem that G_m is a Lie subgroup of G.

 We have seen that the Lie algebra of the subgroup G_m is
 \[\mathfrak{g}_m = \{ X \in \mathfrak{g} \mid \exp(tX) \in G_m, \forall t \in \mathbb{R} \}. \]
 It follows that $\exp(tX) \cdot m = m$ for $X \in \mathfrak{g}_m$. Taking derivative at $t = 0$, we get
 \[\mathfrak{g}_m \subset \{ X \in \mathfrak{g} \mid X_M(m) = 0 \}. \]
 Conversely, if $X_M(m) = 0$, then $\gamma(t) \equiv m$, $t \in \mathbb{R}$, is an integral curve of the vector field X_M passing m. It follows that $\exp(tX) \cdot m = \gamma(t) = m$, i.e. $\exp(tX) \in G_m$ for all $t \in \mathbb{R}$. So $X \in \mathfrak{g}_m$. \qed
Obviously if m and m' lie in the same orbit, then $G \cdot m = G \cdot m'$. We will denote the set of orbits by M/G. For example, if the action is transitive, i.e. there is only one orbit $M = G \cdot m$, then M/G contains only one point. In general, M/G contains many points. We will equip with M/G the quotient topology. This topology might be very bad in general, e.g. non-Hausdorff.

Example. Consider the natural action of $\mathbb{R}_{>0}$ on \mathbb{R} by multiplications, then there are three orbits, $\{+,0,-\}$. The open sets with respect to the quotient topology are $\{+,\} \setminus \{-\}$, $\{+,-\}$, $\{+,0\}$ and the empty set \emptyset. So the quotient is not Hausdorff.

Finally we list some conceptions to guarantee that each $G \cdot m$ is an embedded submanifold, and to guarantee that M/G is a smooth manifold.

Definition 2.3. Let Lie group G acts smoothly on M.

1. The G-action is **proper** if the action map
 \[\alpha : G \times M \to M \times M, \quad (g,m) \mapsto (g \cdot m, m) \]
 is proper, i.e. the pre-image of any compact set is compact.

2. The G-action is **free** if $G_m = \{e\}$ for all $m \in M$.

Remarks.

1. If the G-action on M is proper, then the evaluation map
 \[ev_m : G \to M, g \mapsto g \cdot m \]
 is proper. In particular, for each $m \in M$, G_m is compact.

2. One can prove that if G is compact, then any smooth G-action is proper.

Example. Let $H \subset G$ be a closed subgroup. Then the left action of H on G, \[\tau_h : G \to G, \quad g \mapsto hg \]

is free. It is also proper since for any compact subset $K \subset G \times G$, the preimage $\alpha^{-1}(K)$ is contained in the image of K under the smooth map

\[f : G \times G \to G \times G, \quad (g_1,g_2) \mapsto (g_1g_2^{-1},g_2), \]

which has to be compact. The action is not transitive unless $H = G$.

The major theorem that we will not have time to prove is

Theorem 2.4. Suppose G acts on M smoothly, then

1. If the action is proper, then
 a. Each orbit $G \cdot m$ is an embedded closed submanifold of M.
 b. The orbit space M/G is Hausdorff.

2. If the action is proper and free, then
 a. The orbit space M/G is a smooth manifold.
 b. The quotient map $\pi : M \to M/G$ is a submersion.
(3) If the action is transitive, then for each \(m \in M \), the map
\[
F : G/G_m \to M, \quad gG_m \mapsto g \cdot m
\]
is a diffeomorphism.

In particular, we see that if the \(G \)-action on \(M \) is transitive, then for any \(m \in M \),
\[
M \simeq G/G_m.
\]
Such a manifold is called a homogeneous space. Obviously any homogeneous space is of the form \(G/H \) for some Lie group \(G \) and some closed Lie subgroup \(H \).

Example. According to Gram-Schmidt, the natural action of \(O(n) \) on \(S^{n-1} \) is transitive. It follows that \(S^{n-1} \) is a homogeneous space. Moreover, if we choose \(m \) to be the “north pole” of \(S^{n-1} \), then one can check that the isotropy group \(G_m \) is \(O(n-1) \). It follows
\[
S^{n-1} \simeq O(n)/O(n-1).
\]

Example. Let \(k < n \). Consider
\[
Gr_k(n) = \{ k \text{ dimensional linear subspaces of } \mathbb{R}^n \}.
\]
Then \(O(n) \) acts transitively on \(Gr_k(n) \), and the isotropy group of the standard \(\mathbb{R}^k \) inside \(\mathbb{R}^n \) is \(O(k) \times O(k-1) \). It follows
\[
Gr_k(n) \simeq O(n)/(O(k) \times O(n-k))
\]
The manifold \(Gr_k(n) \) is called a Grassmannian manifold. Note that \(Gr_1(n) = \mathbb{RP}^{n-1} \) is the real projective space.