
LECTURE 15: COMPLETENESS AND CONVEXITY

1. The Hopf-Rinow Theorem

Recall that a Riemannian manifold (M, g) is called geodesically complete if the
maximal defining interval of any geodesic is R. On the other hand, any Riemannian
manifold (M, g) admits a metric structure given by

d(p, q) = inf{L(γ) | γ is a piecewise smooth curve connecting p to q},
and thus we can talk about the completeness of d: a metric space is complete if any
Cauchy sequence in it converges. The following theorem says that for Riemannian
manifolds, the two notions of completeness coincide.

Theorem 1.1 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold.
Then the following statements are equivalent:

(1) (M,d) is a complete metric space.
(2) (M, g) is geodesically complete.
(3) There exists p ∈M so that expp is defined for all Xp ∈ TpM .
(4) [Heine-Borel property] Any bounded closed subset in M is compact.

Moreover, each of the previous statements implies

(5) There exists p ∈ M so that any point q ∈ M can be connected to p by a
minimal geodesic, i.e. a geodesic of length d(p, q).

Proof. We shall prove

(4) =⇒ (1) =⇒ (2) =⇒ (3) =⇒ (5) and (3) + (5) =⇒ (4).

(4)⇒(1) This is a standard result in general topology.

(1)⇒(2) Let γ be any normal geodesic on M . By the existence and uniqueness

theorem, the maximal defining interval of γ must be an open interval (a, b). If
b < ∞, then we can take a sequence si → b−. In particular, {si} is a Cauchy
sequence in R. But γ is a normal geodesic, so

d(γ(si), γ(sj)) ≤ |si − sj|.
As a consequence, {γ(si)} is a Cauchy sequence in (M,d). If follows that there
exists a p ∈M so that γ(si)→ p.

Since E is open and (p, 0) ∈ E , there exists ε > 0 so that (q, Yq) ∈ E for any q
with d(q, p) < ε and any Yq ∈ TqM with |Yq| < 2ε. So if we take i large enough
so that b − si <

ε
2

and thus d(γ(si), p) <
ε
2
, then γ(t; γ(si), εγ̇(si)) is defined for
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t ∈ [0, 1]. In other words, the geodesic γ1(t) = γ(t; γ(si), γ̇(si)) is well defined for
0 < t < ε. Since γ1 coincides with γ at si, they must be the same. In particular, γ
can be defined for all t < si + ε, which exceeds the upper bound b, a contradiction.

Similarly by considering the “reverse geodesic” one can see that a = −∞. So
any normal geodesic on M , and thus any geodesic on M , has defining interval R.

(2)⇒(3) This is obvious. ((M, g) is geodesically complete ⇔ E = TM . )

(3)⇒(5) Denote r = d(p, q). (Here we used the connectedness!) We have already

seen that there exists 0 < δ < r so that the exponential map exp is a diffeomorphism
from Bδ(0) ∈ TpM to Bδ(p) ∈ M . Note that Sδ(p) = expp(Sδ(0)) is compact.
Since the distance function is continuous (we proved this in lecture 2), there exists
p0 ∈ Sδ(p) so that

d(p0, q) = inf
p′∈Sδ(p)

d(p′, q).

Let γ be the normal geodesic from p to p0. By (3), γ is defined over R. We define

A = {s ∈ [δ, r] | d(γ(s), q) = r − s}.
We will show supA = r, which implies γ(r) = q.

To prove this, we first notice that δ ∈ A, since

r = d(p, q) = inf
p′∈Sδ(p)

(d(p, p′) + d(p′, q)) = δ + inf
p′∈Sδ(p)

d(p′, q) = δ + d(γ(δ), q).

So A is nonempty.

Secondly, it’s easy to see that A is closed, since the function

f(s) = d(γ(s), q)− r + s

is continuous and that A = f−1(0) ∩ [δ, r].

Now let s0 = supA. Since A is nonempty and closed, s0 ∈ A. Suppose s0 < r.
Then by repeating the previous argument, we know that there exists 0 < δ′ < r− s0
and p′0 ∈ Sδ′(γ(s0)) so that

d(p′0, q) = min
p′∈Sδ′ (γ(s0))

d(p′, q) = d(γ(s0), q)− δ′.

Since s0 ∈ A, we get
d(p′0, q) = r − s0 − δ′.

So by triangle inequality,

d(p′0, p) ≥ d(p, q)− d(p′0, q) = r − (r − s0 − δ′) = s0 + δ′.

On the other hand, the curve γ̃ by connecting p to γ(s0) along γ and then connecting
γ(s0) to p′0 by the minimal geodesic has length exactly s0 + δ′. So γ̃, with the arc-
length parametrization, must be a geodesic. Obviously γ̃ has to coincide with γ. In
other words, p′0 = γ(s0 + δ′). As a consequence,

d(γ(s0 + δ′), q) = r − (s0 + δ′),

i.e. s0 + δ′ ∈ A. This conflicts with the fact that s0 = supA.
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(3)+(5)⇒(4) Let K ⊂ M be a bounded closed set. Then there exists a constant

C > 0 so that d(p, k) < C for all k ∈ K. According to (3) and (5), K ⊂ expp(BC(0)),

where BC(0) is the closed ball of radius C in TpM , which is compact in TpM . Since
expp is smooth, expp(BC(0)) is also compact. Thus K, as a closed subset of a
compact set, is compact.

�

Definition 1.2. A Riemannian manifold (M, g) satisfying any of (1)-(4) is called a
complete Riemannian manifold.

Remarks.

• Condition (5) is NOT enough to guarantee that (M, g) is complete. For
example, the open unit ball B1(0) in (Rn, g0) satisfies (5), which is not com-
plete.
• For a general metric space, condition (1) does NOT imply condition (4).

For example, one can consider a countable infinite set {xi | i ∈ N} and
define a metric on it via d(xi, xj) = 1 for all i 6= j. In this space, the
only Cauchy sequences are eventually-constant sequences which of course
converge. However, the whole space is closed and bounded but not compact.
So as metric spaces, Riemannian manifolds are special (and nice) metric
spaces.

Corollary 1.3. Any two points in a connected complete Riemannian manifold can
be connected by a minimal geodesic.

Corollary 1.4. If (M, g) is complete and connected, then for any p ∈ M , expp :
TpM →M is surjective.

Corollary 1.5. Any compact Riemannian manifold is complete.

2. Convex Neighborhoods

By definition, for any r < inj(M, p), the exponential map

expp : Br(0) ⊂ TpM → Br(p) ⊂M

is a diffeomorphism. Moreover, for any q ∈ Br(p), there is a unique geodesic con-
necting q to the center p whose length is less than r. Of course such a geodesic is
the unique minimizing geodesic connecting q to p.

Theorem 2.1. For any point p ∈ M there exists a neighborhood W of p and a
number δ > 0 so that for each q ∈ W , one has inj(M, q) ≥ δ and Bδ(q) ⊃ W .

Remark. As a consequence, any two points in W can be connected by a unique
minimizing geodesic. The neighborhood satisfying theorem 2.1 is called a totally
normal neighborhood.
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Proof. We consider the map

F : E →M ×M, F (q,Xq) = (q, expqXq).

Then F (p, 0) = (p, p) and

dF(p,0) =

(
I ∗
0 I

)
.

By the inverse function theorem, F is a local diffeomorphism. In other words, F
maps a neighborhood U of (p, 0) diffeomorphically onto a neighborhood W of (p, p)
in M ×M . By shrinking U if necessary, one can take U to be of the form

U = {(q,Xq) | q ∈ U, |Xq| < δ},
where U is a small neighborhood of p in M . Now choose a neighborhood W of p
in M so that W ×W ⊂ W . Obviously δ and W obtained by this way satisfies the
assertion of the theorem. �

Now let W be a totally normal neighborhood, so that any two points in W
can be joint by a unique minimizing geodesic. A natural question is: Does these
minimizing geodesic all lie in W? Obviously to answer this question, we need to
require W to satisfy some kind of “convexity”.

Recall that a region in Rn is convex if any two points in the region can be
connected by a line segment that lies in the region.

Definition 2.2. A subset S ∈ M is called strongly convex, or geodesically convex,
if for any p, q ∈ S there is a unique normal minimal geodesic γ joining p to q, and
γ is contained in S.

Example. On (S2, gS2), any geodesic ball of radius r < π
2

is strongly convex.

Remark. Obviously each strongly convex set is contractible, and the intersection of a
family of strongly convex sets in M is again strongly convex if it is not empty. This
fact is used in Algebraic Topology to product good covers on arbitrary manifolds,
which makes Čech cohomology much simpler to understand.

Theorem 2.3 (Whitehead). For any p ∈M there exists ρ > 0 so that the geodesic
ball Bρ(p) is strongly convex.

In proving the theorem, we will need

Lemma 2.4. For any p ∈M , there exists η > 0 so that for any 0 < r < η and any
q ∈ Sr(p), any geodesic γ that is tangent to Sr(p) at q stays out of Br(p) for some
neighborhood of q.

Remark. A geodesic ball satisfying the assertion of the previous lemma is called
locally convex. Recall that a region in Rn is convex if for any point in the boundary
of the region, any tangent line of the boundary surface at that point outside the
region. In other words, in Rn locally convex is the same as convex. This fact does
not holds for general Riemannian manifolds. For example, for the standard cylinder
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S1 × R, a geodesic ball of radius π
2
< r < π is locally convex but is not strongly

convex.

Proof of Whitehead Theorem. Take η as in Lemma 2.4 and take W and δ < η
2

as
in Theorem 2.1. Take ρ < δ so that Bρ(p) ⊂ W . We claim that Bρ(p) is strongly
convex.

In fact, since Bρ(p) ⊂ W , any two points q1, q2 ∈ Bρ(p) can be connected by
a minimal geodesic of length no more than δ. It follows that Im(γ) ⊂ Bη(p) since
ρ+ δ < η. If the interior of γ is not totally contained in Bρ(p), then there is a point
q3 on γ so that

ρ < sup
q′∈Imγ

d(p, q′) := d(p, q3) := ξ < η.

It is clear that γ is tangent to Sξ(p) and lies totally in Bξ(p). This contradict with
Lemma 2.4. �

Proof of Lemma 2.4. Let W be a totally normal neighborhood of p. For any q ∈ W
and any Yq ∈ TqM with |Yq| = 1, let u(t; q, Yq) = exp−1p (γ(t; q, Yq)) (this is defined
for |t| small) and let

F (t; q, Yq) = |u(t; q, Yq)|2 .
It is clear that u, and thus F , are smooth, and

∂F

∂t
= 2

〈
u,
∂u

∂t

〉
,

∂2F

∂t2
= 2

〈
u(t),

∂2u

∂t2

〉
+ 2

〈
∂u

∂t
,
∂u

∂t

〉
.

Observe that for q = p and for any Yq = Yp ∈ SpM , we have u(t; p, Yp) = tYp and
hence

∂2F

∂t2

∣∣∣∣
p,Xp

= 2〈Yp, Yp〉 = 2.

By continuity, there exists a neighborhood V ⊂ W of p so that for any q ∈ V and
any Yq ∈ SqM , ∂2F

∂t2
(0; q, Yq) > 0. Take η > 0 so that Bη(p) ⊂ V . We claim that this

η satisfies the assertion of the lemma.

In fact, for any r < η, let γ(t; q, Yq) be a normal geodesic tangent to Sr(p)
at q = γ(0; q, Yq) = expp(u(0; q, Yq)). Then the tangent vector of γ(t; q, Yq) =

expp(u(t; q, Yq)) at q is (d expx)u(0;q,Yq)
∂u
∂t

(0; q, Yq), which should be a tangent vector

of Sr(p) at q. According to the Gauss Lemma, ∂u
∂t

(0; q, Yq) is a tangent vector of
Sr(0) ∈ TpM at the point u(0; q, Yq). It follows

∂F

∂t
(0; q, Yq) = 2

〈
u(0; q, Yq),

∂u

∂t
(0; q, Yq)

〉
= 0.

As a consequence, for q ∈ Bη(p) and Yq ∈ SqM , the function F (t; q, Yq) takes its
strict local minimum at t = 0, where its value is F (0; q, Yq) = r2. So for |t| small
enough, we must have F (t; q, Yq) > r2, which proves the lemma. �


