LECTURE 25: THE HODGE LAPLACIAN

1. The Hodge star operator

Let \((M, g)\) be an oriented Riemannian manifold of dimension \(m\). Then in lecture 3 we have seen that for any orientation-preserving chart, the Riemannian volume form (which is independent of the choice of coordinates) is given by

\[
\omega_g = \sqrt{G} dx^1 \wedge \cdots \wedge dx^m.
\]

Now let \(p \in M\). Then the Riemannian metric \(g\) induces a dual inner product structure on \(T_p^*M\) via

\[
\langle \omega_i dx^i, \eta_j dx^j \rangle = g_{ij} \omega_i \eta_j.
\]

More generally, one can define an inner product on \(\Lambda^k T_p^*M\) as follows: For any orthogonal basis \(\theta^1, \cdots, \theta^m\) of \(T_p^*M\), we require the set

\[
\{ \theta^{i_1} \wedge \cdots \wedge \theta^{i_k} \mid i_1 < \cdots < i_k \}
\]

form an orthonormal basis of \(\Lambda^k T_p^*M\). One can check that this definition is independent of the choice of \(\theta^i\)'s. Note that in particular we have

\[
\langle \omega_g, \omega_g \rangle = 1
\]

since in normal coordinates \((g_{ij}) = I\) at \(p\).

As in the case of functions, the pointwise inner product induces an \(L^2\) inner product structure on \(\Omega^k_c(M)\) via

\[
(\omega, \eta) := \int_M \langle \omega, \eta \rangle \omega_g.
\]

To define the Hodge-Laplacian of a differential form, one need to define the so-called Hodge star operator. We first use the pointwise inner product to get an identification between \(\Lambda^k T_p^*M\) and \((\Lambda^k T_p^*M)^*\) that sends \(\beta \in \Lambda^k T_p^*M\) to

\[
L_\beta : \Lambda^k T_p^*M \to \mathbb{R} = \Lambda^m T_p^*M, \quad \alpha \mapsto \langle \alpha, \beta \rangle \omega_g.
\]

On the other hand, the wedge product gives us a non-degenerate pairing

\[
\wedge : \Lambda^k T_p^*M \times \Lambda^{m-k} T_p^*M \to \mathbb{R} = \Lambda^m T_p^*M, \quad (\alpha, \beta) \mapsto \alpha \wedge \beta.
\]

which identifies any element in \((\Lambda^k T_p^*M)^*\) as an element in \(\Lambda^{m-k} T_p^*M\). In particular, for \(\beta \in \Lambda^k T_p^*M\) one can get an element \(\star \beta \in \Lambda^{m-k} T_p^*M\) that is identified with \(L_\beta\), i.e.

\[
\alpha \wedge \star \beta = \langle \alpha, \beta \rangle \omega_g.
\]
This construction gives us a linear isomorphism
\[\star : \Lambda^k T^*_p M \to \Lambda^{m-k} T^*_p M \]
at each point. Glue these constructions together, we are able to define

Definition 1.1. The *Hodge star operator* \(\star : \Omega^k(M) \to \Omega^{m-k}(M) \) maps any \(k \)-form \(\eta \in \Omega^k(M) \) to the \((m-k) \)-form \(\star \eta \in \Omega^{m-k}(M) \) so that for any \(\omega \in \Omega^k(M) \),
\[\omega \wedge \star \eta = \langle \omega, \eta \rangle \omega_g. \]

Remark. Obviously \(\star \) is \(C^\infty(M) \)-linear.

Remark. The \(L^2 \) inner product structure on \(\Omega^k_c(M) \) can be written as
\[(\omega, \eta) = \int_M \omega \wedge \star \eta. \]

Note that by definition,
\[\star 1 = \omega_g, \quad \star \omega_g = 1, \quad \omega \wedge \star \eta = \eta \wedge \omega. \]

More generally, if we let \(\omega^1, \cdots, \omega^m \) be a (local) basis of \(T^* M \) so that
\[\omega^1 \wedge \cdots \wedge \omega^m = f \omega_g \]
is a positive \(m \)-form, then for \(i_1 < \cdots < i_k \), if we let \(j_1 < \cdots < j_{m-k} \) be the complement indeces of \(i \)'s, i.e., such that
\[\{ i_1, \cdots, i_k, j_1, \cdots, j_{m-k} \} = \{ 1, \cdots, m \}, \]
we have
\[\star (\omega^{i_1} \wedge \cdots \wedge \omega^{i_k}) = \pm \frac{\langle \omega, \omega \rangle}{f} \omega^{j_1} \wedge \cdots \wedge \omega^{j_{m-k}}, \]
where we denoted \(\omega = \omega^{i_1} \wedge \cdots \wedge \omega^{i_k} \), and the sign \(\pm \) is chosen so that
\[\omega \wedge \star \omega = \langle \omega, \omega \rangle \omega_g, \]
i.e. so that
\[\omega^{i_1} \wedge \cdots \wedge \omega^{i_k} \wedge \omega^{j_1} \wedge \cdots \wedge \omega^{j_{m-k}} = \pm \omega^1 \wedge \cdots \wedge \omega^m. \]
One can check that in this case
\[\pm = (-1)^{i_1+\cdots+i_k+1+\cdots+k}. \]

Lemma 1.2. For \(\omega \in \Omega^k(M) \), \(\star \star \omega = (-1)^{k(m-k)} \omega \).

Proof. By \(C^\infty(M) \)-linearity, we may assume without loss of generality that
\[\omega = \omega^{i_1} \wedge \cdots \wedge \omega^{i_k}, \]
where \(\omega^1, \cdots, \omega^m \) is an orthonormal basis at one point \(p \). Then the above computations show
\[\star \omega = (-1)^{i_1+\cdots+i_k+1+\cdots+k} \omega^{j_1} \wedge \cdots \wedge \omega^{j_{m-k}} \]
and thus
\[\star \star \omega = (-1)^{j_1+\cdots+j_k+1+\cdots+k}(-1)^{j_1+\cdots+j_{m-k}+1+\cdots+m-k}\omega. \]

It remains to check the following elementary identity
\[\frac{m(m+1)}{2} + \frac{k(k+1)}{2} + \frac{(m-k)(m-k+1)}{2} \equiv k(m-k) \quad (\text{mod} 2). \]

As a consequence, we see \(\star \) is in fact a linear isometry:

Corollary 1.3. For any \(\omega, \eta \in \Omega^k(M) \), one has \(\langle \star \omega, \star \eta \rangle = \langle \omega, \eta \rangle \).

Proof. We have
\[\langle \star \omega, \star \eta \rangle \omega_g = (\star \omega) \wedge (\star \eta) = (-1)^{k(m-k)}(\star \omega) \wedge \eta = \eta \wedge \star \omega = \langle \eta, \omega \rangle \omega_g. \]
So \(\langle \star \omega, \star \eta \rangle = \langle \eta, \omega \rangle = \langle \omega, \eta \rangle \).

Remark. The Hodge star operator is of particular importance in dimension 4. In fact, for \(m = 4 \) and \(k = 2 \), the linear map \(\star : \Lambda^2 T^* pM \to \Lambda^2 T^* pM \) satisfies
\[\star^2 = I. \]

So one can decompose (according to eigenvalues of \(\star \))
\[\Lambda^2 T^* pM = \Lambda^2_+ T^* pM \oplus \Lambda^2_- T^* pM. \]
Sections of \(\Lambda^2_+ T^* M \) are called self-dual 2-forms, while sections of \(\Lambda^2_- T^* M \) are called anti-self-dual 2-forms.

2. The Hodge-Laplace Operator

Using the Hodge star operator, one can define

Definition 2.1. The co-differential of \(\omega \in \Omega^k(M) \) is \(\delta \omega \in \Omega^{k-1}(M) \) defined by
\[\delta \omega = (-1)^{km+m+1} \star d \star \omega. \]

The next lemma states that when we endow all \(\Omega_c^k(M) \)'s with this \(L^2 \) structure, the co-differential operator \(\delta : \Omega_c^k(M) \to \Omega_c^{k-1}(M) \) is the adjoint of the differential operator \(d : \Omega_c^{k-1}(M) \to \Omega_c^k(M) \).

Lemma 2.2. For any \(\omega \in \Omega_c^k(M) \) and \(\eta \in \Omega_c^{k-1}(M) \),
\[\langle \omega, d \eta \rangle = \langle \delta \omega, \eta \rangle. \]

Proof. By Stokes' theorem, we have
\[\langle \omega, d \eta \rangle = (d \eta, \omega) = \int_M d \eta \wedge \star \omega = \int_M d(\eta \wedge \star \omega) - (-1)^{k-1} \eta \wedge d \star \omega = (-1)^k \int_M \eta \wedge d \star \omega \]
On the other hand, by lemma 1.2,
\[\int_M \eta \wedge (-1)^{m(k+1)+1} \ast d \ast \omega = (-1)^{km+m+1} (-1)^{(m-k+1)(k-1)} \int_M \eta \wedge d \ast \omega, \]
so the conclusion follows from the fact
\[(-1)^{km+m+1} (-1)^{(m-k+1)(k-1)} = (-1)^k. \]
□

The following formula will be useful.

Proposition 2.3. Let \(\{e_i\} \) be an orthonormal frame and \(\{\omega^i\} \) the dual frame. Let \(\nabla \) be the Levi-Civita connection. Then

1. \(d = \omega^i \wedge \nabla_{e_i} \).
2. \(\delta = -\sum_j t_{e_j} \nabla_{e_j} \).

Proof.

(1) One can check that the right hand side is independent of choice of basis. So at each point \(p \) that is fixed, with out loss of generality one may take \(e_i = \partial_i \) to be the coordinate vector field for a normal coordinate system centered at \(p \). The dual basis is then \(dx^i \). Recall that by definition, at the point \(p \) one has, for any \(i, j, k \),
\[(\nabla_{\partial_i} dx^j)(\partial_k) = \nabla_{\partial_i}(dx^j(\partial_k)) - dx^j(\nabla_{\partial_i} \partial_j) = 0. \]
So at \(p \) one has \(\nabla_{\partial_i} dx^j = 0 \) for any \(i, j \).

Now we denote
\[\bar{d} = \omega^i \wedge \nabla_{e_i} = dx^i \wedge \nabla_{\partial_i}. \]
Consider \(\eta = f dx^{i_1} \wedge \cdots \wedge dx^{i_k} \). Then at \(p \),
\[\bar{d}\eta = \frac{\partial f}{\partial x^i} dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_k} = d\eta. \]
This implies \(d = \bar{d} \).

(2) The proof is similar. We denote
\[\bar{\delta} = -\sum_j t_{e_j} \nabla_{e_j} = -\sum_j t_{\partial_j} \nabla_{\partial_j}. \]
Then at \(p \),
\[\bar{\delta}\eta = -\sum_j (-1)^{j-1} (\partial_j f) dx^{i_1} \wedge \cdots \wedge \widehat{dx^{i_j}} \wedge \cdots \wedge dx^{i_k}. \]
On the other hand, by the definition of \(\delta \) one can calculate \(\delta\eta \) and prove that at \(p \),
\[\delta\eta = \sum_j (-1)^{j} (\partial_j f) dx^{i_1} \wedge \cdots \wedge dx^{i_j} \wedge \cdots \wedge dx^{i_k}. \]
This completes the proof. □

Definition 2.4. The Hodge-Laplace operator on \(k \)-forms is
\[\Delta = d\delta + \delta d : \Omega^k(M) \to \Omega^k(M). \]
Remark. Since $d^2 = 0$, $\star^2 = \pm 1$, we immediately get
\[\delta^2 = 0. \]
As a consequence,
\[\Delta = (d + \delta)^2. \]

Example. One can check that when $k = 0$, the operator $\Delta = \delta d$ equals with the Laplace-Beltrami operator Δ that we defined in lecture 3. To see this, again we do computation in normal coordinates. Then for any $f \in C^\infty(M)$ we have
\[df = (\partial_j f) dx^j \]
and thus
\[\star df = \sum (\partial_j f) (-1)^{j-1} dx^1 \wedge \cdots \wedge \widehat{dx^j} \wedge \cdots \wedge dx^m, \]
which implies
\[d \star df = \sum \partial_j (\partial_j f) dx^1 \wedge \cdots \wedge dx^m. \]
It follows
\[\Delta f = \delta df = - \star d \star df = - \sum \partial_j (\partial_j f), \]
which is exactly the Laplace-Beltrami operator we defined in lecture 3 (but now calculated in normal coordinates).

One can also see this by applying proposition 2.3:
\[\Delta f = \delta df = - \iota_{e_j} \nabla_e df = - \text{tr}(\nabla^2 f). \]

Like the Beltrami-Laplacian, the Hodge-Laplacian also have very nice propositions:

Proposition 2.5. We have

1. $(\omega, \Delta \eta) = (\Delta \omega, \eta)$, i.e. Δ is symmetric.
2. $(\Delta \omega, \omega) = |\delta \omega|^2 + |d \omega|^2 \geq 0$, i.e. Δ is non-negative.
3. $\star \Delta = \Delta \star$.

Proof. By lemma 2.2, for any $\omega, \eta \in \Omega^k_\mathbb{C}(M),$
\[(\omega, \Delta \eta) = (\omega, d \delta \eta) + (\omega, \delta d \eta) = (\delta \omega, \delta \eta) + (d \omega, d \eta). \]
Both (1) and (2) follows.

To prove (3), we let ω be any k-form. Then
\[\star \delta \omega = (-1)^{km+m+1} \star d \star \omega = (-1)^{km+m+1} (-1)^{(m-k+1)(k-1)} d \star \omega = (-1)^k d \star \omega. \]
Similarly
\[\delta \star \omega = (-1)^{(m-k)m+m+1} d \star \omega = (-1)^{(m-k)m+m+1} (-1)^{k(m-k)} \star d \omega = (-1)^{k+1} \star d \omega. \]
So we get
\[\star d \delta \omega = (-1)^k \delta \delta \omega = \delta d \star \omega. \]
and

\[*\delta d \omega = (-1)^{k+1} d * d \omega = d \delta * \omega. \]

It follows

\[\star \Delta = \star d \delta + \star \delta d = \delta d * \omega + d \delta * = \Delta \star. \]

In problem set 1 we have seen that if \(M \) is connected, then \(\Delta f = 0 \) if and only if \(f \) is a constant function.

Corollary 2.6. \(\Delta(f \omega_g) = 0 \) if and only if \(f \) is a constant function.

Proof. This follows from

\[\Delta(f \omega_g) = \Delta * f = \star \Delta f = (\Delta f) \omega_g. \]

Definition 2.7. A \(k \)-form \(\omega \) is called harmonic if \(\Delta \omega = 0 \).

We will denote the set of all harmonic \(k \)-forms on \((M, g)\) by \(\mathcal{H}^k(M) \). It is obviously a vector space. Obviously if \(M \) is connected,

\[\mathcal{H}^0(M) \simeq \mathbb{R}, \quad \mathcal{H}^m(M) \simeq \mathbb{R}. \]

According to proposition 2.3, if \(\omega \in \Omega^k(M) \) is parallel, i.e. \(\nabla \omega = 0 \), then \(\omega \) is harmonic.

Example. Consider \(M = \mathbb{T}^m \) equipped with the standard flat metric. Then any \(k \)-form can be written as

\[\omega = \sum \omega_{i_1 \ldots i_m} dx^{i_1} \land \cdots \land dx^{i_m}. \]

It is not hard to see that each \(dx^{i_1} \land \cdots \land dx^{i_m} \) is parallel. So one can see \(\Delta \omega = 0 \) if and only if \(\Delta \omega_{i_1 \ldots i_k} = 0 \). As a consequence, we see

\[\dim \mathcal{H}^k(\mathbb{T}^m) = \binom{n}{k}. \]

The following proposition can be viewed as an alternative definition of harmonic forms: [For example, in symplectic Hodge theory, there is no \(\Delta \), however, one can still define harmonic form by this method.]

Corollary 2.8. Suppose \(M \) is closed. Then

\[\omega \in \mathcal{H}^k(M) \iff d \omega = 0, \delta \omega = 0. \]

Proof. If \(\Delta \omega = 0 \), then by proposition 2.5, one must have \(d \omega = 0, \delta \omega = 0 \).

Conversely if \(d \omega = 0, \delta \omega = 0 \), then of course \(\Delta \omega = 0 \). \(\square \)

Corollary 2.9. If \(\omega \in \mathcal{H}^k(M) \), then \(\star \omega \in \mathcal{H}^{m-k}(M) \).

Proof. \(\Delta \star \omega = \star \Delta \omega = 0 \). \(\square \)