LECTURE 19: THE THEOREMS OF BONNET-MYERS, SYNGE AND PREISSMAN

1. Bonnet-Myers Theorem

Now let't turn to Riemannian manifolds with positive curvature.

Theorem 1.1 (Bonnet-Myers). Let (M, g) be a complete Riemannian manifold whose Ricci curvature satisfies

$$
\operatorname{Ric}(X_p) \ge (m-1)\kappa
$$

for all $X_p \in SM$, where κ is a positive constant independent of X_p . Then M is compact, and its diameter is bounded by

$$
diam(M) := \sup_{p,q \in M} dist(p,q) \le \frac{\pi}{\sqrt{\kappa}}.
$$

Proof. For any $p, q \in M$, let $\gamma : [0, 1] \to M$ be a minimal geodesic joining p to q. Obviously it's enough to show $L(\gamma) \leq \frac{\pi}{\sqrt{\kappa}}$. Suppose on the contrary that

$$
L(\gamma) = l > \frac{\pi}{\sqrt{\kappa}}.
$$

Let ${e_i(t)}$ be parallel vector fields along γ which form an orthonormal basis at each point $\gamma(t)$ and so that $e_1(t) = \frac{\dot{\gamma}(t)}{l}$. For $j = 2, \dots, m$, we define

$$
V_j(t) = \sin(\pi t) e_j(t).
$$

Then $V_i(0) = V_i(1) = 0$, and

$$
I(V_j, V_j) = -\int_0^1 \langle V_j, \nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} V_j + R(\dot{\gamma}, V_j)\dot{\gamma} \rangle dt = \int_0^1 \sin^2(\pi t) (\pi^2 - l^2 R(e_1, e_j, e_1, e_j)) dt.
$$

Summing over j , we get

$$
\sum_{j=2}^{m} I(V_j, V_j) = \int_0^1 \sin^2(\pi t) ((m-1)\pi^2 - l^2 \text{Ric}(e_1)) dt < 0.
$$

So there exists some $j \geq 2$ so that

$$
I(V_j, V_j) < 0.
$$

If follows that there exists $\bar{q} = \gamma(t_0)$ with $0 < t_0 < 1$ which is conjugate to p along γ . In particular, γ is not shortest. A contradiction.

Remarks. (1) One cannot weaken the condition on Ricci curvature to $Ric > 0$ or even $K > 0$. For example, consider the paraboloid

$$
\{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}.
$$

It is a surface of revolution with $K > 0$, which is not compact.

 (2) The estimate is optimal in the following sense: Let M be the standard sphere of radius $\frac{1}{\sqrt{2}}$ $\frac{1}{\kappa}$, then it has Ricci curvature $(m-1)\kappa$ and diameter $\frac{\pi}{\sqrt{\kappa}}$. (Note: the diameter here is not the standard diameter as a subset in \mathbb{R}^n .)

(3) We will prove the following result of S. Y. Cheng later: If (M, q) satisfies the conditions of the Bonnet-Myers theorem and $\text{diam}(M) = \frac{\pi}{\sqrt{\kappa}}$, then (M, g) is isometric to the standard sphere of radius $\frac{1}{\sqrt{2}}$ $\frac{1}{\kappa}$.

Corollary 1.2. Let (M, g) be a complete Riemannian manifold whose Ricci curvature is bounded below by a positive number. Then $\pi_1(M)$ is finite.

Proof. Let \overline{M} be the universal covering of M, endowed with the pull-back metric $\bar{g} = \pi^* g$. Then (\overline{M},\bar{g}) is also a complete Riemannian manifold whose Ricci curvature is bounded below by a positive number. By Bonnet-Myers theorem, \overline{M} is compact. As a consequence, $\pi : \overline{M} \to M$ has to be a finite covering. So $\pi_1(M)$ is finite. \square

It particular, we see that if M, N are compact, $\pi_1(M)$ is infinite, then $M \times N$ admits no Riemannian metric of positive Ricci curvature.

2. Synge's Theorem

Another application of the second variation formula to Riemannian manifolds with positive curvature is

Theorem 2.1 (Synge). Let (M, q) be a compact Riemannian manifold with positive sectional curvature.

- (1) If M is even dimensional and orientable, then M is simply connected.
- (2) If M is odd dimensional, then M is orientable.

Before proving the theorem, we need two lemmas:

Lemma 2.2. Let (M, g) be a compact Riemannian manifold. Then for any nontrivial free homotopy class C, there exists a closed geodesic γ whose length is minimal in C.

Proof. As an exercise. (See more details in PSet 3.)

Lemma 2.3. Let (M, g) be an orientable Riemannian manifold, and $\gamma : [a, b] \to M$ be a closed curve, i.e. $\gamma(a) = \gamma(b) := p$. Then the parallel transport $P_{a,b}^{\gamma} : T_p M \to$ T_pM has determinant 1.

Proof. In lecture 10 we have already seen that $P_{a,b}^{\gamma} \in O(T_pM)$. So it is enough to show det $P_{a,b}^{\gamma} > 0$. To prove this, we take a *positive m*-form ω on M, and let $\{e_i\}$ be a *positive* basis of T_pM , i.e.

$$
\omega(e_1,\cdots,e_m)>0.
$$

Let $e_j(t) = P_{a,t}^{\gamma}(e_j)$ be the parallel transport of $\{e_i\}$ along γ . Then

 $\omega(e_1(t), \dots, e_m(t)) \neq 0$

for all t . It follows that

$$
\omega(e_1(b), \cdots, e_m(b)) > 0.
$$

But

$$
\omega(e_1(b), \cdots, e_m(b)) = (\det P_{a,b}^{\gamma}) \omega(e_1, \cdots, e_m),
$$

et $P_{a,b}^{\gamma} > 0.$

so we must have det P_a^{γ}

Proof of Synge's Theorem. (1) Suppose M is not simply connected. Then there exists a nontrivial closed geodesic $\gamma : [0, 1] \rightarrow M$ which is minimum in its free homotopy class. Since the parallel transport $P_{0,1}^{\gamma} \in SO(T_pM)$ and satisfies

$$
P_{0,1}^{\gamma}(\dot{\gamma}(0)) = \dot{\gamma}(0),
$$

we can find $X_p \in E_p$ such that

$$
P_{0,1}^{\gamma}(X_p) = X_p,
$$

where E_p is the orthogonal complement of $\dot{\gamma}(0)$ in T_pM . (Here, we used the condition that dim M is even, so that dim E is odd!)

Now let $X(t)$ be the parallel vector field along γ with $X(0) = X_p$. Then

$$
X(1) = P_{0,1}^{\gamma}(X_p) = X_p.
$$

Thus for the variation γ_s of γ whose variation field is X, we have

$$
\frac{d^2}{dt^2}\bigg|_{t=0}E(\gamma_s)=-\int_0^1 \langle X,\nabla_{\dot{\gamma}}\nabla_{\dot{\gamma}}X+R(\dot{\gamma},X)\dot{\gamma}\rangle dt=-\int_0^1 R(\dot{\gamma},X,\dot{\gamma},X)dt<0.
$$

This contradicts with the fact that γ is minimum in its homotopy class.

 (2) Suppose M is not orientable, then there is a nontrivial free homotopy class C so that for any closed curve $\gamma : [0,1] \to M$ in C, det $P_{0,1}^{\gamma} = -1$. [Prove this!] We will take γ to be the one with minimal length in this class. Since P_0^{γ} $\phi_{0,1}^{\gamma}(\dot{\gamma}(0)) = \dot{\gamma}(0),$ we see

$$
\det P_{0,1}^{\gamma}|_E = -1,
$$

where $E = (\dot{\gamma}(0))^{\perp}$ is the orthogonal complement of $\dot{\gamma}(0)$ in T_pM . Since E is even dimensional, again we conclude that there exists $X_p \in E$ so that

$$
P_{0,1}^{\gamma}(X_p) = X_p.
$$

Now by the same argument of the proof of Synge theorem we conclude that γ is not minimum in its homotopy class, a contradiction. \Box

Corollary 2.4. If (M, g) is a compact even dimensional Riemannian manifold of positive sectional curvature, and M is not orientable, then $\pi_1(M) = \mathbb{Z}_2$.

Proof. Let \overline{M} be the orientable double covering of M, endowed with the induced pull-back metric. Then M is orientable and satisfies all the conditions in Synge theorem. It follows that \overline{M} is simply connected and thus $\pi_1(M) = \mathbb{Z}_2$.

As a consequence, $\mathbb{RP}^2 \times \mathbb{RP}^2$ admits no metric of positive sectional curvature since $\pi_1(\mathbb{RP}^2 \times \mathbb{RP}^2) = (\mathbb{Z}/2)^2$. Recall that it is still unknown whether $S^2 \times S^2$ admits a positive sectional curvature metric: that is the Hopf's conjecture.

Remark. In the odd dimensional case we cannot say too much of its fundamental group. In fact, it is well-known that S^{2n+1} can be the universal covering space of a lot of spaces of constant curvature 1.

3. Preissman's theorem

We can also study the fundamental group of negative curved manifolds.

Theorem 3.1 (Preissman). Let (M, g) be a compact Riemannian manifold with negative sectional curvature, and let $\{1\} \neq H \subset \pi_1(M)$ be a nontrivial abelian subgroup of the fundamental group. Then H is infinite cyclic.

Remarks. (1) Recall: a cyclic group is a group generated by one element.

(2) An an immediate consequence, we see that manifolds like T^m , \mathbb{RP}^m admits no metric of negative sectional curvature.

(3) The theorem was strengthened by Byers to: Under the same assumption, any nontrivial solvable subgroup of $\pi_1(M)$ is infinite cyclic.

(4) For any closed surface M_q of genus $g \geq 2$, there is Riemannian metric of constant negative sectional curvature. [We mentioned this in lecture 9]. The fundamental group of M_q is

 $\langle a_1, b_1, \cdots, a_g, b_g \mid a_1b_1a_1^{-1}b_1^{-1} \cdots a_1b_1a_1^{-1}b_1^{-1} = e \rangle.$

This group is not abelian, while all its abelian subgroups are isomorphic to \mathbb{Z} .

Before we prove the theorem, we need some preparations.

Definition 3.2. Let (M, g) be a complete simply-connected Riemannian manifold, and $\gamma : \mathbb{R} \to M$ a geodesic. An isometry $f : M \to M$ is called a translation along γ if f has no fixed point, and $f(\gamma) = \gamma$.

Let (M, q) be any complete Riemannian manifold and $\pi : \widetilde{M} \to M$ be the universal covering. We endow with \overline{M} the pull back metric π^*g . Recall that for each element $\alpha \in \pi_1(M)$, one can define a deck transformation $f_\alpha : \widetilde{M} \to \widetilde{M}$ as follows: for each $\tilde{p} \in M$, there is a loop γ based at $p = \pi(\tilde{p})$ whose homotopy class is α . Let $\tilde{\gamma}$ be the lift of γ with starting point \tilde{p} . Define $f_{\alpha}(\tilde{p})$ be the endpoint of $\tilde{\gamma}$.

One can prove that f_{α} is well-defined, is an isometry, and $f_{\beta} \circ f_{\alpha} = f_{\beta \alpha}$. Moreover, f_{α} has no fixed point if $\alpha \neq e$. Let Γ be the group of all deck transformations, then it is isomorphic to $\pi_1(M)$.

Now suppose $0 \neq \alpha \in \pi_1(M)$, and let γ be a minimal closed geodesic in the homotopy class α . Let $\tilde{\gamma}$ be a lift of γ to M.

Lemma 3.3. $f_{\alpha} : (\widetilde{M}, \widetilde{g}) \to (\widetilde{M}, \widetilde{g})$ is a translation along $\widetilde{\gamma}$.

Proof. Exerciese.

Another lemma that is needed in the proof is

Lemma 3.4. Let (M, g) be a complete simply connected Riemannian manifold of non-positive sectional curvature. Consider the geodesic triangle with vertices $p_1, p_2, p_3 \in$ M. Let a, b, c be the lengths of sides and A, B, C be the corresponding opposite angles. Then

- (1) $a^2 + b^2 2ab \cos C \leq c^2$.
- (2) $A + B + C \leq \pi$.

Further more, if the sectional curvature is negative, then these inequalities are strict.

Proof. We will prove this later.

As a consequence of this lemma, we have

Corollary 3.5. Suppose (M, g) has negative sectional curvature, then any translation $f : M \to M$ fixes only one geodesic.

Proof. Suppose there are two geodesics $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ in M such that $f(\tilde{\gamma}_i) = \tilde{\gamma}_i$. First we claim that $\tilde{\gamma}_1 \cap \tilde{\gamma}_2 = \emptyset$. Otherwise there are at least two points in $\tilde{\gamma}_1 \cap \tilde{\gamma}_2$ (since f has no fixed point). This contradicts with the fact that $\exp_{\tilde{p}}$ is a diffeomorphism for each $\tilde{p} \in M$.

Now choose $\tilde{p}_i \in \tilde{\gamma}_i$, and let $\tilde{\gamma}_3$ be minimizing geodesic connecting \tilde{p}_1 and \tilde{p}_2 . Consider the "geodesic quadrilateral" with vertices $\tilde{p}_1, \tilde{p}_2, f(\tilde{p}_1), f(\tilde{p}_2)$. Since f is an isometry, one see that the angle at \tilde{p}_1 and the angle at $f(\tilde{p}_1)$ add up to π . Similarly the angle at \tilde{p}_2 and the angle at $f(\tilde{p}_2)$ add up to π . On the other hand, one can split the "geodesic quadrilateral" to two "geodesic triangles" by connecting \tilde{p}_2 and $f(\tilde{p})$. As a consequence, the inner angles of the two "geodesic triangles" add up to at least 2π . [Why "at least"? Think about this!] This contradicts with the lemma above. \square

Proof of Preissman's theorem.

As above we denote by M the universal covering of M, and f_{α} the deck transformation described above associated to $\alpha \in \pi_1(M)$.

First fix $\alpha \in H$ and let $\tilde{\gamma}$ be the geodesic that is invariant under f_{α} . Then for any $\beta \in H$, one has $f_{\beta\alpha} = f_{\alpha\beta}$ since H is abelian. So

$$
f_{\beta}(\tilde{\gamma}) = f_{\beta}(f_{\alpha}(\tilde{\gamma})) = f_{\alpha}(f_{\beta}(\tilde{\gamma})).
$$

By the corollary above, one must have

$$
f_{\beta}(\tilde{\gamma}) = \tilde{\gamma}, \quad \forall \beta \in H.
$$

As a consequence, γ is invariant under all f_{α} 's for $\alpha \in H$.

Now we denote $\tilde{p}_0 = \tilde{\gamma}(0)$. Since $\tilde{\gamma}$ is invariant under f_β , for each $\beta \in H$, there is a unique $t_\beta \in \mathbb{R}$ so that

$$
\tilde{\gamma}(t_{\beta})=f_{\beta}(\tilde{p}_0).
$$

Note that this implies

$$
\tilde{\gamma}(t_{\beta}+t)=f_{\beta}(\tilde{\gamma}(t))
$$

for any t , since as t varies, both sides are geodesics with the same initial condition. Now we define a map $\varphi : H \to \mathbb{R}$ by

 $\varphi(\beta) = t_{\beta}$

Claim 1: φ is a group homomorphism:

For any
$$
\beta_1, \beta_2 \in H
$$
,
\n
$$
\tilde{\gamma}(t_{\beta_1} + t_{\beta_2}) = f_{\beta_1} \circ f_{\beta_2}(\tilde{p}_0) = f_{\beta_1 \beta_2}(\tilde{p}_0) = \tilde{\gamma}(t_{\beta_1 \beta_2}).
$$
\nSo we have $\varphi(\beta_1 \beta_2) = t_{\beta_1 \beta_2} = t_{\beta_1} + t_{\beta_2}$.

Claim 2: φ is injective:

Suppose $\varphi(\beta_1) = \varphi(\beta_2)$, i.e. $t_{\beta_1} = t_{\beta_2}$. Then by definition $f_{\beta_1}(\tilde{p}_0) = f_{\beta_2}(\tilde{p}_0).$

So \tilde{p}_0 is a fixed point of $f_{\beta_1}^{-1}$ $j_{\beta_1}^{-1} \circ f_{\beta_2} = f_{\beta_1^{-1}\beta_2}$. This can happen only if $\beta_1^{-1}\beta_2 = e$, i.e. $\beta_1 = \beta_2$.

Claim 3: The image of φ is not dense in R.

Pick a neighborhood U of $p = \pi(\tilde{p}_0)$ so that $\pi^{-1}(U) = \bigcup_{\delta} U_{\delta}$, where each U_{δ} is diffeomophic to U under π and they are disjoint. By shrinking U one may assume that U is a normal ball of radious r around p. Denote U_0 be the one so that $\tilde{p}_0 \in U_0$. Then for each $\beta \neq e$, $f_{\beta}(\tilde{p}_0) \notin U_0$. So we see

$$
|t_{\beta}| = d(\tilde{p}_0, f_{\beta}(\tilde{p}_0)) \ge r
$$

for any $\beta \neq e$.

As a consequence of the first two claims, H is an additive subgroup of R. But we know that any additive subgroup of $\mathbb R$ is either dense or infinite cyclic. So the theorem is proved.