LECTURE 13: THE EXPONENTIAL MAP

1. The Exponential Map

Let (M, g) be a Riemannian manifold. Recall that for any $p \in M$ and any $X_p \in T_p M$, there exists a unique geodesic $\gamma(t) = \gamma(t; p, X_p)$ such that

$$\gamma(0) = p, \dot{\gamma}(0) = X_p$$

Moreover, the geodesic $\gamma(t)$ depends smoothly on p and X_p . We let

 $\mathcal{E} = \{ (p, X_p) \mid \gamma(t; p, X_p) \text{ is defined on an interval containing } [0, 1] \}.$

By definition $\mathcal{E} = TM$ if and only if (M, g) is geodesically complete, i.e. each geodesic can be defined on \mathbb{R} .

Note that a linear reparametrization of a geodesic is again a geodesic. So for any geodesic $\gamma(t; p, X_p)$ and any $\lambda > 0$, the curve

$$\tilde{\gamma}(t) = \gamma(\lambda t; p, X_p)$$

is the geodesic with $\tilde{\gamma}(0) = p, \dot{\tilde{\gamma}}(0) = \lambda X_p$. This fact implies

- If (p, X_p) ∈ E, then for any 0 < λ < 1, (p, λX_p) ∈ E.
 If (p, X_p) ∉ E, then one can find ε > 0 so that (p, εX_p) ∈ E.

On the other hand side, the maximal existence time of geodesics is continuous with respect to p and is lower semi-continuous with respect to X_p . It follows that for each $p \in M, \mathcal{E} \cap T_pM$ is star-shaped around $0 \in T_pM$ and contains a disc centered at 0 in $T_p M$. In particular, \mathcal{E} contains a neighborhood of the zero section M in TM.

Definition 1.1. The *exponential map* is defined to be

$$\exp: \mathcal{E} \to M, \quad (p, X_p) \mapsto \exp_p(X_p) := \gamma(1; p, X_p).$$

By definition the point $\exp_p(X_p)$ is the end point of the geodesic segment that starts at p in the direction of X_p whose length equals $|X_p|$.

Example. For (\mathbb{R}^n, g_0) , we can identify each $T_p \mathbb{R}^n$ with \mathbb{R}^n . Then

$$\exp_p(X_p) = p + X_p$$

Example. For $(S^1, d\theta \otimes d\theta)$, we can identify $T_e S^1$ with \mathbb{R}^1 . Then

$$\exp_e(X_p) = e^{iX_p}$$

Remark. Let M = G be a Lie group. If we take the Riemannian metric on G to be the bi-invariant metric, then \exp_e coincides with *the* exponential map

$$\exp:\mathfrak{g}\to G$$

in Lie theory. In particular, if G is a matrix Lie group, then

$$\exp_e(A) = I + A + \frac{A^2}{2!} + \dots + \frac{A^k}{k!} + \dots$$

According to the smooth dependence in ODE theory, the exponential map is smooth. In particular, for each $p \in M$, the map

$$\exp_p: T_p M \cap \mathcal{E} \to M$$

is smooth. By definition \exp_p maps $0 \in T_pM$ to $p \in M$. The following lemma will be very useful:

Lemma 1.2. For any $p \in M$, if we identify $T_0(T_pM)$ with T_pM , then

$$(d \exp_p)_0 = Id|_{T_pM} : T_pM \to T_pM.$$

Proof. for any $X_p \in T_0(T_pM) = T_pM$,

$$(d \exp_p)_0(X_p) = \left. \frac{d}{dt} \right|_{t=0} \exp(tX_p) = \left. \frac{d}{dt} \right|_{t=0} \gamma(1; p, tX_p) = \left. \frac{d}{dt} \right|_{t=0} \gamma(t; p, X_p) = X_p.$$

As a consequence of the inverse function theorem, we immediately get

Corollary 1.3. For any $p \in M$, there exists a neighborhood V of 0 in T_pM and a neighborhood U of p in M so that $\exp_p : V \to U$ is a diffeomorphism.

In general \exp_p is not a global diffeomorphism, even if it may be defined everywhere in T_pM . For example, on S^n , \exp_p is a diffeomorphism from any ball $B_r(0) \subset T_pM$ of radius $r < \pi$ to an open region in S^n , but it fails to be injective for the disk $B_{\pi}(0)$.

Definition 1.4. For each $p \in M$, the *injectivity radius* of (M, g) at p is

 $\operatorname{inj}_{p}(M,g) = \sup\{r : \exp_{p} \text{ is a diffeomorphism on } B_{r}(0) \subset T_{p}M\},\$

and the *injectivity radius* of (M, g) is

 $\operatorname{inj}(M,g) = \inf\{\operatorname{inj}_{p}(M,g) \mid p \in M\}.$

Example. $\operatorname{inj}(S^n, g_{S^n}) = \pi.$

Remark. If M is compact, then of course

 $0 < \operatorname{inj}(M, g) \le \operatorname{diam}(M, g),$

where $\operatorname{diam}(M, g)$ is the diameter of (M, g), defined as

$$\operatorname{diam}(M,g) = \sup_{p,q \in M} d(p,q)$$

But for noncompact manifolds M, we may have inj(M,g) = 0 or $+\infty$.

For any $\rho < \operatorname{inj}_p(M, g)$, we have $B_{\rho}(0) \subset T_pM \cap \mathcal{E}$, where $B_{\rho}(0)$ is the ball of radius ρ in T_pM centered at 0.

Definition 1.5. We will call $B_{\rho}(p) = \exp_p(B_{\rho}(0))$ the geodesic ball of radius ρ centered at p in M, and its boundary $S_{\rho}(p) = \partial B_{\rho}(p)$ the geodesic sphere of radius ρ centered at p in M.

Now let γ be any geodesic starting at p. Then $\exp_p^{-1}(\gamma \cap B_\rho(p))$ is the line segment in $B_\rho(0) \subset T_p M$ starting at 0 in the direction $\dot{\gamma}$ whose length is $|\gamma \cap B_\rho(p)|$. As a consequence, the geodesics starting at p of lengths less than ρ are exactly the images under \exp_p of line segments starting at 0 in the ball $B_\rho(0)$. So

Corollary 1.6. Suppose $p \in M$ and $\rho < \operatorname{inj}_p(M, g)$. Then for any $q \in B_{\rho}(p)$, there is a unique geodesic connecting p to q whose length is less than ρ .

Remark. No matter how p and q are closed to each other, one might be able to find other geodesics connecting p to q whose length is longer. To see this, one can look at cylinders or torus, in which case one can always find infinitely many geodesics that connecting arbitrary two points p and q.

Another consequence of lemma 1.2 is to construct, for each Jacobi field X along a geodesic γ , a geodesic variation whose variation field is X.

Theorem 1.7. A vector field X along γ is a Jacobi field if and only if X is the variation field of some geodesic variation of γ .

Proof. Last time we have seen that the variation field of any geodesic variation is a Jacobi field.

Now suppose X is a Jacobi field along γ . We will denote

$$Y_{\gamma(a)} = \nabla_{\dot{\gamma}(a)} X.$$

Case 1: $X_{\gamma(a)} \neq 0$. Let $\xi : (-\varepsilon, \varepsilon) \to M$ be a geodesic with initial conditions

$$\xi(0) = \gamma(a), \quad \xi(0) = X_{\gamma(a)}.$$

Let T(s), W(s) be parallel vector fields along ξ with

$$T(0) = \dot{\gamma}(a)$$
 and $W(0) = Y_{\gamma(a)}$.

Define

$$f: [a,b] \times (-\varepsilon,\varepsilon) \to M, \quad (t,s) \mapsto f(t,s) = \exp_{\xi(s)}((t-a)(T(s)+sW(s))).$$

Then f is a geodesic variation of γ . Let V be the variation field of f. Since both V and X are Jacobi fields along γ , to show V = X, it is enough to show $V(a) = X_{\gamma(a)}$ and $\nabla_{\dot{\gamma}(a)}V = Y_{\gamma(a)}$. The first one follows from

$$V(a) = f_s(a, 0) = \left. \frac{d}{ds} \right|_{s=0} \xi(s) = X_{\gamma(a)},$$

and the second one follows from

$$\nabla_{\dot{\gamma}(a)}V = \nabla_{f_t}f_s|_{t=a,s=0} = \nabla_{f_s}f_t|_{t=a,s=0} = \nabla_{X_{\gamma(a)}}(T(s) + sW(s)) = W(0) = Y_{\gamma(a)}$$

Case 2: $X_{\gamma(a)} = 0$. The geodesic variation above becomes

$$f(t,s) = \exp_{\gamma(a)}((t-a)(\dot{\gamma}(a) + sY_{\gamma(a)})).$$

So

$$V(t) = f_{s}(t,0) = (d \exp_{\gamma(a)})_{(t-a)\dot{\gamma}(a)}((t-a)Y_{\gamma(a)}) = (t-a)(d \exp_{\gamma(a)})_{(t-a)\dot{\gamma}(a)}(Y_{\gamma(a)}).$$

It follows that $V(a) = 0$ and

$$\nabla_{\dot{\gamma}(a)}V = [\nabla_{\dot{\gamma}(a)}(t-a)](d \exp_{\gamma(a)})_{(t-a)\dot{\gamma}(a)}(Y_{\gamma(a)}) + (t-a)\nabla_{\dot{\gamma}(a)}(d \exp_{\gamma(a)})_{(t-a)\dot{\gamma}(a)}(Y_{\gamma(a)})\Big|_{t=a}$$

 $= (d \exp_{\gamma(a)})_{0}Y_{\gamma(a)}$
 $= Y_{\gamma(a)}.$

Remark. The proof for the case $X_{\gamma(a)} \neq 0$ does not apply to the case $X_{\gamma(a)} = 0$. In fact, if $X_{\gamma(a)} \neq 0$, the variation is not a proper variation at $\gamma(a)$. Note that each geodesic is defined on an open interval. So the variation can be think of as a variation

$$f: (a - \varepsilon_0, b + \varepsilon_0) \times (-\varepsilon, \varepsilon) \to M$$

and $\gamma(a)$ is an *inner point* of the image of f. As a result, f_s and f_t are vector fields defined on the two dimensional graph of f near $\gamma(a)$, for which we can apply the commutativity. If $X_{\gamma(a)} = 0$, then the variation is a proper variation at $\gamma(a)$. In this case, although one can extend each geodesic a bit, $\gamma(a)$ is no longer an inner point of the image. As a result, the vectors $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ are no longer vector fields near $\gamma(a)$ (although they are still vector fields near other points).

2. The Gauss Lemma

Now let $(p, X_p) \in \mathcal{E}$. By definition, \exp_p maps the point $X_p \in T_p M$ to the point $\exp_p(X_p) \in M$. In general, the differential of the \exp_p at X_p is no longer the identity. However, we have

Lemma 2.1 (The Gauss lemma). Let $(p, X_p) \in \mathcal{E}$. Then for any $Y_p \in T_pM = T_{X_p}(T_pM)$, we have

$$\langle (d \exp_p)_{X_p} X_p, (d \exp_p)_{X_p} Y_p \rangle_{\exp_p(X_p)} = \langle X_p, Y_p \rangle_p.$$

Proof. By linearity, it's enough to check the lemma for $Y_p = X_p$ and $Y_p \perp X_p$. Case 1: $Y_p = X_p$. If we denote $\gamma(t) = \exp(tX_p)$, then $X_p = \dot{\gamma}(0)$ and

$$(d \exp_p)_{X_p} X_p = \left. \frac{d}{dt} \right|_{t=1} \exp_p(tX_p) = \dot{\gamma}(1).$$

Since geodesics are always of constant speed, we conclude

$$\langle (d \exp_p)_{X_p} X_p, (d \exp_p)_{X_p} X_p \rangle = \langle \dot{\gamma}(1), \dot{\gamma}(1) \rangle = \langle \dot{\gamma}(0), \dot{\gamma}(0) \rangle = \langle X_p, X_p \rangle.$$

<u>Case 2:</u> $Y_p \perp X_p$. Let $\gamma_1(s)$ be a curve in the sphere of radius $|X_p|$ in T_pM so that $\overline{\gamma_1(0)} = X_p$ and $\dot{\gamma}_1(0) = Y_p$ (Here we used the condition that $Y_p \perp X_p$). Since $(p, X_p) \in \mathcal{E}$, we see that there exists $\varepsilon > 0$ so that

$$(p, t\gamma_1(s)) \in \mathcal{E}$$

for all 0 < t < 1 and $-\varepsilon < s < \varepsilon$.

Now let
$$A = \{(t,s) \mid 0 < t < 1, -\varepsilon < s < \varepsilon\}$$
 and consider the geodesic variation $f: A \to M, \quad (t,s) \mapsto \exp_p(t\gamma_1(s)) = \gamma(t; p, \gamma_1(s))$

of $\gamma(t; p, X_p)$. Then

$$f_t(1,0) = \left. \frac{d}{dt} \right|_{t=1} \exp(tX_p) = (d \exp_p)_{X_p} X_p,$$

$$f_s(1,0) = \left. \frac{d}{ds} \right|_{s=0} \exp(\gamma_1(s)) = (d \exp_p)_{X_p} Y_p.$$

So

$$\langle (d \exp_p)_{X_p} X_p, (d \exp_p)_{X_p} Y_p \rangle = \langle f_t(1,0), f_s(1,0) \rangle$$

On the other hand side, as in last time we have [c.f. line 2-line 6 in the proof of the first variation formula]

$$\frac{\partial}{\partial t}\langle f_t, f_s \rangle = \langle \nabla_{f_t} f_t, f_s \rangle + \frac{1}{2} \frac{\partial}{\partial s} \langle f_t, f_t \rangle.$$

Use the facts $f_t = \dot{\gamma}_s$, γ_s are geodesics, and [It is here that we need the fact that each γ_s is a *geodesic*!]

$$|f_t| = |\dot{\gamma}_s(t)| = |\dot{\gamma}_s(0)| = |\gamma_1(s)| = 1,$$

we see that $\langle f_t, f_s \rangle$ is independent of t. Since

$$\lim_{t \to 0} f_s(t,0) = \lim_{t \to 0} \left. \frac{d}{ds} \right|_{s=0} \exp_p(t\gamma_1(s)) = \lim_{t \to 0} d(\exp_p)_{tX_p}(tY_p) = 0,$$

we conclude $\langle f_t(1,0), f_s(1,0) \rangle = 0$, which proves the lemma.

Geometrically, the Gauss lemma implies

Corollary 2.2 (The Geometric Gauss Lemma). For any $\rho < \operatorname{inj}_p(M, g)$ and any $q \in S_{\rho}(p)$, the shortest geodesic connecting p to q is orthogonal to $S_{\rho}(p)$.