
LECTURE 8: THE SECTIONAL AND RICCI CURVATURES

1. The Sectional Curvature

We start with some simple linear algebra. As usual we denote by ⊗2(∧2V ∗) the
set of 4-tensors that is anti-symmetric with respect to the first two entries and with
respect to the last two entries.

Lemma 1.1. Suppose T ∈ ⊗2(∧2V ∗), X, Y ∈ V . Let X ′ = aX+bY, Y ′ = cX+dY ,
then

T (X ′, Y ′, X ′, Y ′) = (ad− bc)2T (X, Y,X, Y ).

Proof. This follows from a very simple computation:

T (X ′, Y ′, X ′, Y ′) = T (aX + bY, cX + dY, aX + bY, cX + dY )

= (ad− bc)T (X, Y, aX + bY, cX + dY )

= (ad− bc)2T (X, Y,X, Y ).

�

Now suppose (M, g) is a Riemannian manifold. Recall that 1
2
g ∧©g is a curvature-

like tensor, such that

1

2
g ∧©g(Xp, Yp, Xp, Yp) = 〈Xp, Xp〉〈Yp, Yp〉 − 〈Xp, Yp〉2.

Applying the previous lemma to Rm and 1
2
g ∧©g, we immediately get

Proposition 1.2. The quantity

K(Xp, Yp) :=
Rm(Xp, Yp, Xp, Yp)

〈Xp, Xp〉〈Yp, Yp〉 − 〈Xp, Yp〉2

depends only on the two dimensional plane Πp = span(Xp, Yp) ⊂ TpM , i.e. it is
independent of the choices of basis {Xp, Yp} of Πp.

Definition 1.3. We will call

K(Πp) = K(Xp, Yp)

the sectional curvature of (M, g) at p with respect to the plane Πp.

Remark. The sectional curvature K is NOT a function on M (for dimM > 2), but
a function on the Grassmann bundle Gm,2(M) of M .

1
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Example. Suppose dimM = 2, then there is only one sectional curvature at each
point, which is exactly the well-known Gaussian curvature (exercise):

κ =
R1212

g11g22 − g212
.

In fact, for Riemannian manifold M of higher dimensions, K(Πp) is the Gaussian
curvature of a 2-dimensional submanifold of M that is tangent to Πp at p.

Example. For (Rm, g0), one has Rm = 0, so

K(Πp) ≡ 0.

Example. For (Sm, ground), one has Rm = 1
2
g ∧©g, so

K(Πp) ≡ 1.

So the sectional curvature is essentially the restriction of the Riemann curvature
tensor to special set of vectors. A natural questions is: what information of Rm do
we loss in this precedure? and the answer is: we don’t loss any information, because
of the symmetry of Rm. To show this, we first prove

Lemma 1.4. Let T be a curvature-like tensor, and let

fX,Y,Z,W (t) = T (X+tZ, Y +tW,X+tZ, Y +tW )−t2(T (X,W,X,W )+T (Z, Y, Z, Y )).

Then (fX,Y,Z,W − fY,X,Z,W )′′(0) = 12T (X, Y, Z,W ).

Proof. Obviously fX,Y,Z,W is a polynomial of degree 4 in t, whose quadratic coeffi-
cients equals

T (Z,W,X, Y ) + T (Z, Y,X,W ) + T (X,W,Z, Y ) + T (X, Y, Z,W ).

which equals

2T (X, Y, Z,W ) + 2T (Z, Y,X,W ).

Similarly the quadratic coefficient of fY,X,Z,W equals

2T (Y,X,Z,W ) + 2T (Z,X, Y,W ).

So the quadratic coefficient of fX,Y,Z,W (t)− fY,X,Z,W (t) is

2T (X, Y, Z,W ) + 2T (Z, Y,X,W )− 2T (Y,X,Z,W )− 2T (Z,X, Y,W ),

which, after applying the first Bianchi identity, equals

6T (X, Y, Z,W ).

�

Applying the lemma to Rm, we get

Corollary 1.5. The values of Rm(Xp, Yp, Xp, Yp) for all Xp, Yp ∈ TpM determines
the tensor Rm at p.
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Of course for most Riemannian manifolds, its sectional curvatures are not con-
stant and really depend on the 2-plane Πp. We will explain the geometric meaning
of K(Πp) later, after we develop more geometric tools. We will see whether the sec-
tional curvatures of a Riemannian manifold are constant, or more generally although
not constant but still bounded by some inequalities (e.g. non-negative, non-positive
etc) will have much implications to the analysis, geometry and topology of (M, g).

Definition 1.6. A Riemannian manifold (M, g) is said to have constant (sectional)
curvature if its sectional curvature K(Πp) is a constant, i.e. is independent of p and
is independent of Πp ⊂ TpM .

Definition 1.7. We say (M, g) is a flat manifold if its sectional curvatures are
identically zero.

Example. (Rm, g0) is flat.

Example. The torus Tm = S1 × · · · × S1, endowed with the product metric of the
standard rotation-invariant metric on S1, is flat. To see this, one notice that near
each point of Tm, there is a local coordinates θ1, · · · , θm so that

g = dθ1 ⊗ dθ1 + · · ·+ dθm ⊗ dθm.

Since the coefficients are constants, one immediately see that Γk
ij’s are zero, and thus

Rijkl,s are zero. [One can also think of Tm = Rm/Zm, then the flat metric on Tm

we just described is the quotient metric of the standard flat metric on Rm.]

Example. We have seen (Sm, ground) has constant curvature 1. We will see in exercise
that the hyperbolic space (Hm, ghyperbolic) has constant curvature −1.

Remark. In fact (Rm, g0), (Sm, ground) and (Hm, ghyperbolic) are the canonical examples
of constant curvature manifolds, in the sense that the universal covering of any
complete Riemannian manifold of constant curvature must be isometric to one of
the three examples.

Proposition 1.8. A Riemannian manifold has constant curvature k if and only if

Rm =
k

2
g ∧©g.

Proof. According to lemma 1.4, if T is a curvature like tensor, then

T ≡ 0⇐⇒ T (X, Y,X, Y ) = 0,∀X, Y.

Apply this to the curvature-like tensor T = Rm− k
2
g ∧©g, we see

Rm =
k

2
g ∧©g ⇐⇒ K(Πp) = k,∀ Πp.

�
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On the other hand side, last time we proved that the Riemann curvature tensor
admits the following orthogonal (thus unique!) decomposition

Rm = W +
1

m− 2
E ∧©g +

S

2m(m− 1)
g ∧©g

From this we get (Recall E = Ric− S
m
g)

Proposition 1.9. A Riemannian manifold (M, g) has constant curvature k if and
only if W = 0 and Ric = (m− 1)kg.

Proof. If (M, g) has constant sectional curvature k, then by the uniqueness of the
decomposition,

W = 0, E = 0 and S = m(m− 1)k.

As a result,
Ric = (m− 1)kg.

Conversely if W = 0 and Ric = (m− 1)kg, then

S = Tr(Ric) = m(m− 1)k.

So E = 0 and thus

Rm =
k

2
g ∧©g,

i.e. (M, g) has constant curvature k. �

We remark that as a consequence, the scalar curvature of for a Riemannian
manifold of constant curvature k must be

S = m(m− 1)k.

The next theorem shows that for Riemannian manifolds of dimension ≥ 3, if the
sectional curvature depends only on p, then it is independent of p. Before we prove
it, we need the following

Lemma 1.10. For any vector field V on M , we have ∇V g ∧©g = 0.

Proof. The covariant derivative with respect to V of the first term in the expression
of g ∧©g is

V (g(X,Z)g(Y,W ))− g(∇VX,Z)g(Y,W )− g(X,∇VZ)g(Y,W )

− g(X,Z)g(∇V Y,W )− g(X,Z)g(Y,∇VW )

which vanishes according to the metric compatibility of ∇. Same holds for the other
three terms of g ∧©g. �

Now we are ready to prove

Theorem 1.11 (Schur). Let (M, g) be a Riemannian manifold of dimension m ≥ 3.
If K(Πp) = f(p) depends only on p, then (M, g) is of constant curvature.
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Proof. For simplicity we denote R0 = 1
2
g ∧©g. Then by the assumption, Rm = fR0,

where f is a function on M . Since ∇VR0 = 0 for all V , we conclude

∇VRm = ∇V (fR0) = V (f)R0.

Now let’s apply the second Bianchi identity:

0 = (∇XRm)(Y, Z,W, V ) + (∇YRm)(Z,X,W, V ) + (∇ZRm)(X, Y,W, V )

= X(f)R0(Y, Z,W, V ) + Y (f)R0(Z,X,W, V ) + Z(f)R0(X, Y,W, V ).

This identity holds for any X, Y, Z,W, V , and the right hand side only depends on
Xp, Yp, Zp,Wp, Vp since it is a tensor identity. If we take Xp, Yp, Zp ∈ TpM so that
(note that this is only possible if dimM ≥ 3)

Xp 6= 0, Yp 6= 0, |Zp| = 1, 〈Xp, Yp〉 = 〈Yp, Zp〉 = 〈Zp, Xp〉 = 0

and let Vp = Zp, then the above identity becomes

Xp(f)〈Yp,Wp〉 − Yp(f)〈Xp,Wp〉 = 0.

This holds for any Wp ∈ TpM , so we conclude

Xp(f)Yp − Yp(f)Xp = 0

holds as long as Xp, Yp 6= 0 and 〈Xp, Yp〉 = 0. In particular, we know that

Xp(f) = 0

for all Xp 6= 0. This is true for all p. So f must be a constant function on M . �

Remark. Obviously the theorem fails in dimension 2, in which case the sectional
curvature is always a function on M but need not be a constant.

2. The Ricci Curvatures

Recall that the Ricci curvature tensor Ric is the contraction of the Riemann
curvature tensor Rm,

Ric(X, Y ) = c(Rm)(X, Y ) = Tr(Z 7→ ]Rm(X,Z, Y, ·)).
It is a symmetric (0, 2)-tensor field on M . In local coordinates one has

Ricij = gpqRipjq

One can also rewrite the previous formulae using the (1, 3)-tensor R,

Ric(X, Y ) = Tr(Z 7→ R(X,Z)Y )

and locally
Ricij = R p

ipj .

Definition 2.1. For any unit tangent vector Xp ∈ SpM ⊂ TpM , we call

Ric(Xp) = Ric(Xp, Xp)

the Ricci curvature of M at p in the direction of Xp.
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So again the Ricci curvature function Ric is not a function on M , but a function
on the unit sphere bundle SM ⊂ TM . Alternatively, one can think of the Ricci
curvature as a function defined on one-dimensional subspaces of TpM . Since in the
definition of the Ricci curvature we only use the information of the Ricci tensor Ric
on special set of vectors, one would like to know what information do we lost, and
again by symmetry of Ric we don’t lost anything. This follows from the following
obvious lemma:

Lemma 2.2. Let T be a symmetric 2-tensor. Then for any X, Y ,

T (X, Y ) =
1

2
(T (X + Y,X + Y )− T (X,X)− T (Y, Y )) .

Applying the lemma to Ric, we get the following expression of the Ricci tensor
in terms of the Ricci curvature:

Corollary 2.3. For any Yp 6= −Xp we have

Ric(Xp, Yp) =
1

2

[
‖Xp + Yp‖2Ric(X̂p + Yp)− ‖Xp‖2Ric(X̂p)− ‖Yp‖2Ric(X̂p)

]
,

where we denoted X̂ = X/‖X‖.

Similarly we can define the conception like a space of constant Ricci curvature,
a space of non-negative Ricci curvature etc. In particular, we have

Proposition 2.4. A Riemannian manifold has constant Ricci curvature k if and
only if

Ric = kg.

Proof. Apply lemma 2.2 to the symmetric tensor Ric− kg. �

We also have the following version of Schur’s theorem (which actually implies
the Schur’s theorem for sectional curvature that we just proved):

Theorem 2.5 (Schur). Let (M, g) be a Riemannian manifold of dimension m ≥ 3.
If Ric(Xp) = f(p) depends only on p, then (M, g) has constant Ricci curvature.

Proof. Apply the second Bianchi identity. Exercise. �


