黎曼几何(英)(2016 春季学期)


中国科学技术大学数学科学学院


[课程公告] [课程信息] [课程安排,讲义以及习题]


课程公告

o (5/17) Lecture 18 uploaded.

o (5/17) Midterm: May 28.

o (5/21) Lecture 19 uploaded.

o (5/24) Lecture 20 uploaded.

o (5/24) PSet 3 uploaded. Due: June 20.

o (5/30) Lecture 21 uploaded.

o (6/7) Lecture 22 uploaded.

o (6/7) Lecture 23 uploaded.

o (6/11) Final topics uploaded.

o (6/11) Lecture 24 uploaded.

o (6/13) Lecture 25 uploaded.

o (6/20) Lecture 26 uploaded.

o (6/28) Lecture 27 uploaded.

[top]


课程信息

o 授课老师:   王作勤 (wangzuoq at ustc dot edu dot cn)

o 上课时间:   星期一上午 9:45am – 11:20am; 星期六晚上 19:30pm – 21:05pm 

o 上课地点:   五教 5505

o 办公室:   管研楼1601

o 助教:   TBA ( at mail dot ustc dot edu dot cn)

o 答疑时间:   TBA

o 答疑地点:   TBA

o 参考书籍   M.do Carmo, Riemannian geometry

o 参考书籍   S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry

o 参考书籍   Peter Petersen, Riemannian geometry

[top]


课程安排,讲义以及习题

o 课程安排可能会随着课程的进行而略有变动。

o 课程的讲义将在每堂课后上传。

序号 日期 内容 讲义 作业
  Lecture 1     02/29     The Riemannian Metric     Lect 1     PSet 1   : Due Mar. 26.
  Lecture 2     03/05     The Riemannian Distance     Lect 2  
  Lecture 3     03/07     The Riemannian Measure     Lect 3  
  Lecture 4     03/12     Linear Connections     Lect 4     PSet 2   : Due April 25.
  Lecture 5     03/14     The Levi-Civita Connection     Lect 5  
  Lecture 6     03/19     The Riemann Curvature Tensor     Lect 6  
  Lecture 7     03/21     The Weyl Curvature Tensor     Lect 7  
  Lecture 8     03/26     The Sectional and Ricci Curvature     Lect 8  
  Lecture 9     03/28     More on Curvatures     Lect 9  
  Lecture 10     04/02     The Parallel Transport     Lect 10     PSet 3   : Due June 20.
  Lecture 11     04/09     The Geodesics     Lect 11  
  Lecture 12     04/11     Variations and the Jacobi Fields     Lect 12  
  Lecture 13     04/25     The Exponential Map     Lect 13  
  Lecture 14     04/30     The Normal Coordinates     Lect 14  
  Lecture 15     05/07     Geodesical Completeness and Convexity     Lect 15  
  Lecture 16     05/09     Conjugate Points and Cut Points     Lect 16  
  Lecture 17     05/14     The Index Form     Lect 17  
  Lecture 18     05/16     The Theorems of Ambrose and Cartan-Hadamard     Lect 18       Topics   : Due July 2.  
  Lecture 19     05/21     The Theorems of Bonnet-Meyer, Synge and Preissman     Lect 19  
  Lecture 20     05/23     Rauch's Comparison Theore     Lect 20  
      05/28     Midterm Exam      
  Lecture 21     05/30     The Hessian, Laplace and Toporogov Comparison Theorems     Lect 21  
  Lecture 22     06/04     The Sphere Theorem     Lect 22  
  Lecture 23     06/06     Critical Point Theory of Distance Function     Lect 23  
  Lecture 24     06/11     The Volume Comparison Theorem and its Applications     Lect 24  
  Lecture 25     06/13     The Hodge-Laplace Operator     Lect 25  
  Lecture 26     06/20     The Hodge Theory     Lect 26  
  Lecture 27     06/25     Bochner's Technique     Lect 27  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[top]