
LECTURE 13: THE EXPONENTIAL MAP

1. The Exponential Map

Let (M, g) be a Riemannian manifold. Recall that for any p ∈ M and any
Xp ∈ TpM , there exists a unique geodesic γ(t) = γ(t; p,Xp) such that

γ(0) = p, γ̇(0) = Xp.

Moreover, the geodesic γ(t) depends smoothly on p and Xp. We let

E = {(p,Xp) | γ(t; p,Xp) is defined on an interval containing [0, 1]}.

By definition E = TM if and only if (M, g) is geodesically complete, i.e. each
geodesic can be defined on R.

Note that a linear reparametrization of a geodesic is again a geodesic. So for
any geodesic γ(t; p,Xp) and any λ > 0, the curve

γ̃(t) = γ(λt; p,Xp)

is the geodesic with γ̃(0) = p, ˙̃γ(0) = λXp. This fact implies

• If (p,Xp) ∈ E , then for any 0 < λ < 1, (p, λXp) ∈ E .
• If (p,Xp) 6∈ E , then one can find ε > 0 so that (p, εXp) ∈ E .

On the other hand side, the maximal existence time of geodesics is continuous with
respect to p and is lower semi-continuous with respect to Xp. It follows that for each
p ∈ M , E ∩ TpM is star-shaped around 0 ∈ TpM and contains a disc centered at 0
in TpM . In particular, E contains a neighborhood of the zero section M in TM .

Definition 1.1. The exponential map is defined to be

exp : E →M, (p,Xp) 7→ expp(Xp) := γ(1; p,Xp).

By definition the point expp(Xp) is the end point of the geodesic segment that
starts at p in the direction of Xp whose length equals |Xp|.

Example. For (Rn, g0), we can identify each TpRn with Rn. Then

expp(Xp) = p+Xp.

Example. For (S1, dθ ⊗ dθ), we can identify TeS
1 with R1. Then

expe(Xp) = eiXp .
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Remark. Let M = G be a Lie group. If we take the Riemannian metric on G to be
the bi-invariant metric, then expe coincides with the exponential map

exp : g→ G

in Lie theory. In particular, if G is a matrix Lie group, then

expe(A) = I + A+
A2

2!
+ · · ·+ Ak

k!
+ · · · .

According to the smooth dependence in ODE theory, the exponential map is
smooth. In particular, for each p ∈M , the map

expp : TpM ∩ E →M

is smooth. By definition expp maps 0 ∈ TpM to p ∈ M . The following lemma will
be very useful:

Lemma 1.2. For any p ∈M , if we identify T0(TpM) with TpM , then

(d expp)0 = Id|TpM : TpM → TpM.

Proof. for any Xp ∈ T0(TpM) = TpM ,

(d expp)0(Xp) =
d

dt

∣∣∣∣
t=0

exp(tXp) =
d

dt

∣∣∣∣
t=0

γ(1; p, tXp) =
d

dt

∣∣∣∣
t=0

γ(t; p,Xp) = Xp.

�

As a consequence of the inverse function theorem, we immediately get

Corollary 1.3. For any p ∈ M , there exists a neighborhood V of 0 in TpM and a
neighborhood U of p in M so that expp : V → U is a diffeomorphism.

In general expp is not a global diffeomorphism, even if it may be defined ev-
erywhere in TpM . For example, on Sn, expp is a diffeomorphism from any ball
Br(0) ⊂ TpM of radius r < π to an open region in Sn, but it fails to be injective for
the disk Bπ(0).

Definition 1.4. For each p ∈M , the injectivity radius of (M, g) at p is

injp(M, g) = sup{r : expp is a diffeomorphism on Br(0) ⊂ TpM},

and the injectivity radius of (M, g) is

inj(M, g) = inf{injp(M, g) | p ∈M}.

Example. inj(Sn, gSn) = π.

Remark. If M is compact, then of course

0 < inj(M, g) ≤ diam(M, g),
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where diam(M, g) is the diameter of (M, g), defined as

diam(M, g) = sup
p,q∈M

d(p, q).

But for noncompact manifolds M , we may have inj(M, g) = 0 or +∞.

For any ρ < injp(M, g), we have Bρ(0) ⊂ TpM ∩ E , where Bρ(0) is the ball of
radius ρ in TpM centered at 0.

Definition 1.5. We will call Bρ(p) = expp(Bρ(0)) the geodesic ball of radius ρ
centered at p in M , and its boundary Sρ(p) = ∂Bρ(p) the geodesic sphere of radius
ρ centered at p in M .

Now let γ be any geodesic starting at p. Then exp−1p (γ∩Bρ(p) is the line segment
in Bρ(0) ⊂ TpM starting at 0 in the direction γ̇ whose length is |γ ∩ Bρ(p)|. As a
consequence, the geodesics starting at p of lengths less than ρ are exactly the images
under expp of line segments starting at 0 in the ball Bρ(0). So

Corollary 1.6. Suppose p ∈M and ρ < injp(M, g). Then for any q ∈ Bρ(p), there
is a unique geodesic connecting p to q whose length is less than ρ.

Remark. No matter how p and q are closed to each other, one might be able to find
other geodesics connecting p to q whose length is longer. To see this, one can look
at cylinders or torus, in which case one can always find infinitely many geodesics
that connecting arbitrary two points p and q.

Another consequence of lemma 1.2 is to construct, for each Jacobi field X along
a geodesic γ, a geodesic variation whose variation field is X.

Theorem 1.7. A vector field X along γ is a Jacobi field if and only if X is the
variation field of some geodesic variation of γ.

Proof. Last time we have seen that the variation field of any geodesic variation is a
Jacobi field.

Now suppose X is a Jacobi field along γ. We will denote

Yγ(a) = ∇γ̇(a)X.

Case 1: Xγ(a) 6= 0. Let ξ : (−ε, ε)→M be a geodesic with initial conditions

ξ(0) = γ(a), ξ̇(0) = Xγ(a).

Let T (s),W (s) be parallel vector fields along ξ with

T (0) = γ̇(a) and W (0) = Yγ(a).

Define

f : [a, b]× (−ε, ε)→M, (t, s) 7→ f(t, s) = expξ(s)((t− a)(T (s) + sW (s))).
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Then f is a geodesic variation of γ. Let V be the variation field of f . Since both V
and X are Jacobi fields along γ, to show V = X, it is enough to show V (a) = Xγ(a)

and ∇γ̇(a)V = Yγ(a). The first one follows from

V (a) = fs(a, 0) =
d

ds

∣∣∣∣
s=0

ξ(s) = Xγ(a),

and the second one follows from

∇γ̇(a)V = ∇ftfs|t=a,s=0 = ∇fsft|t=a,s=0 = ∇Xγ(a)(T (s) + sW (s)) = W (0) = Yγ(a).

Case 2: Xγ(a) = 0. The geodesic variation above becomes

f(t, s) = expγ(a)((t− a)(γ̇(a) + sYγ(a))).

So

V (t) = fs(t, 0) = (d expγ(a))(t−a)γ̇(a)((t− a)Yγ(a)) = (t− a)(d expγ(a))(t−a)γ̇(a)(Yγ(a)).

It follows that V (a) = 0 and

∇γ̇(a)V = [∇γ̇(a)(t− a)](d expγ(a))(t−a)γ̇(a)(Yγ(a)) + (t− a)∇γ̇(a)(d expγ(a))(t−a)γ̇(a)(Yγ(a))
∣∣
t=a

= (d expγ(a))0Yγ(a)

= Yγ(a).

�

Remark. The proof for the case Xγ(a) 6= 0 does not apply to the case Xγ(a) = 0.
In fact, if Xγ(a) 6= 0, the variation is not a proper variation at γ(a). Note that
each geodesic is defined on an open interval. So the variation can be think of as a
variation

f : (a− ε0, b+ ε0)× (−ε, ε)→M

and γ(a) is an inner point of the image of f . As a result, fs and ft are vector fields
defined on the two dimensional graph of f near γ(a), for which we can apply the
commutativity. If Xγ(a) = 0, then the variation is a proper variation at γ(a). In this
case, although one can extend each geodesic a bit, γ(a) is no longer an inner point
of the image. As a result, the vectors ∂f

∂s
and ∂f

∂t
are no longer vector fields near γ(a)

(although they are still vector fields near other points).

2. The Gauss Lemma

Now let (p,Xp) ∈ E . By definition, expp maps the point Xp ∈ TpM to the point
expp(Xp) ∈M . In general, the differential of the expp at Xp is no longer the identity.
However, we have

Lemma 2.1 (The Gauss lemma). Let (p,Xp) ∈ E. Then for any Yp ∈ TpM =
TXp(TpM), we have

〈(d expp)XpXp, (d expp)XpYp〉expp(Xp) = 〈Xp, Yp〉p.
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Proof. By linearity, it’s enough to check the lemma for Yp = Xp and Yp ⊥ Xp.

Case 1: Yp = Xp. If we denote γ(t) = exp(tXp), then Xp = γ̇(0) and

(d expp)XpXp =
d

dt

∣∣∣∣
t=1

expp(tXp) = γ̇(1).

Since geodesics are always of constant speed, we conclude

〈(d expp)XpXp, (d expp)XpXp〉 = 〈γ̇(1), γ̇(1)〉 = 〈γ̇(0), γ̇(0)〉 = 〈Xp, Xp〉.

Case 2: Yp ⊥ Xp. Let γ1(s) be a curve in the sphere of radius |Xp| in TpM so that

γ1(0) = Xp and γ̇1(0) = Yp (Here we used the condition that Yp ⊥ Xp). Since
(p,Xp) ∈ E , we see that there exists ε > 0 so that

(p, tγ1(s)) ∈ E
for all 0 < t < 1 and −ε < s < ε.

Now let A = {(t, s) | 0 < t < 1,−ε < s < ε} and consider the geodesic variation

f : A→M, (t, s) 7→ expp(tγ1(s)) = γ(t; p, γ1(s))

of γ(t; p,Xp). Then

ft(1, 0) =
d

dt

∣∣∣∣
t=1

exp(tXp) = (d expp)XpXp,

fs(1, 0) =
d

ds

∣∣∣∣
s=0

exp(γ1(s)) = (d expp)XpYp.

So
〈(d expp)XpXp, (d expp)XpYp〉 = 〈ft(1, 0), fs(1, 0)〉.

On the other hand side, as in last time we have [c.f. line 2-line 6 in the proof of
the first variation formula]

∂

∂t
〈ft, fs〉 = 〈∇ftft, fs〉+

1

2

∂

∂s
〈ft, ft〉.

Use the facts ft = γ̇s, γs are geodesics, and [It is here that we need the fact that
each γs is a geodesic!]

|ft| = |γ̇s(t)| = |γ̇s(0)| = |γ1(s)| = 1,

we see that 〈ft, fs〉 is independent of t. Since

lim
t→0

fs(t, 0) = lim
t→0

d

ds

∣∣∣∣
s=0

expp(tγ1(s)) = lim
t→0

d(expp)tXp(tYp) = 0,

we conclude 〈ft(1, 0), fs(1, 0)〉 = 0, which proves the lemma. �

Geometrically, the Gauss lemma implies

Corollary 2.2 (The Geometric Gauss Lemma). For any ρ < injp(M, g) and any
q ∈ Sρ(p), the shortest geodesic connecting p to q is orthogonal to Sρ(p).


