
LECTURE 16: CONJUGATE AND CUT POINTS

1. Conjugate Points

Let (M, g) be Riemannian and γ : [a, b]→M a geodesic. Then by definition,

expp((t− a)γ̇(a)) = γ(t).

We know that expp is a diffeomorphism near 0. But it may fail to be a diffeomor-
phism away from 0.

Definition 1.1. We say q = γ(t0) (t0 > a) is conjugate to p = γ(a) along γ if expp
is singular at (t0 − a)γ̇(a), i.e. (d expp)(t0−a)γ̇(a) is not of full rank.

It turns out that conjugate points are closely related to Jacobi fields:

Theorem 1.2. Let γ : [a, b]→M is a geodesic. Then

(1) q = γ(t0) is a conjugate point of p = γ(a) if and only if there exists a
nonvanishing Jacobi field X along γ so that X(a) = 0 and X(t0) = 0.

(2) Moreover, the dimension of all Jacobi fields vanishing at both p and q equals
dim ker(d expp)(t0−a)γ̇(a).

Proof. In the proof of theorem 1.7 in lecture 13 (i.e. any Jacobi field is the variation
field of some geodesic variation), we showed that if X is a Jacobi field along γ with

X(a) = 0 and Yγ(a) = ∇γ̇(a)X,

then it is the variation field of

f(t, s) = expγ(a)((t− a)(γ̇(a) + sYγ(a))).

In particular we have

X(t) = (d expγ(a))(t−a)γ̇(a)((t− a)Yγ(a)).

It follows

q = γ(t0) is conjugate to p = γ(a)

⇐⇒ker(d expp)(t0−a)γ̇(a) 6= 0

(∗)⇐⇒Yγ(a) 6= 0 and 0 = X(t0) = (d expγ(a))(t0−a)γ̇(a)((t0 − a)Yγ(a))

⇐⇒There is a nonzero Jacobi field X along γ so that X(a) = 0 and X(t0) = 0.

This proves the first assertion. The second assertion also follows from (∗), together
with the canonical isomorphism J ' TpM ⊕ TpM . �
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Definition 1.3. If q = γ(t0) is a conjugate point of p along γ, we call

dim ker(d expp)(t0−a)γ̇(a)

the multiplicity of the conjugate point q.

Remarks.

(1) If q is conjugate to p along a geodesic γ, then p is conjugate to q along a
suitable chosen geodesic (the reverse of γ starting at q), with the same multiplicity.

(2)Any Jacobi field satisfying X(a) = 0 and X(t0) = 0 is a normal Jacobi field.
[c.f. corollary 2.7 in lecture 12]

(3) Let dimM = m. Recall (Lecture 12)

• The set J of all Jacobi fields ' TpM⊕TpM , and thus the set of Jacobi fields
with X(a) = 0 is a linear space of dimension m.
• There is no tangent Jacobi fields (i.e. of the form aγ̇ + btγ̇) with X(a) = 0

and X(t0) = 0.

So the set of normal Jacobi fields with X(a) = 0 is a linear space of dimension m−1.
It follows that the multiplicity of a conjugate point is no more than m− 1.

Example. Let M = Sm be the round sphere whose sectional curvature is 1. Let γ
be a normal geodesic starting from any p. Then according to lecture 12, any normal
Jacobi field along γ with X(0) = 0 must be of the form

X(t) =
m∑
i=2

ci sin(t)ei(t),

where {ei(t)} is an orthonormal basis at each γ(t), with e1(t) = γ̇(t). It follows that
if γ has length less than π, then there is no conjugate point of p, and if the length of
γ is between π and 2π, then the “anti-podal” point γ(π) = p̄ is the only conjugate
point to the north pole along any geodesic starting at p, and its multiplicity equals
m− 1.

Example. Similar computation shows that if M has constant sectional curvature k ≤
0, then to any point there is no conjugate point. In particular, on cylinder or torus
there is no conjugate point. In fact the same conclusion holds for any Riemannian
manifold whose sectional curvatures are non-positive (maybe not constant).

Proposition 1.4. Suppose q = γ(t0) is NOT conjugate to p = γ(a) along γ. Then
for any Xp ∈ TpM and Xq ∈ TqM , there exists a unique Jacobi field X along γ so
that X(a) = Xp and X(t0) = Xp.

Proof. Let J be the set of all Jacobi fields along γ. Define a mapping

Θ : J → TpM × TqM, X 7→ Θ(X) = (X(a), X(t0)).

Since q is not a conjugate point of p, Θ is injective. But Θ is linear, and dimJ =
dim(TpM × TqM) = 2m are of same dimension, we conclude that Θ is an linear
isomorphism, which proves the theorem. �
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We have already seen any local (i.e. short) geodesic is minimizing among nearby
curves. The following theorem claims that a global geodesic is minimizing among
nearby curves if and only if it contains no pair of conjugate points.

Theorem 1.5 (Jacobi). Let γ : [a, b]→M be a geodesic. Denote p = γ(a), q = γ(b).

(1) If there is no conjugate points of p along γ, then there exists ε > 0 so
that for any piecewise smooth curve γ̄ : [a, b] → M from p to q satisfying
dist(γ(t), γ(t)) < ε, we have L(γ̄) ≥ L(γ), with equality hold if and only if γ̄
is a reparametrization of γ.

(2) If there exists t̄ ∈ (a, b) so that q̄ = γ(t̄) is a conjugate point of p, then there
is a proper variation of γ so that L(γs) < L(γ) for 0 < |s| < ε.

Remark. In part (1) we only claim that γ is minimizing among nearby curves. It
is possible that there exists other shorter geodesics. For example, one can look at
cylinders, in which case there is no conjugate point (since the sectional curvature is
0). Between any two points there are infinitely many geodesics, each is minimizing
among nearby curves, but only one of them is globally minimizing.

We will prove the theorem next time.

2. The Cut Locus

Let γ : [a, b] → M be a geodesic in M , p = γ(a) and q = γ(b) the end points.
We have already seen the question “whether γ is shortest” is a subtle question:

• If q is very close to p, γ is the shortest curve connecting p to q.
• γ will never be shortest after the first conjugate point of p along γ.
• Before the first conjugate point of p, γ is shortest among nearby curves

connecting p to q.
• Even if p has no conjugate point along γ, it’s still possible that γ is not

shortest curve connecting p to q.

Definition 2.1. Let (M, g) be a complete Riemannian manifold, p ∈ M a point,
and γ : [0,∞)→M a normal geodesic with γ(0) = p. If

t0 := sup{t | γ([0, t]) is a minimizing geodesic} < +∞,

then we will call γ(t0) the cut point of p along γ. We will denote by Cut(p) the set
of all cut points of p along all geodesics that start from p, and call it the cut locus
of p.

Remark. If M is compact, then Cut(p) 6= ∅ for all p.

Example. On Rm and Hm (each endowed with the canonical metric), there exists
only one normal minimal geodesic joining any two given points. So Cut(p) = ∅ for
all p.
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Example. For Sm with the round metric, Cut(p) = {p̄} for any p ∈M , where p̄ = −p
is the antipodal point of p. Note that p̄ is also the first conjugate point of p.

Example. For the cylinder S1×R endowed with the canonical metric, if p = (eiθ0 , z0),
then Cut(p) = {(ei(θ0+π), z) | z ∈ R} is the vertical line “opposite to p”. Note that
p has no conjugate points at all.

The following theorem relates cut points with conjugate points:

Theorem 2.2. Suppose γ(t0) is the cut point of p = γ(0) along a normal geodesic
γ, then at least one of the following assertion holds:

(1) γ(t0) is the first conjugate point of p along γ.

(2) γ(t0) is the first point along γ so that there exists another normal geodesic
σ 6= γ from p to γ(t0) with length L(σ) = t0 = L(γ|[0,t0]).

Proof. Take a decreasing sequence ti → t+0 . Let σi be a normal minimizing geodesic
connecting p to γ(ti). Then L(σi) < ti. Note that {σ̇i(0)} is a sequence in the unit
sphere SpM . By passing to a subsequence, we may assume σ̇i(0)→ X ∈ SpM . Let
σ be the normal geodesic with σ(0) = p, σ̇(0) = X. Then by continuity, σ is a
minimizing geodesic connecting p to γ(t0), thus L(σ) = t0.

Case 1: X = γ̇(0). Let si = L(σi). Then by definition of cut point, si < ti. It
follows that siσ̇i(0) 6= tiγ̇(0). But

expp(siσ̇i(0)) = σi(si) = γ(ti) = expp(tiγ̇(0)),

so expp is not a local diffeomorphism near t0γ̇(0). In other words, expp is singular at
t0γ̇(0). So γ(t0) is a conjugate point of p. Obviously it has to be the first conjugate
point, otherwise γ([0, t0]) is not minimizing.

Case 2: X 6= γ̇(0). Then σ is a geodesic that is different from γ. We have

t0 = L(γ|[0,t0]) ≤ L(σ) = lim
i
L(σi) ≤ lim

i
ti = t0.

So L(σ) = t0. To show that γ(t0) is the first point along γ with this property, we
argue by contradiction. If there exists a t̄ < t0 and a normal geodesic σ̄ connecting
p to γ(t̄) so that L(σ̄) = t̄, then the curve γ̄ defined by connecting σ̄ with γ|[t̄,t0] is a
piecewise smooth but not smooth curve connecting p to γ(t0) whose length is t0. But
according to the first variation formula, any piecewise smooth but not smooth curve
is not a minimizing curve. We claim that γ|[0,t0] is also not a minimizing curve, since
it has the same length as γ̄. This contradicts with the definition of cut point. �

Corollary 2.3. If q ∈ Cut(p), then p ∈ Cut(q).

Proof. If q is the cut point of p along γ, then γ is minimizing between p and q. It
follows that the “opposite geodesic” −γ is also miniming between q and p. Moreover,
by the theorem above, either q is the first conjuge point of p along γ, or there exists
a different normal geodesic σ joint p to q which has length L(σ) = dist(p, q). In
both cases −γ is no longer minimizing after p. So p ∈ Cut(p). �
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Corollary 2.4. If q 6∈ Cut(p), then there exists a unique minimizing geodesic joining
p to q.

Proof. If there exist two minimizing geodesics γ, σ joining p to q, then γ is mini-
mizing between p and q, and is no longer minimizing after q. So q ∈ Cut(p). �

Remark. One can show that the function f : SM → R ∪ {∞} defined by

f(p,Xp) =

{
t0, if γp,Xp(t0) is the cut point of p along γ,
+∞, if p has no cut point along γp,Xp .

is a continuous function. It follows that Cut(p) is a closed subset of measure zero
in M .

3. Smoothness of Distance Function

Now let’s fix p ∈M and consider the distance function

dp : M → R, dp(q) = dist(p, q).

As we have already seen, dp is a continuous function. However, it is not hard to see
that dp ∈ C∞(M). In fact, dp is never smooth at p.

Example: Consider (S2, gS2). Let p̄ = −p be the antipodal point of p. Then for q
near p̄, dp(q) = π − dp̄(q). It follows that dp is also not smooth at p̄.

Theorem 3.1. The function dp is smooth on M \Cut(p)∪{p}. Moreover, for each
q ∈M \Cut(p)∪ {p}, if we let γq be the unique normal minimizing geodesic from p
to q, then the gradient of dp at q is

(∇dp)(q) = γ̇q(dp(q)).

Proof. For each q ∈ M \ Cut(p) ∪ {p}, let γq be the unique normal minimizing
geodesic from p to q and denote Xq = γ̇q(0) ∈ SpM . Let

A = {L(γq)Xq | q ∈M \ Cut(p) ∪ {p}}.
Then A ⊂ TpM \ {0} is an open set and expp : A → M \ Cut(p) ∪ {p} is smooth.
Moreover, at each vector in A, expp is nonsingular and thus a local diffeomorphism.
Since expp is globally one-to-one on A, it is a diffeomorphism from A to M \Cut(p)∪
{p}. It follows that exp−1

p : M \ Cut(p) ∪ {p} → A ⊂ TpM \ {0}] is smooth. Thus

dp(q) = | exp−1
p (q)| is smooth on M \ Cut(p) ∪ {p}.

To calculate its gradient at q, we choose any X ∈ TqM and let σ(s) be a smooth
curve in M \Cut(p)∪{p} tangent to X at q = σ(0). Now we consider the variation
of γq so that γqs be the unique minimizing geodesic from p to σ(s). Observe that the
variation field vector of this variation at the point q is exactly X. So according to
the first variation formula,

X(dp) =
d

ds

∣∣∣∣
s=0

dp(σ(s)) =
d

ds

∣∣∣∣
s=0

L(γqs) = 〈X, γ̇q(dp(q))〉.
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It follows that (∇dp)(q) = γ̇q(dp(q)). �

Remarks. (1) One can show that if there exists two minimizing geodesic from p to
q, then dp is not differentiable at q.

(2) By using the second variation formula one can calculate the Hessian of dp
on M \ Cut(p) ∪ {p}.


