LECTURE 13: THE EXPONENTIAL MAP

1. THE EXPONENTIAL MAP

Let (M,g) be a Riemannian manifold. Recall that for any p € M and any
X, € T,M, there exists a unique geodesic y(t) = v(¢; p, X,,) such that

Moreover, the geodesic v(t) depends smoothly on p and X,. We let
E={(p,X,) | 7(t;p, X,) is defined on an interval containing [0, 1]}.

By definition &€ = TM if and only if (M, g) is geodesically complete, i.e. each
geodesic can be defined on R.

Note that a linear reparametrization of a geodesic is again a geodesic. So for
any geodesic v(t;p, X,) and any A > 0, the curve

() = v (At p, Xp)
is the geodesic with 7(0) = p,4(0) = AX,. This fact implies

o If (p,X,) € &, then for any 0 < XA < 1, (p,AX,) € £.
o If (p,X,) €&, then one can find € > 0 so that (p,eX,,) € €.

On the other hand side, the maximal existence time of geodesics is continuous with
respect to p and is lower semi-continuous with respect to X,,. It follows that for each
p e M, ENT,M is star-shaped around 0 € T),M and contains a disc centered at 0
in T,M. In particular, £ contains a neighborhood of the zero section M in T'M.

Definition 1.1. The exponential map is defined to be
exp: & — M, (p,Xp)rexp,(X;) :=7(1;p,Xp).

By definition the point exp, (X)) is the end point of the geodesic segment that
starts at p in the direction of X, whose length equals |.X,|.

Example. For (R, gp), we can identify each 7,R™ with R™. Then
epr(Xp) =D + Xp'
Example. For (S',df @ df), we can identify T.S* with R'. Then

exp, (X,) = 7.
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Remark. Let M = G be a Lie group. If we take the Riemannian metric on G to be
the bi-invariant metric, then exp, coincides with the exponential map

exp:g—G

in Lie theory. In particular, if GG is a matrix Lie group, then
A? Ak
exp,(A) = T+ A Sp oo ot

According to the smooth dependence in ODE theory, the exponential map is
smooth. In particular, for each p € M, the map

exp, : T,MNE — M

is smooth. By definition exp, maps 0 € T,M to p € M. The following lemma will
be very useful:

Lemma 1.2. For any p € M, if we identify To(T,M) with T,M, then
(depr)() = [d|TpM . TpM — TpM

Proof. for any X, € To(T,M) =T,M,

d d d
d X)) = — tX,) = — 1ptX,) = — tp X)) = X,
(dexp,)o(X,) o tzoexp( ») g tzov( 0, tXp) p tzov( 'p, Xp) »

OJ
As a consequence of the inverse function theorem, we immediately get

Corollary 1.3. For any p € M, there exists a neighborhood V' of 0 in T,M and a
neighborhood U of p in M so that exp, : V' — U is a diffeomorphism.

In general exp, is not a global diffeomorphism, even if it may be defined ev-
erywhere in T,M. For example, on S™, exp, is a diffeomorphism from any ball
B,(0) C T,M of radius r < 7 to an open region in S™, but it fails to be injective for
the disk B, (0).

Definition 1.4. For each p € M, the injectivity radius of (M, g) at p is
inj, (M, g) = sup{r : exp,, is a diffeomorphism on B,(0) C T,M},
and the injectivity radius of (M, g) is
inj(M, g) = inf{inj, (M, g) | p € M}.
Ezample. inj(S™, ggn) = 7.
Remark. If M is compact, then of course

0 < inj(M, g) < diam(M, g),



LECTURE 13: THE EXPONENTIAL MAP 3

where diam(M, g) is the diameter of (M, g), defined as

diam(M, g) = sup d(p,q).
p,qeEM

But for noncompact manifolds M, we may have inj(M, g) = 0 or 4oco.

For any p < inj,(M, g), we have B,(0) C T,M N &, where B,(0) is the ball of
radius p in T, M centered at 0.

Definition 1.5. We will call B,(p) = exp,(B,(0)) the geodesic ball of radius p
centered at p in M, and its boundary S,(p) = 0B,(p) the geodesic sphere of radius
p centered at p in M.

Now let v be any geodesic starting at p. Then exp, ' (yNB,(p) is the line segment
in B,(0) C T,M starting at 0 in the direction ¥ whose length is |y N B,(p)|. As a
consequence, the geodesics starting at p of lengths less than p are exactly the images
under exp, of line segments starting at 0 in the ball B,(0). So

Corollary 1.6. Suppose p € M and p < inj, (M, g). Then for any q € B,(p), there
1S a unique geodesic connecting p to q whose length is less than p.

Remark. No matter how p and ¢ are closed to each other, one might be able to find
other geodesics connecting p to ¢ whose length is longer. To see this, one can look
at cylinders or torus, in which case one can always find infinitely many geodesics
that connecting arbitrary two points p and q.

Another consequence of lemma 1.2 is to construct, for each Jacobi field X along
a geodesic v, a geodesic variation whose variation field is X.

Theorem 1.7. A vector field X along v is a Jacobi field if and only if X s the
variation field of some geodesic variation of .

Proof. Last time we have seen that the variation field of any geodesic variation is a
Jacobi field.

Now suppose X is a Jacobi field along v. We will denote
Y@ = Vi@X.
Case 1: Xyq) # 0. Let £ : (—¢,e) = M be a geodesic with initial conditions
£(0) =(a),  £(0) = Xy
Let T'(s), W(s) be parallel vector fields along & with
T(0)=%(a) and W(0)= Y.

Define
filab] x (=e,6) = M, (t,s) = f(t,8) = expes)((t — a)(T'(s) + sW(s))).
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Then f is a geodesic variation of . Let V' be the variation field of f. Since both V
and X are Jacobi fields along v, to show V' = X it is enough to show V' (a) = X
and VsV = Y, ). The first one follows from

Vi) = 0.0 = 7| €)= X,
and the second one follows from -
Vi@V = ViLslicasmo = ViStlicasmo = VX, (T(s) + sW(s)) = W(0) = Yy(a).
Case 2: X, = 0. The geodesic variation above becomes

f(t,8) = exp, o) ((t = a)(§(a) + sYw))-

So

V(t) = fs(t,0) = (dexp. o) (t-a)3(a) ((t — @) Y5()) = (t — a)(dexp,q)) (t—a)i(a) Y(a))-

It follows that V' (a) = 0 and

ViV = Vit — a)l(dexp, o) t—ayi(@ (Yy@) + ( — @) Vi) (d expy o) t—ayi(@) (Vo)
= (d expw(a))OY’Y(a)

t=a

O

Remark. The proof for the case X, ) # 0 does not apply to the case X, = 0.
In fact, if X, # 0, the variation is not a proper variation at vy(a). Note that
each geodesic is defined on an open interval. So the variation can be think of as a
variation
f:(a—e0,b+eg) X (—g,6) > M
and ~y(a) is an inner point of the image of f. As a result, f; and f; are vector fields
defined on the two dimensional graph of f near 7(a), for which we can apply the
commutativity. If X,y = 0, then the variation is a proper variation at y(a). In this
case, although one can extend each geodesic a bit, y(a) is no longer an inner point
of

of the image. As a result, the vectors 3 and % are no longer vector fields near (a)

(although they are still vector fields near other points).

2. THE GAUSS LEMMA

Now let (p, X;,) € £. By definition, exp, maps the point X, € T,M to the point
exp,(X,) € M. In general, the differential of the exp, at X, is no longer the identity.
However, we have

Lemma 2.1 (The Gauss lemma). Let (p, X,) € €. Then for any Y, € T,M =
Tx,(T,M), we have

<<d epr)Xpo7 (d epr)Xp}/b>epr(Xp) = <Xp7 Yp>p
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Proof. By linearity, it’s enough to check the lemma for Y, = X, and Y,, L X,,.
Case 1: Y, = X,. If we denote v(t) = exp(tX,), then X, =+(0) and

exp, (£Xp) = (1)

t=1

d
dt
Since geodesics are always of constant speed, we conclude
<(depr)Xpo7 (depr)Xpo> = (¥(1),¥(1)) = {7(0),5(0)) = <Xanp>'
Case 2: Y, L X,. Let 71(s) be a curve in the sphere of radius |X,| in 7, M so that
7(0) = X, and 41(0) = Y, (Here we used the condition that ¥, L X,). Since
(p, X,) € &, we see that there exists € > 0 so that
(p,t71(s)) € €

forall0 <t <1land —e <s<e.

Now let A= {(t,s) | 0 <t < 1,—e < s < e} and consider the geodesic variation

frA—= M, (ts) = exp,(tni(s)) =yt p, (s))

of v(t;p, X,). Then

(d expp)Xpo =

d
f:(1,0) = pr exp(tX,) = (dexpp)Xpo,
t=1
d
£.0,0) = S exp(n(s)) = (dexp,)x, Yy
s=0

So
<(d epr)Xpo7 (d epr)Xp}/;?> = <ft(1a 0)7 fS(lv O))

On the other hand side, as in last time we have [c.f. line 2-line 6 in the proof of
the first variation formula]

9 10
o7 (i fo) = (Vi fo o) + 55 AFe 1),

Use the facts f; = 45, 75 are geodesics, and [It is here that we need the fact that
each 7, is a geodesic!]

|fel = 13D = [7:(0)] = Im(s)| = 1,
we see that (f;, fs) is independent of t. Since

. . d .
lim £,(¢,0) = lim — » exp,(t71(s)) = limd(exp, ), (1Y) = 0,

we conclude (f;(1,0), fs(1,0)) = 0, which proves the lemma. O
Geometrically, the Gauss lemma implies

Corollary 2.2 (The Geometric Gauss Lemma). For any p < inj,(M,g) and any
q € S,(p), the shortest geodesic connecting p to q is orthogonal to S,(p).



