
LECTURE 12: VARIATIONS AND JACOBI FIELDS

1. Formulas for the first and second variations

Definition 1.1. Let γ : [a, b]→M be a smooth curve, and ε > 0.

(1) A variation of γ is a smooth map f : [a, b]× (−ε, ε)→M so that

f(t, 0) = γ(t)

for all t ∈ [a, b]. In what follows, we will also denote γs(t) = f(t, s).
(2) A variation f is called proper if for every s ∈ (−ε, ε),

γs(a) = γ(a) and γs(b) = γ(b).

(3) The variation is called a geodesic variation if each γs is a geodesic.

Let f be a variation of γ. For simplicity we will denote

fs := df(
∂

∂s
), ft := df(

∂

∂t
).

Note that they are both vector fields near γ.

Lemma 1.2. ∇fsft = ∇ftfs.

Proof.

∇fsft −∇ftfs = [fs, ft] = df([
∂

∂s
,
∂

∂t
]) = 0.

�

By definition,
ft = γ̇s.

In particular, on γ one has
ft(γ(t)) = γ̇.

Definition 1.3. We will call
V (t) = fs(γ(t))

the variation field of f along γ. [It is a vector field along γ.]

Last time we calculated the first and second variation of the energy functional

E(γ) =
1

2

∫ b

a

|γ̇(t)|2dt

with respect to proper variations in local charts, assuming that the whole family of
curves sit in one chart. Now we will give a re-formulation of that formula without
these assumptions and give an invariant proof.
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Theorem 1.4 (The First Variation of Energy). Let f(t, s) be a smooth variation of
a smooth curve γ. Then

dE(γs)

ds
= 〈fs, ft〉(b, s)− 〈fs, ft〉(a, s)−

∫ b

a

〈fs,∇ftft〉dt.

As a consequence,

dE(γs)

ds
(0) = −

∫ b

a

〈V (t),∇γ̇ γ̇〉 dt− 〈V (a), γ̇(a)〉+ 〈V (b), γ̇(b)〉 .

In particular, if f is also a proper variation, then

dE(γs)

ds
(0) = −

∫ b

a

〈V (t),∇γ̇ γ̇〉 dt.

Proof. The derivative of E(γs) is

dE(γs)

ds
=

1

2

∫ b

a

∂

∂s
〈γ̇s(t), γ̇s(t)〉dt

=
1

2

∫ b

a

∇fs〈ft, ft〉dt

=

∫ b

a

〈∇fsft, ft〉dt

=

∫ b

a

〈∇ftfs, ft〉dt

=

∫ b

a

∂

∂t
〈fs, ft〉dt−

∫ b

a

〈fs,∇ftft〉dt

= 〈fs, ft〉(b, s)− 〈fs, ft〉(a, s)−
∫ b

a

〈fs,∇ftft〉dt.

�

Use the same way, one can calculate the first variation of the length. A trick to
simplify the computation is the following observation:

∂

∂s
|γ̇s(t)| =

∂

∂s
〈ft, ft〉

1
2 =

1

2

1

|ft|
∂

∂s
〈ft, ft〉 =

1

|ft|
〈∇ftfs, ft〉 = 〈∇γ̇(t)fs,

ft
|ft|
〉.

Then following the same computation, one gets

Theorem 1.5 (The First Variation of Length). Let f(t, s) be a smooth variation of
a smooth curve γ. Then

dL(γs)

ds
(0) = −

∫ b

a

〈
V (t),∇γ̇

γ̇

|γ̇|

〉
dt−

〈
V (a),

γ̇(a)

|γ̇(a)|

〉
+

〈
V (b),

γ̇(b)

|γ̇(b)|

〉
.
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More generally, one can consider piecewise smooth curves γ : [a, b]→ M . More
precisely, there exists a subdivision

a = t0 < t1 < t2 < · · · < tk < tk+1 = b

such that γ is smooth on each interval [ti, ti+1]. We shall consider “piecewise smooth
variations” of γ, which are continuous functions f : [a, b] × (−ε, ε) → M so that f
is smooth on each [ti, ti+1]× (−ε, ε) for each i, and so that fs is well defined even at
ti’s. Applying the previous theorems to each [ti, ti+1]× (−ε, ε), we get

Corollary 1.6. Let f be a variation of a piecewise smooth curve γ. Then

dE(γs)

ds
(0) = −

∫ b

a

〈V (t),∇γ̇ γ̇〉 dt−〈V (a), γ̇(a)〉+〈V (b), γ̇(b)〉−
k∑
i=1

〈V (ti), γ̇(t+i )−γ̇(t−i )〉

and

dL(γs)

ds
(0) = −

∫ b

a

〈
V (t),∇γ̇

γ̇

|γ̇|

〉
dt−

〈
V (a),

γ̇(a)

|γ̇(a)|

〉
+

〈
V (b),

γ̇(b)

|γ̇(b)|

〉
−

k∑
i=1

〈
V (ti),

γ̇(t+i )

|γ̇(t+i )|
− γ̇(t−i )

|γ̇(t−i )|

〉
.

Last time we only showed that among smooth curves, geodesics are critical
points of the energy functional. A natural question is: If a curve is not smooth, but
piecewise smooth, can it be a critical point of the energy functional? Of course for
γ be a critical point of the energy functional, it must be a geodesic when restricted
to any subinterval where it is smooth, or in other words, it must be “piecewise
geodesic”.

Corollary 1.7. If a piecewise smooth curve γ is a critical point of the energy func-
tional, then it is C1 and thus a geodesic.

Proof. We can first choose proper variations with variation fields satisfying V (ti) = 0
and deduce that ∇γ̇ γ̇ = 0 at any smooth point of γ. In particular, the first term in
the right hand of the first variation formula vanishes. As a consequence, we have

k∑
i=1

〈V (ti), γ̇(t+i )− γ̇(t−i )〉 = 0

for any variation field V . Then for each i we can consider all variation fields so that
V (tj) = 0 for all j 6= i, and conclude that

〈V (ti), γ̇(t+i )− γ̇(t−i )〉 = 0

for any V (ti) ∈ Tγ(ti). It follows that

γ̇(t+i ) = γ̇(t−i ),

and thus γ is C1. �
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Next we will give an invariant proof for the second variation of energy without
restricting ourself to one coordinate chart. As in calculus, the second variation is
mainly used near critical points, i.e. near geodesics.

Theorem 1.8 (The Second Variation of Energy). Let γ : [a, b]→M be a geodesic,
and f(t, s) be a smooth variation of γ. Then

d2E(γs)

ds2
(0) = −

∫ b

a

〈V (t),∇γ̇∇γ̇V (t) +R(γ̇, V )γ̇(t)〉 dt

− 〈V (a),∇γ̇V (a)〉+ 〈V (b),∇γ̇V (b)〉 − 〈∇V (a)fs, γ̇(a)〉+ 〈∇V (b)fs, γ̇(b)〉.

In particular, if the variation is proper, then V (a) = V (b) = 0, and we have

d2E(γs)

ds2
(0) = −

∫ b

a

〈V (t),∇γ̇∇γ̇V (t) +R(γ̇, V )γ̇(t)〉 dt.

Proof. According to the previous computation,

d2E(γs)

ds2
=

∫ b

a

∂

∂s
〈∇ftfs, ft〉dt

=

∫ b

a

〈∇fs∇ftfs, ft〉dt+

∫ b

a

〈∇ftfs,∇fsft〉dt

= −
∫ b

a

〈R(fs, ft)fs, ft〉dt+

∫ b

a

〈∇ft∇fsfs, ft〉dt+

∫ b

a

〈∇ftfs,∇ftfs〉dt

= −
∫ b

a

〈R(ft, fs)ft +∇ft∇ftfs, fs〉dt

+

∫ b

a

∂

∂t
(〈∇fsfs, ft〉+ 〈∇ftfs, fs〉) dt−

∫ b

a

〈∇fsfs,∇ftft〉dt.

Letting s = 0, we get the formula we want. �

Remark. Similarly one can write down a formula for the second variation of length,
or a formula for “piecewise smooth” variation.

If we take s = 0 in the third line of the computation above, we will get the
following alternative formula:

d2E(γs)

ds2
(0) = −

∫ b

a

(〈V (t), R(γ̇, V )γ̇(t)〉 − 〈∇γ̇V,∇γ̇V 〉) dt

− 〈∇V (a)fs, γ̇(a)〉+ 〈∇V (b)fs, γ̇(b)〉.

As a consequence, we have

Corollary 1.9. If (M, g) is a Riemannian manifold with non-positive sectional cur-
vature, then any geodesic is locally minimizing.
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2. The Jacobi field

Now suppose γ is a geodesic and f is a geodesic variation of γ, i.e. each

γs = f(·, s)
is a geodesic. Let V be its variation field. Then

∇ftft = ∇γ̇s γ̇s = 0

and

[ft, fs] = df [
∂

∂t
,
∂

∂s
] = 0,

so we get

∇ft∇ftfs = ∇ft∇fsft = −∇fs∇ftft +∇ft∇fsft +∇[fs,ft]ft = R(fs, ft)ft.

Taking s = 0, we see
∇γ̇∇γ̇V +R(γ̇, V )γ̇ = 0.

Definition 2.1. A vector field X along a geodesic γ is called a Jacobi field if

∇γ̇∇γ̇X +R(γ̇, X)γ̇ = 0.

So the variation field of a geodesic variation is a Jacobi field. We will see later
that any Jacobi field can be realized as the variation field of some geodesic variation.

Example. Let γ be a geodesic.

(1) Obviously X = γ̇ is a Jacobi field.
(2) X = tγ̇ is a Jacobi field since

∇γ̇∇γ̇(tγ̇) = ∇γ̇[γ̇ + t∇γ̇ γ̇] = 0

and
R(γ̇, tγ̇)γ̇ = 0.

(3) But X = t2γ̇ is NOT a Jacobi field since

∇γ̇∇γ̇(t
2γ̇) = ∇γ̇(2tγ̇) = 2γ̇ 6= 0.

Theorem 2.2. Let γ : [a, b]→M be a geodesic, then for any Xγ(a), Yγ(a) ∈ Tγ(a)M ,
there exists a unique Jacobi field X along γ so that

X(a) = Xγ(a) and ∇γ̇(a)X = Yγ(a).

Proof. Without loss of generality, we may assume that γ is parametrized by arc
length. Let {ei(t)} be orthonormal basis at each point γ(t) with each ei(t) parallel
along γ, and so that e1(t) = γ̇(t). Note that

∇γ̇(t)ek(t) = 0

for all k. So for a vector field X = X i(t)ei(t) along γ,

∇γ̇X = Ẋ i(t)ei(t) and ∇γ̇∇γ̇X = Ẍ i(t)ei(t).
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It follows that the Jacobi field equation becomes

Ẍ i(t)ei(t) +X i(t)R j
1i1 ej(t) = 0.

This is equivalent to

Ẍ i(t) +Xj(t)R i
1j1 = 0, 1 ≤ i ≤ m,

which is a system of second order linear ODEs. The claim now follows from basic
ODE theory. �

Corollary 2.3. The set of Jacobi fields along γ is a linear space of dimension 2m,
which is canonically ismorphic to Tγ(a)M ⊕ Tγ(a)M .

Corollary 2.4. If X(t) is a Jacobi field along γ, and X is not identically zero, then
the zeroes of X are discrete.

Proof. If X has a sequence of zeroes that converges to γ(t0), then X i = 0 for a
sequence of points converging to γ(t0). It follows that X i(t0) = 0 and Ẋ i(t0) = 0.
In other words, X(t0) = 0,∇γ̇(t0)X = 0. By uniqueness, X ≡ 0. �

The obviously Jacobi fields γ̇, tγ̇ are both tangent to γ and are not so interesting
for us. We are mainly interested in normal Jacobi fields.

Definition 2.5. A Jacobi field along γ is called a normal Jacobi field if it is per-
pendicular to γ̇ along γ.

Proposition 2.6. Let X be a Jacobi field along γ. Then there exists c1, d1 ∈ R so
that

X⊥ = X − c1tγ̇ − d1γ̇
is a normal Jacobi field along γ.

Proof. X⊥ is a Jacobi field since it is a linear combination of Jacobi fields. According
to the Jacobi field equation,

d2

dt2
〈X, γ̇〉 = 〈∇γ̇∇γ̇X, γ̇〉 = −〈R(γ̇, X)γ̇, γ̇〉 = 0.

It follows that 〈X, γ̇〉 is a linear function along γ, i.e.

〈X, γ̇〉 = c1t+ d1

for some constant c1, d1 ∈ R. Now we let

X⊥ = X − c1tγ̇ − d1γ̇

with c1 = c1
|γ̇|2 , d

1 = d1
|γ̇|2 . Then

〈X⊥, γ̇〉 = c1t+ d1 − c1t|γ̇2| − d2|γ̇|2 = 0.

�
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Corollary 2.7. A Jacobi field X is normal if and only if

〈X(a), γ̇(a)〉 = 〈∇γ̇(a)X, γ̇(a)〉 = 0.

In particular, the set of normal Jacobi fields form a linear space of dimension 2m−2.

Proof. With X = X⊥ + c1tγ̇ + d1γ̇, we have

〈X(a), γ̇(a)〉 = (c1a+ d1)|γ̇|2,
〈∇γ̇(a)X, γ̇(a)〉 = 〈∇γ̇(a)(c

1tγ̇ + d1γ̇), γ̇(a)〉 = c1|γ̇|2.
The conclusion follows. �

Corollary 2.8. Let X be a Jacobi field so that

〈X(t1), γ̇(t1)〉 = 〈X(t2), γ̇(t2)〉 = 0

for two distinct numbers t1, t2. Then X is a normal Jacobi field.

Proof. This follows from the fact that 〈X, γ̇〉 is a linear function along γ, so it has
no more than one zero unless it is identically zero. �

Example. Let (M, g) be a Riemannian manifold with constant sectional curvature
k. Then we know

R(X, Y )Z = k(〈X,Z〉Y − 〈Y, Z〉X).

So if γ is a geodesic parametrized by arc-length, then the equation for a normal
Jacobi field X along γ is

∇γ̇∇γ̇X + kX = 0.

Now we take an orthonormal basis {ei(t)} of Tγ(t)M so that

• e1(t) = γ̇(t),
• each ei(t) is parallel along γ,

as we did in the proof of theorem 2.2, and let

X =
m∑
i=2

X i(t)ei(t),

then the equation for the coefficient X i(t) is

Ẍ i(t) + kX i(t) = 0, 2 ≤ i ≤ m.

The solution to this equation is

X i(t) =


ci sin(

√
kt)√
k

+ di cos(
√
kt), if k > 0,

cit+ di, if k = 0,

ci sinh(
√
−kt)√
−k + di cosh(

√
−kt)√
−k , if k < 0,

where ci, di are constants.


