
LECTURE 26: THE CHERN-WEIL THEORY

1. Invariant Polynomials

We start with some necessary backgrounds on invariant polynomials. Let V be a vector space.
Recall that a k-tensor T ∈ ⊗kV ∗ is called symmetric if

T (vσ1 , · · · , vσk) = T (v1, · · · , vk), ∀σ ∈ Sk.
We will denote the space of all symmetric k-tensors on V by SkV ∗.

Let T ∈ SkV ∗ be any symmetric k-tensor. Then T induces a “degree k homogeneous polyno-
mial on V ”,

PT (v) := T (v, · · · , v).

Conversely, it is not hard to see that T is completely determined by PT , since we have the following
polarization formula

T (v1, · · · , vk) :=
1

k!

∂k

∂t1 · · · ∂tk
PT (t1v1 + · · ·+ tkvk).

Like wedge product, we can define a symmetric product ◦ : SkV ∗ × SlV ∗ → Sk+lV ∗ via

T1 ◦ T2(v1, · · · , vk+l) =
1

(k + l)!

∑
σ∈Sk+l

T1(v1, · · · , vk)T2(vk+1, · · · , vk+l).

As usual we put S0V ∗ = R.

Of course PT defined as above is not really a polynomial. (At least one should need a conception
of “products of vectors” on V before we can talk about polynomials on V .) However, we can
associate to each T ∈ SkV ∗ a true polynomial as follows: We fix a basis {e1, · · · , en} of V . Let
R[x1, · · · , xn] be the ring of polynomials in the variable x1, · · · , xn, and let R[x1, · · · , xn]k be the
subset of homogeneous polynomials of degree k. We define a map P : SkV ∗ → R[x1, · · · , xn]k by

T 7→ pT (x1, · · · , xn) := PT (
∑

xiei) = T (
∑

xiei, · · · ,
∑

xiei)

Obviously P is a linear map and satisfies P(T1 ◦ T2) = P(T1)P(T2).

Lemma 1.1. The map P is a linear isomorphism. (In particular, dimSkV ∗ =
(
n+k−1
n−1

)
.)

Proof. By the polarization formula above we see P is injective. To show that P is surjective, we
just notice that for k = 1, P maps Ti ∈ S1V ∗ = V ∗ to the polynomial pTi(x1, · · · , xn) = xi, where
Ti is the map Ti(

∑
xiei) := xi. For general k, by repeatedly using the rule P(T1◦T2) = P(T1)P(T2)

one immediately see that P is surjective. �

Remark. The fact P(T1 ◦ T2) = P(T1)P(T2) implies that P : S∗V ∗ → R[x1, · · · , xn] is in fact a
ring isomorphism.
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Now let V = g be the Lie algebra of a Lie group G. Then the adjoint action of G on g induces
a G-action on Sk(g∗) by

(g · T )(X1, · · · , Xk) := T (Adg−1X1, · · · ,Adg−1Xk), ∀Xi ∈ g, g ∈ G.
Note that for the case that G is a linear Lie group, which we will always assume below, one has

(g · T )(X1, · · · , Xk) = T (gX1g
−1, · · · , gXkg

−1),

where g is an invertible r × r matrix while Xi’s are arbitrary r × r matrices.

Definition 1.2. T ∈ Sk(g∗) is called invariant if

g · T = T, ∀g ∈ G.
The set of all G-invariant elements in Sk(g∗) is denoted by Ik(G).

So I∗(G) = ⊕Ik(G) is a subring of S∗(g∗). Note that by definition and the polarization
formula, T is invariant if and only if PT is invariant.

Example. Consider G = GL(r,R). For any positive integer k, we let pk/2 denote the degree k
homogeneous polynomial which is the coefficient of λr−k for the following polynomial in λ

det

(
λI − 1

2π
A

)
=

r∑
k=0

pk/2(A, · · · , A)λr−k, ∀A ∈ gl(n,R).

Obviously pk/2 is invariant. So pk/2 ∈ Ik(GL(r,R)). They are called the k/2-th Pontrjagin
polynomials.

Note that for G = O(r) ⊂ GL(r,R), the Lie algebra o(r) consists of skew-symmetric matrices,
and hence

det

(
λI − 1

2π
A

)
= det

(
λI +

1

2π
A

)
, ∀A ∈ o(r).

This implies that pk/2 = 0 for k odd. So for O(n) one only need to study pk ∈ I2k(O(n)).

Proposition 1.3. For any T ∈ Ik(G) and any X,X1, · · · , Xk ∈ g, we have

T ([X,X1], X2, · · · , Xk) + · · ·+ T (X1, · · · , Xk−1, [X,Xk]) = 0.

Proof. This follows from

d

dt

∣∣∣∣
t=0

T (etXX1e
−tX , · · · , etXXke

−tX) = 0.

�

For T ∈ Ik(G) one can also define T (F1, · · · , Fk) for Fi ∈ Ω∗(U) ⊗ g, by extending linearly
the relation

T (ω1 ⊗X1, · · · , ωk ⊗Xk) := (ω1 ∧ · · · ∧ ωk)T (X1, · · · , Xk).

Note that if ω is a 2-forms, or more generally is any even-form, then for any η one has ω∧η = η∧ω.
As a consequence we see



LECTURE 26: THE CHERN-WEIL THEORY 3

Corollary 1.4. If F1, · · · , Fk ∈ Ωeven(U)⊗ g, then for any T ∈ Ik(G) and A ∈ Ω∗(U)⊗ g one has

T ([A,F1], F2, · · · , Fk) + · · ·+ T (F1, · · · , Fk−1, [A,Fk]) = 0.

2. Chern-Weil Theory

Let G be a Lie group (and for simplicity, assume G is a linear Lie group), with Lie algebra g.
Let P be a principal G-bundle over M , which is defined by an open cover {Uα) and corresponding
transition maps gαβ : Uα ∩ Uβ → G.

Let A be a collection Aα ∈ Ω1(Uα)⊗ g which is a connection in P . Recall that the curvature
FA of the connection A is given locally by the collection

Fα = dAα +
1

2
[Aα, Aα] ∈ Ω2(Uα)⊗ g.

For any T ∈ Ik(G) we can define

pT (Fα) := T (Fα, · · · , Fα) ∈ Ω2k(Uα).

Since T is Ad-invariant and since Fβ = gβαFαg
−1
βα , we get

pT (Fα) = pT (Fβ) on Uα ∩ Uβ.
In other words, there is a globally-defined 2k-form pT (FA) ∈ Ω2k(M) so that pT (FA) = pT (Fα) on
Uα. (Note FA is not an element in Ω2(M): it sits in Ω2(M ; Ad(P ).)

It turns out that these pT (FA)’s play a crucial role in modern math and physics.

Theorem 2.1 (Chern-Weil). Let P be a principal G-bundle over M . Then

(1) For any T ∈ Ik(G) and any connection A in P , the form pT (FA) is closed.
(2) The de Rham class [pT (FA)] ∈ H2k

dR(M) is independent of the choices of A.
(3) The Chern-Weil map CW : (I∗(G), ◦) → (H∗dR(M),∧) that maps T to [pT (FA)] is a ring

homomorphism.

Proof. (1) According to the Bianchi identity dFα = −[Aα, Fα]. So by corollary 1.4,

dpT (FA) = dT (Fα, · · · , Fα) = T (dFα, · · · , Fα) + · · ·+ T (Fα, · · · , dFα) = 0.

This proves pT (FA) is closed.

(2) To prove that the de Rham class [pT (FA)] is independent of the choices of connection A, we
let A0 and A1 be two connections defined by the collections A0

α and A1
α. By definition it is easy

to check that the collection

Ãα = (1− s)A0
α + sA1

α ∈ Ω1(Uα × R)⊗ g

defines a connection on a new principal bundle P × R over M × R (This new principal bundle is
defined over open sets {Uα × R} by using the same set of transition functions gαβ). If we let ι1
and ι0 be the same as in the following lemma, then ι∗0Ãα = A0

α and ι∗1Ãα = A1
α. As a result, we

see

ι∗0FÃ = FA0 and ι∗1FÃ = FA1 .
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So according to the next lemma,

pT (FA0)− pT (FA1) = ι∗0pT (FÃ)− ι∗1pT (FÃ) = dQ(pT (FÃ)) +Qd(pT (FÃ)).

But we just proved that pT (FÃ) is closed. So [pT (FA0)] = [pT (FA1)].

Lemma 2.2. Let ι0, ι1 : M →M × R be the inclusions

ι0(x) = (x, 0), ι1(x) = (x, 1).

Then there exists a collection of linear operators Q : Ωk(M × R)→ Ωk−1(M) so that

ι∗0ω − ι∗1ω = dQ(ω)−Qd(ω), ∀ω ∈ Ωk(M × R).

Proof. One just repeat the first four lines of the proof of theorem 2.6 in lecture 19, to

get some linear map Q̃ : Ωk(M ×R)→ Ωk−1(M ×R) so that ω− φ∗1ω = dQ̃ω + Q̃dω. It
follows that

ι∗0ω − ι∗1ω = ι∗0ω − ι∗0φ∗1ω = ι∗0dQ̃ω + ι∗0Q̃dω = d(ι∗0Q̃)ω + (ι∗0Q̃)dω.

So the conclusion holds for Q = ι∗0Q̃ : Ωk(M × R)→ Ωk−1(M). �

(3) It is straightforward to show that for T ∈ Sk(G) and S ∈ Sl(G), pT◦S(FA) = pT (FA)∧ pS(FA).
Details left as an exercise. �

Example. Consider the trivial principal G-bundle P = M ×G over M . In this case one can take
Uα = M , i.e. the open cover contains only one element. Then there is only one gαα, which equals
e ∈ G at each point x ∈ M . For such a covering data one can take Aα to be identically zero. It
follows that FA = 0 and thus for any T ∈ I∗(G),the class [pT (FA)] = 0.

Definition 2.3. For any T ∈ I∗(G), the cohomology class [pT (FA)]] is called the characteristic
class for P corresponding to T .

Remark. Obviously the above construction works if we replace the principal bundle P by a vector
bundle E. So one can also talk about the charactersitic classes of vector bundle E over M
associated with T ∈ I∗(G), where G is the structural group of E.

Example. Let E be any vector bundle over M . By choosing a Riemannian metric one can always
reduce the structural group of E from GL(r,R) to O(r). Let pk be the Pontrjagin polynomial that
we alluded above. Then

pk(E) := [pk(FA)] ∈ H4k
dR(M)

is called the kth Pontrjagin characteristic class of E. The Pontrjagin class pk(M) of M is defined
to be the Pontrjagin class of TM . They are important topological invariants to study manifolds.

Example. Suppose r = 2p and consider G = SO(r). For any A = (aij) ∈ so(r) we let

Pf(A) =
1

(4π)r(r/2)!

∑
σ∈Sr

(−1)σa
σ(1)
σ(2)a

σ(3)
σ(4) · · · a

σ(r−1)
σ(r) .

One can check that Pf is an Ad-invariant homogeneous polynomial of degree r/2. It is called the
Pfaff polynomial.
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Now suppose E is an oriented vector bundle over M of rank r. Then the structural group of
E can be reduced to SO(r). Thus we get a characteristic class

e(E) := [Pf(FA)] ∈ Hr
dR(M)

which is called the Euler characterstic class of E. Again the Euler class e(M) of a smooth manifold
M is defined to be the Euler class of TM . It generalizes the classical notion of Euler characteristic.

Example. All discusstions above are over R, but they can be generalized to objects over C. For
example, one can talk about complex vector bundle E over smooth manifold M : They are vector
bundles over M whose fibers are Cr and whose structural group is GL(r,C). For any A ∈ gl(r,C)
(= the set of all r × r complex matrices), one can define ck to be such that

det

(
λIr −

1

2πi
A

)
=
∑

ck(A)λn−k.

Again ck is a homogeneous polynomial of degree k and is Ad-invariant. As a result, for any
complex vector bundle E of complex rank r, one gets a complex-valued de Rham cohomology
class

ck(E) := ck(FA) ∈ H2k
dR(M ;C)

which is called the kth Chern class of E. If one fix an Hermitian metric on E (i.e. fix a Hermitian
inner product on each fiber of E which vary smoothly with respect to base points – this is always
possible by using partition of unity), then one can reduce the structural group to U(n). But for

A ∈ u(n) (= the set of all r × r complex matrices with A+ A
T

= 0), one has

det

(
λIr −

1

2πi
A

)
= det

(
λ̄Ir −

1

2πi
A

)
.

It follows that each ck is a real-valued polynomial and thus each ck(E) ∈ H2k
dR(M), i.e. ck(E) is a

(real-valued) de Rham cohomology class. It is of fundamental importance in algebraic topology,
differential geometry, algebraic geometry and mathematical physics.

—The End—


