LECTURE 26: THE CHERN-WEIL THEORY

1. INVARIANT POLYNOMIALS

We start with some necessary backgrounds on invariant polynomials. Let V be a vector space. Recall that a k-tensor $T \in \bigotimes^k V^*$ is called *symmetric* if

$$T(v_{\sigma_1}, \cdots, v_{\sigma_k}) = T(v_1, \cdots, v_k), \quad \forall \sigma \in S_k.$$

We will denote the space of all symmetric k-tensors on V by $S^k V^*$.

Let $T \in S^k V^*$ be any symmetric k-tensor. Then T induces a "degree k homogeneous polynomial on V",

$$P_T(v) := T(v, \cdots, v)$$

Conversely, it is not hard to see that T is completely determined by P_T , since we have the following polarization formula

$$T(v_1, \cdots, v_k) := \frac{1}{k!} \frac{\partial^k}{\partial t_1 \cdots \partial t_k} P_T(t_1 v_1 + \cdots + t_k v_k).$$

Like wedge product, we can define a symmetric product $\circ: S^k V^* \times S^l V^* \to S^{k+l} V^*$ via

$$T_1 \circ T_2(v_1, \cdots, v_{k+l}) = \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} T_1(v_1, \cdots, v_k) T_2(v_{k+1}, \cdots, v_{k+l}).$$

As usual we put $S^0 V^* = \mathbb{R}$.

Of course P_T defined as above is not really a polynomial. (At least one should need a conception of "products of vectors" on V before we can talk about polynomials on V.) However, we can associate to each $T \in S^k V^*$ a true polynomial as follows: We fix a basis $\{e_1, \dots, e_n\}$ of V. Let $\mathbb{R}[x_1, \dots, x_n]$ be the ring of polynomials in the variable x_1, \dots, x_n , and let $\mathbb{R}[x_1, \dots, x_n]^k$ be the subset of homogeneous polynomials of degree k. We define a map $\mathcal{P}: S^k V^* \to \mathbb{R}[x_1, \dots, x_n]^k$ by

$$T \mapsto p_T(x_1, \cdots, x_n) := P_T(\sum x_i e_i) = T(\sum x_i e_i, \cdots, \sum x_i e_i)$$

Obviously \mathcal{P} is a linear map and satisfies $\mathcal{P}(T_1 \circ T_2) = \mathcal{P}(T_1)\mathcal{P}(T_2)$.

Lemma 1.1. The map \mathcal{P} is a linear isomorphism. (In particular, dim $S^k V^* = \binom{n+k-1}{n-1}$.)

Proof. By the polarization formula above we see \mathcal{P} is injective. To show that \mathcal{P} is surjective, we just notice that for k = 1, \mathcal{P} maps $T_i \in S^1 V^* = V^*$ to the polynomial $p_{T_i}(x_1, \cdots, x_n) = x_i$, where T_i is the map $T_i(\sum x_i e_i) := x_i$. For general k, by repeatedly using the rule $\mathcal{P}(T_1 \circ T_2) = \mathcal{P}(T_1)\mathcal{P}(T_2)$ one immediately see that \mathcal{P} is surjective. \Box

Remark. The fact $\mathcal{P}(T_1 \circ T_2) = \mathcal{P}(T_1)\mathcal{P}(T_2)$ implies that $\mathcal{P} : S^*V^* \to \mathbb{R}[x_1, \cdots, x_n]$ is in fact a ring isomorphism.

Now let $V = \mathfrak{g}$ be the Lie algebra of a Lie group G. Then the adjoint action of G on \mathfrak{g} induces a G-action on $S^k(\mathfrak{g}^*)$ by

$$(g \cdot T)(X_1, \cdots, X_k) := T(\operatorname{Ad}_{g^{-1}} X_1, \cdots, \operatorname{Ad}_{g^{-1}} X_k), \quad \forall X_i \in \mathfrak{g}, g \in G.$$

Note that for the case that G is a linear Lie group, which we will always assume below, one has

$$(g \cdot T)(X_1, \cdots, X_k) = T(gX_1g^{-1}, \cdots, gX_kg^{-1}),$$

where g is an invertible $r \times r$ matrix while X_i 's are arbitrary $r \times r$ matrices.

Definition 1.2. $T \in S^k(\mathfrak{g}^*)$ is called *invariant* if

$$g \cdot T = T, \qquad \forall g \in G.$$

The set of all G-invariant elements in $S^k(\mathfrak{g}^*)$ is denoted by $I^k(G)$.

So $I^*(G) = \oplus I^k(G)$ is a subring of $S^*(\mathfrak{g}^*)$. Note that by definition and the polarization formula, T is invariant if and only if P_T is invariant.

Example. Consider $G = \operatorname{GL}(r, \mathbb{R})$. For any positive integer k, we let $p_{k/2}$ denote the degree k homogeneous polynomial which is the coefficient of λ^{r-k} for the following polynomial in λ

$$\det\left(\lambda I - \frac{1}{2\pi}A\right) = \sum_{k=0}^{r} p_{k/2}(A, \cdots, A)\lambda^{r-k}, \qquad \forall A \in \mathfrak{gl}(n, \mathbb{R}).$$

Obviously $p_{k/2}$ is invariant. So $p_{k/2} \in I^k(\operatorname{GL}(r,\mathbb{R}))$. They are called the k/2-th Pontrjagin polynomials.

Note that for $G = O(r) \subset \operatorname{GL}(r, \mathbb{R})$, the Lie algebra $\mathfrak{o}(r)$ consists of skew-symmetric matrices, and hence

$$\det\left(\lambda I - \frac{1}{2\pi}A\right) = \det\left(\lambda I + \frac{1}{2\pi}A\right), \qquad \forall A \in \mathfrak{o}(r).$$

This implies that $p_{k/2} = 0$ for k odd. So for O(n) one only need to study $p_k \in I^{2k}(O(n))$.

Proposition 1.3. For any $T \in I^k(G)$ and any $X, X_1, \dots, X_k \in \mathfrak{g}$, we have

$$T([X, X_1], X_2, \cdots, X_k) + \cdots + T(X_1, \cdots, X_{k-1}, [X, X_k]) = 0.$$

Proof. This follows from

$$\left. \frac{d}{dt} \right|_{t=0} T(e^{tX} X_1 e^{-tX}, \cdots, e^{tX} X_k e^{-tX}) = 0.$$

For $T \in I^k(G)$ one can also define $T(F_1, \dots, F_k)$ for $F_i \in \Omega^*(U) \otimes \mathfrak{g}$, by extending linearly the relation

$$T(\omega_1 \otimes X_1, \cdots, \omega_k \otimes X_k) := (\omega_1 \wedge \cdots \wedge \omega_k) T(X_1, \cdots, X_k).$$

Note that if ω is a 2-forms, or more generally is any even-form, then for any η one has $\omega \wedge \eta = \eta \wedge \omega$. As a consequence we see

Corollary 1.4. If
$$F_1, \dots, F_k \in \Omega^{\text{even}}(U) \otimes \mathfrak{g}$$
, then for any $T \in I^k(G)$ and $A \in \Omega^*(U) \otimes \mathfrak{g}$ one has $T([A, F_1], F_2, \dots, F_k) + \dots + T(F_1, \dots, F_{k-1}, [A, F_k]) = 0.$

2. CHERN-WEIL THEORY

Let G be a Lie group (and for simplicity, assume G is a linear Lie group), with Lie algebra \mathfrak{g} . Let P be a principal G-bundle over M, which is defined by an open cover $\{U_{\alpha}\}$ and corresponding transition maps $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G$.

Let A be a collection $A_{\alpha} \in \Omega^1(U_{\alpha}) \otimes \mathfrak{g}$ which is a connection in P. Recall that the curvature F_A of the connection A is given locally by the collection

$$F_{\alpha} = dA_{\alpha} + \frac{1}{2}[A_{\alpha}, A_{\alpha}] \in \Omega^{2}(U_{\alpha}) \otimes \mathfrak{g}.$$

For any $T \in I^k(G)$ we can define

$$p_T(F_\alpha) := T(F_\alpha, \cdots, F_\alpha) \in \Omega^{2k}(U_\alpha).$$

Since T is Ad-invariant and since $F_{\beta} = g_{\beta\alpha}F_{\alpha}g_{\beta\alpha}^{-1}$, we get

$$p_T(F_\alpha) = p_T(F_\beta)$$
 on $U_\alpha \cap U_\beta$.

In other words, there is a globally-defined 2k-form $p_T(F_A) \in \Omega^{2k}(M)$ so that $p_T(F_A) = p_T(F_\alpha)$ on U_α . (Note F_A is not an element in $\Omega^2(M)$: it sits in $\Omega^2(M; \operatorname{Ad}(P))$.)

It turns out that these $p_T(F_A)$'s play a crucial role in modern math and physics.

Theorem 2.1 (Chern-Weil). Let P be a principal G-bundle over M. Then

- (1) For any $T \in I^k(G)$ and any connection A in P, the form $p_T(F_A)$ is closed.
- (2) The de Rham class $[p_T(F_A)] \in H^{2k}_{dR}(M)$ is independent of the choices of A.
- (3) The Chern-Weil map \mathcal{CW} : $(I^*(G), \circ) \to (H^*_{dR}(M), \wedge)$ that maps T to $[p_T(F_A)]$ is a ring homomorphism.

Proof. (1) According to the Bianchi identity $dF_{\alpha} = -[A_{\alpha}, F_{\alpha}]$. So by corollary 1.4,

$$dp_T(F_A) = dT(F_\alpha, \cdots, F_\alpha) = T(dF_\alpha, \cdots, F_\alpha) + \cdots + T(F_\alpha, \cdots, dF_\alpha) = 0$$

This proves $p_T(F_A)$ is closed.

(2) To prove that the de Rham class $[p_T(F_A)]$ is independent of the choices of connection A, we let A_0 and A_1 be two connections defined by the collections A^0_{α} and A^1_{α} . By definition it is easy to check that the collection

$$\widetilde{A}_{\alpha} = (1-s)A_{\alpha}^{0} + sA_{\alpha}^{1} \in \Omega^{1}(U_{\alpha} \times \mathbb{R}) \otimes \mathfrak{g}$$

defines a connection on a new principal bundle $P \times \mathbb{R}$ over $M \times \mathbb{R}$ (This new principal bundle is defined over open sets $\{U_{\alpha} \times \mathbb{R}\}$ by using the same set of transition functions $g_{\alpha\beta}$). If we let ι_1 and ι_0 be the same as in the following lemma, then $\iota_0^* \widetilde{A}_{\alpha} = A_{\alpha}^0$ and $\iota_1^* \widetilde{A}_{\alpha} = A_{\alpha}^1$. As a result, we see

$$\iota_0^* F_{\widetilde{A}} = F_{A^0}$$
 and $\iota_1^* F_{\widetilde{A}} = F_{A^1}$.

So according to the next lemma,

$$p_T(F_{A^0}) - p_T(F_{A^1}) = \iota_0^* p_T(F_{\widetilde{A}}) - \iota_1^* p_T(F_{\widetilde{A}}) = dQ(p_T(F_{\widetilde{A}})) + Qd(p_T(F_{\widetilde{A}})).$$

But we just proved that $p_T(F_{\widetilde{A}})$ is closed. So $[p_T(F_{A^0})] = [p_T(F_{A^1})]$.

Lemma 2.2. Let $\iota_0, \iota_1 : M \to M \times \mathbb{R}$ be the inclusions

 $\iota_0(x) = (x, 0), \qquad \iota_1(x) = (x, 1).$

Then there exists a collection of linear operators $Q: \Omega^k(M \times \mathbb{R}) \to \Omega^{k-1}(M)$ so that

$$\iota_0^* \omega - \iota_1^* \omega = dQ(\omega) - Qd(\omega), \qquad \forall \omega \in \Omega^k(M \times \mathbb{R}).$$

Proof. One just repeat the first four lines of the proof of theorem 2.6 in lecture 19, to get some linear map $\widetilde{Q} : \Omega^k(M \times \mathbb{R}) \to \Omega^{k-1}(M \times \mathbb{R})$ so that $\omega - \phi_1^* \omega = d\widetilde{Q}\omega + \widetilde{Q}d\omega$. It follows that

$$\iota_0^*\omega - \iota_1^*\omega = \iota_0^*\omega - \iota_0^*\phi_1^*\omega = \iota_0^*d\widetilde{Q}\omega + \iota_0^*\widetilde{Q}d\omega = d(\iota_0^*\widetilde{Q})\omega + (\iota_0^*\widetilde{Q})d\omega.$$

So the conclusion holds for $Q = \iota_0^* \widetilde{Q} : \Omega^k(M \times \mathbb{R}) \to \Omega^{k-1}(M)$. \square (3) It is straightforward to show that for $T \in S^k(G)$ and $S \in S^l(G)$, $p_{T \circ S}(F_A) = p_T(F_A) \land p_S(F_A)$. Details left as an exercise. \square

Example. Consider the trivial principal G-bundle $P = M \times G$ over M. In this case one can take $U_{\alpha} = M$, i.e. the open cover contains only one element. Then there is only one $g_{\alpha\alpha}$, which equals $e \in G$ at each point $x \in M$. For such a covering data one can take A_{α} to be identically zero. It follows that $F_A = 0$ and thus for any $T \in I^*(G)$, the class $[p_T(F_A)] = 0$.

Definition 2.3. For any $T \in I^*(G)$, the cohomology class $[p_T(F_A)]$ is called the *characteristic* class for P corresponding to T.

Remark. Obviously the above construction works if we replace the principal bundle P by a vector bundle E. So one can also talk about the characteristic classes of vector bundle E over M associated with $T \in I^*(G)$, where G is the structural group of E.

Example. Let E be any vector bundle over M. By choosing a Riemannian metric one can always reduce the structural group of E from $GL(r, \mathbb{R})$ to O(r). Let p_k be the Pontrjagin polynomial that we alluded above. Then

$$p_k(E) := [p_k(F_A)] \in H^{4k}_{dR}(M)$$

is called the kth Pontrjagin characteristic class of E. The Pontrjagin class $p_k(M)$ of M is defined to be the Pontrjagin class of TM. They are important topological invariants to study manifolds.

Example. Suppose r = 2p and consider G = SO(r). For any $A = (a_i^i) \in \mathfrak{so}(r)$ we let

$$Pf(A) = \frac{1}{(4\pi)^r (r/2)!} \sum_{\sigma \in S_r} (-1)^\sigma a_{\sigma(2)}^{\sigma(1)} a_{\sigma(4)}^{\sigma(3)} \cdots a_{\sigma(r)}^{\sigma(r-1)}.$$

One can check that Pf is an Ad-invariant homogeneous polynomial of degree r/2. It is called the *Pfaff polynomial*.

Now suppose E is an oriented vector bundle over M of rank r. Then the structural group of E can be reduced to SO(r). Thus we get a characteristic class

$$e(E) := [Pf(F_A)] \in H^r_{dR}(M)$$

which is called the *Euler characteristic class* of E. Again the Euler class e(M) of a smooth manifold M is defined to be the Euler class of TM. It generalizes the classical notion of Euler characteristic.

Example. All discussions above are over \mathbb{R} , but they can be generalized to objects over \mathbb{C} . For example, one can talk about *complex vector bundle* E over smooth manifold M: They are vector bundles over M whose fibers are \mathbb{C}^r and whose structural group is $\operatorname{GL}(r, \mathbb{C})$. For any $A \in \mathfrak{gl}(r, \mathbb{C})$ (= the set of all $r \times r$ complex matrices), one can define c_k to be such that

$$\det\left(\lambda I_r - \frac{1}{2\pi i}A\right) = \sum c_k(A)\lambda^{n-k}.$$

Again c_k is a homogeneous polynomial of degree k and is Ad-invariant. As a result, for any complex vector bundle E of complex rank r, one gets a complex-valued de Rham cohomology class

$$c_k(E) := c_k(F_A) \in H^{2k}_{dR}(M; \mathbb{C})$$

which is called the *k*th *Chern class* of *E*. If one fix an Hermitian metric on *E* (i.e. fix a Hermitian inner product on each fiber of *E* which vary smoothly with respect to base points – this is always possible by using partition of unity), then one can reduce the structural group to U(n). But for $A \in \mathfrak{u}(n)$ (= the set of all $r \times r$ complex matrices with $A + \overline{A}^T = 0$), one has

$$\det\left(\lambda I_r - \frac{1}{2\pi i}A\right) = \overline{\det\left(\bar{\lambda}I_r - \frac{1}{2\pi i}A\right)}.$$

It follows that each c_k is a real-valued polynomial and thus each $c_k(E) \in H^{2k}_{dR}(M)$, i.e. $c_k(E)$ is a (real-valued) de Rham cohomology class. It is of fundamental importance in algebraic topology, differential geometry, algebraic geometry and mathematical physics.