
LECTURE 3: THE RIEMANNIAN MEASURE

1. The Riemannian measure

Let (M, g) be a Riemannian manifold, and K a compact subset in some coordi-
nate patch (U, x1, · · · , xm) such that x(K) is measurable. We define the volume of
K to be

Vol(K) :=

∫
x(K)

√
G ◦ x−1 dx1 · · · dxm,

where G = det(gij), gij = g(∂i, ∂i), and dx1· · ·dxm the Lebesgue measure on Rm.

Lemma 1.1. The definition above is independent of the choice of coordinate patch.

Proof. Let {Ũ , y1, · · · , ym} be another coordinate patch containing K, then

∂xi |p = Jki (x(p))∂yk |p,

where Jki = ∂(yk◦x−1)
∂xi

is the Jacobian element of y ◦ x−1 : x(U) → y(Ũ) (diffeomor-
phism between open sets in Rm). It follows that

(gxij) = JT (gykl)J.

As a consequence, we get√
Gx(p) =

√
Gy(p) | det(J(x(p)))|

and thus√
Gy◦y−1dy1· · ·dym =

√
Gy◦y−1(y◦x−1) |det(J)|dx1· · ·dxm =

√
Gx◦x−1dx1· · ·dxm,

where the first equality follows from the change of variables in Rm. �

Obviously the definition above extends to the volume of any reasonable (“mea-
surable”) subset of K. In general, to define the volume of a reasonably nice (“mea-
surable”) set A that need not be in one coordinate patch, we use the partition of
unity argument. More precisely, we pick a local finite atlas {Uα, x1α, · · · , xmα } of M
and a partition of unity {ρα} subordinate to this atlas. Now we can set

Vol(A) =
∑
α

∫
xα(A∩Uα)

(ρα
√
Gα) ◦ (xα)−1dx1α · · · dxmα ,

as long as each integral in the sum exists. This leads to

Definition 1.2. The Riemannian volume element (or volume density) on (M, g) is

dVol =
∑
α

(ρα
√
Gα) ◦ (xα)−1dx1α · · · dxmα .
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Remarks. (1) It is standard to check that this definition is independent of the
choices of the atlas and is independent of the choices of the partition of unity.

(2) In the case the sum diverges, we say that the volume of A is infinite.
(3) In the above definition, we don’t assume M to be oriented or compact. If M

is oriented and the coordinate system is taken to be orientation-preserving,
then the volume density is actually a positive n-form,

ωg =
√
Gdx1 ∧ · · · ∧ dxm,

and we call it the Riemannian volume form.

Now with the Riemannian volume element dVol we can integrate functions on
(M, g). Let C0

c (M) be the space of compactly supported continuous functions on
M . Then for any f ∈ C0

c (M), we can define∫
M

fdVol =
∑
α

∫
Uα

f ◦ (xα)−1(ρα
√
Gα) ◦ (xα)−1dx1α · · · dxmα .

This integral is well defined, and satisfies all the properties that the usual Lebesgue
integral should satisfy. As usual, for any 1 ≤ p <∞ one can define the Lp norm on
C∞c via

‖f‖Lp :=

(∫
M

|f |pdVol

)1/p

.

The completion of C∞c under the Lp norm is called Lp(M). Similarly one can define
L∞(M).

In the special case p = 2, one can define an inner product structure on L2(M),

〈f1, f2〉L2 :=

∫
M

f1f̄2dVol

which make L2(M) into a Hilbert space.

2. The gradient and divergence

Let (M, g) be a Riemannian manifold. Recall that the musical isomorphism
] : T ∗M → TM maps a 1-form to a vector field. Locally it is given by

](widx
i) = gijwi∂j,

It is also characterized by the relation that for any 1-form ω and vector field X,

g(]ω,X) = ω(X).

Now suppose f is a smooth function on M . Then df is a 1-form on M .

Definition 2.1. The gradient vector field of f is ∇f = ](df).
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Note that the definition is equivalent to say that for any vector field X = X i∂i,

g(∇f,X) = Xf = X i∂if.

In local coordinates, we have

∇f = gij∂if∂j.

In particular, for g = g0 in Rm, we get the ordinary gradient of f .

As in multivariable calculus, the gradient vector field of a function is always
perpendicular to its level sets:

Lemma 2.2. Suppose f is a smooth function on M and c is a regular value of f .
Then the gradient vector field ∇f is perpendicular to the level set f−1(c).

Proof. Since c is a regular value, then f−1(c) is a submanifold of M . Let X be a
vector field tangent to f−1(c). Then we learned from manifold theory that Xf = 0
on f−1(c). It follows

g(∇f,X) = Xf = 0

on f−1(c). So ∇f is perpendicular to f−1(c). �

Now suppose X is a smooth vector field on M . Take a coordinate patch
(U, x1, · · · , xm) on M , then the volume element

ωg =
√
Gdx1 ∧ · · · ∧ dxm

is locally an n-form on U , and two different choices of charges may induce ωg’s that
differ by a negative sign. We define

Definition 2.3. The divergence of X is the function div(X) on M such that

(divX)ωg = d{ι(X)ωg}.

Remark. We don’t require M to be orientable, since for any two choices of charts,
ωg’s are either the same or differed by a negative sign, so that div(X) are still the
same. In the case M is orientable, ωg is a global positive n-form on M . According
to the Cartan’s magic formula, the definition above is equivalent to

LX(ωg) = div(X)ωg,

where LX is the Lie derivative along the vector field X. This coincides with the
geometric definition of divergence in the case of Rm: the divergence of a vector field
is the infinitesimal rate of change of the volume element along the vector field.

Now let’s calculate div(X) locally. Let X = X i∂i, then

(divX)
√
Gdx1 ∧ · · · ∧ dxm = d{ι(X i∂i)

√
Gdx1 ∧ · · · ∧ dxm}

= d{X i
√
G(−1)i−1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm}

= ∂i(X
i
√
G)dx1 ∧ · · · ∧ dxm,
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so we conclude

div(X i∂i) =
1√
G
∂i(X

i
√
G).

As a consequence, we see

div(fX) = fdivX + (∂if)X i = fdivX + g(∇f,X).

Theorem 2.4 (The Divergence theorem I). Let X be a smooth vector field with
compact support on a Riemannian manifold (M, g), then∫

M

div(X)dVol = 0.

Proof. Without loss of generality, we assume that X is supported in a local chart
(U, x1, · · · , xm) and thus X = X i∂i with X i ∈ C∞c (U). Then∫

M

div(X)dVol =

∫
U

1√
G
∂i(X

i
√
G)dVol

=

∫
x(U)

∂i(X
i
√
G ◦ x−1)dx1 · · · dxm = 0.

�

3. The Laplacian

Let (M, g) be a Rimannian manifold.

Definition 3.1. For any smooth function f , we define the Laplacian of f to be

∆f = −div(∇f).

Locally, ∆f is given by

∆f = −div(gij∂if∂j) = − 1√
G
∂i(
√
Ggij∂jf),

i.e.

∆ = − 1√
G
∂i(
√
Ggij∂j).

We shall call ∆ the Laplace-Beltrami operator.

Theorem 3.2 (Green’s formula I). Suppose f and h are smooth function on M and
either f or h is compactly supported. Then∫

M

f∆h dVol =

∫
M

g(∇f,∇h)dVol =

∫
M

h∆f dVol.
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Proof. We have seen
div(fX) = fdivX + g(∇f,X).

It follows
div(f∇h) = −f∆h+ g(∇f,∇h).

Now the theorem follows from the fact that f∇h is compactly supported. �

In particular if M is compact, then any function is compactly supported. Re-
placing h by h, we can rewrite the above formula as

〈f,∆h〉 = 〈∆f, h〉.
In other words, we get

Corollary 3.3. If M is compact, then ∆ is symmetric on L2(M).

As another immediate consequence, we see that ∆ is a positive operator:

Corollary 3.4. If M is compact, then 〈∆f, f〉 ≥ 0.

Remark. Both the divergence theorem and the Green’s formula can be generalized
to the case where M is a compact Riemannian manifold with boundary, i.e. M is

• an m dimensional smooth manifold with boundary
• M is also a compact subset of an m dimensional Riemannian manifold N
• The Riemannian structure on M coincide with that of N

So ∂M carries

(1) an outward normal vector field ν
(2) an induced Riemannian metric from gN , and thus a volume density dA.

Then for any smooth vector field X on M and any smooth functions f, h on M ,

•(Divergence Theorem II)

∫
M

div(X)dVol =

∫
∂M

g(X, ν)dA,

•(Green’s formula II)

∫
M

f∆h dVol = −
∫
M

g(∇f,∇h) dVol +

∫
∂M

g(ν,∇h)f dA.


