LECTURE 25: THE HODGE LAPLACIAN

1. The Hodge star operator

Let (M, g) be an oriented Riemannian manifold of dimension m. Then in lecture 3 we have seen that for any orientation-preserving chart, the Riemannian volume form (which is independent of the choice of coordinates) is given by

$$
\omega_{g}=\sqrt{G} d x^{1} \wedge \cdots \wedge d x^{m}
$$

Now let $p \in M$. Then the Riemannian metric g induces a dual inner product structure on $T_{p}^{*} M$ via

$$
\left\langle\omega_{i} d x^{i}, \eta_{j} d x^{j}\right\rangle=g^{i j} \omega_{i} \eta_{j} .
$$

More generally, one can define an inner product on $\Lambda^{k} T_{p}^{*} M$ as follows: For any orthogonal basis $\theta^{1}, \cdots, \theta^{m}$ of $T_{p}^{*} M$, we require the set

$$
\left\{\theta^{i_{1}} \wedge \cdots \wedge \theta^{i_{k}} \mid i_{1}<\cdots<i_{k}\right\}
$$

form an orthonormal basis of $\Lambda^{k} T_{p}^{*} M$. One can check that this definition is independent of the choice of θ^{i} 's. Note that in particular we have

$$
\left\langle\omega_{g}, \omega_{g}\right\rangle=1
$$

since in normal coordinates $\left(g_{i j}\right)=I$ at p.
As in the case of functions, the pointwise inner product induces an L^{2} inner product structure on $\Omega_{c}^{k}(M)$ via

$$
(\omega, \eta):=\int_{M}\langle\omega, \eta\rangle \omega_{g}
$$

To define the Hodge-Laplacian of a differential form, one need to define the so-called Hodge star operator. We first use the pointwise inner product to get an identification between $\Lambda^{k} T_{p}^{*} M$ and $\left(\Lambda^{k} T_{p}^{*} M\right)^{*}$ that sends $\beta \in \Lambda^{k} T_{p}^{*} M$ to

$$
L_{\beta}: \Lambda^{k} T_{p}^{*} M \rightarrow \mathbb{R}=\Lambda^{m} T_{p}^{*} M, \quad \alpha \mapsto\langle\alpha, \beta\rangle \omega_{g}
$$

On the other hand, the wedge product gives us a non-degenerate pairing

$$
\wedge: \Lambda^{k} T_{p}^{*} M \times \Lambda^{m-k} T_{p}^{*} M \rightarrow \mathbb{R}=\Lambda^{m} T_{p}^{*} M, \quad(\alpha, \beta) \mapsto \alpha \wedge \beta
$$

which identifies any element in $\left(\Lambda^{k} T_{p}^{*} M\right)^{*}$ as an element in $\Lambda^{m-k} T_{p}^{*} M$. In particular, for $\beta \in \Lambda^{k} T_{p}^{*} M$ one can get an element $\star \beta \in \Lambda^{m-k} T_{p}^{*} M$ that is identified with L_{β}, i.e.

$$
\alpha \wedge \star \beta={ }_{1}\langle\alpha, \beta\rangle \omega_{g} .
$$

This construction gives us a linear isomorphism

$$
\star: \Lambda^{k} T_{p}^{*} M \rightarrow \Lambda^{m-k} T_{p}^{*} M
$$

at each point. Glue these constructions together, we are able to define
Definition 1.1. The Hodge star operator $\star: \Omega^{k}(M) \rightarrow \Omega^{m-k}(M)$ maps any k-form $\eta \in \Omega^{k}(M)$ to the $(m-k)$-form $\star \eta \in \Omega^{m-k}(M)$ so that for any $\omega \in \Omega^{k}(M)$,

$$
\omega \wedge \star \eta=\langle\omega, \eta\rangle \omega_{g} .
$$

Remark. Obviously \star is $C^{\infty}(M)$-linear.
Remark. The L^{2} inner product structure on $\Omega_{c}^{k}(M)$ can be written as

$$
(\omega, \eta)=\int_{M} \omega \wedge \star \eta
$$

Note that by definition,

$$
\star 1=\omega_{g}, \quad \star \omega_{g}=1, \quad \omega \wedge \star \eta=\eta \wedge \star \omega .
$$

More generally, if we let $\omega^{1}, \cdots, \omega^{m}$ be a (local) basis of $T^{*} M$ so that

$$
\omega^{1} \wedge \cdots \wedge \omega^{m}=f \omega_{g}
$$

is a positive m-form, then for $i_{1}<\cdots<i_{k}$, if we let $j_{1}<\cdots<j_{m-k}$ be the complement indeces of i 's, i.e., such that

$$
\left\{i_{1}, \cdots, i_{k}, j_{1}, \cdots, j_{m-k}\right\}=\{1, \cdots, m\}
$$

we have

$$
\star\left(\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}\right)= \pm \frac{\langle\omega, \omega\rangle}{f} \omega^{j_{1}} \wedge \cdots \wedge \omega^{j_{m-k}}
$$

where we denoted $\omega=\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}$, and the sign \pm is chosen so that

$$
\omega \wedge \star \omega=\langle\omega, \omega\rangle \omega_{g}
$$

i.e. so that

$$
\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}} \wedge \omega^{j_{1}} \wedge \cdots \wedge \omega^{j_{m-k}}= \pm \omega^{1} \wedge \cdots \wedge \omega^{m}
$$

One can check that in this case

$$
\pm=(-1)^{i_{1}+\cdots+i_{k}+1+\cdots+k} .
$$

Lemma 1.2. For $\omega \in \Omega^{k}(M), \star \star \omega=(-1)^{k(m-k)} \omega$.
Proof. By $C^{\infty}(M)$-linearity, we may assume without loss of generality that

$$
\omega=\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}
$$

where $\omega^{1}, \cdots, \omega^{m}$ is an orthonormal basis at one point p. Then the above computations show

$$
\star \omega=(-1)^{i_{1}+\cdots+i_{k}+1+\cdots+k} \omega^{j_{1}} \wedge \cdots \wedge \omega^{j_{m-k}}
$$

and thus

$$
\star \star \omega=(-1)^{i_{1}+\cdots+i_{k}+1+\cdots+k}(-1)^{j_{1}+\cdots+j_{m-k}+1+\cdots+m-k} \omega .
$$

It remains to check the following elementary identity

$$
\frac{m(m+1)}{2}+\frac{k(k+1)}{2}+\frac{(m-k)(m-k+1)}{2} \equiv k(m-k) \quad(\bmod 2)
$$

As a consequence, we see \star is in fact a linear isometry:
Corollary 1.3. For any $\omega, \eta \in \Omega^{k}(M)$, one has $\langle\star \omega, \star \eta\rangle=\langle\omega, \eta\rangle$.
Proof. We have

$$
\langle\star \omega, \star \eta\rangle \omega_{g}=(\star \omega) \wedge \star(\star \eta)=(-1)^{k(m-k)}(\star \omega) \wedge \eta=\eta \wedge \star \omega=\langle\eta, \omega\rangle \omega_{g} .
$$

So $\langle\star \omega, \star \eta\rangle=\langle\eta, \omega\rangle=\langle\omega, \eta\rangle$.
Remark. The Hodge star operator is of particular important in dimension 4. In fact, for $m=4$ and $k=2$, the linear map $\star: \Lambda^{2} T_{p}^{*} M \rightarrow \Lambda^{2} T_{p}^{*} M$ satisfies

$$
\star^{2}=I .
$$

So one can decompose (according to eigenvalues of \star)

$$
\Lambda^{2} T_{p}^{*} M=\Lambda_{+}^{2} T_{p}^{*} M \oplus \Lambda_{-}^{2} T_{p}^{*} M
$$

Sections of $\Lambda_{+}^{2} T^{*} M$ are called self-dual 2-forms, while sections of $\Lambda_{-}^{2} T^{*} M$ are called anti-self-dual 2-forms.

2. The Hodge-Laplace operator

Using the Hodge star operator, one can define
Definition 2.1. The co-differential of $\omega \in \Omega^{k}(M)$ is $\delta \omega \in \Omega^{k-1}(M)$ defined by

$$
\delta \omega=(-1)^{k m+m+1} \star d \star .
$$

The next lemma states that when we endow all $\Omega_{c}^{k}(M)$'s with this L^{2} structure, the co-differential operator $\delta: \Omega_{c}^{k}(M) \rightarrow \Omega_{c}^{k-1}(M)$ is the adjoint of the differential operator $d: \Omega_{c}^{k-1}(M) \rightarrow \Omega_{c}^{k}(M)$.

Lemma 2.2. For any $\omega \in \Omega_{c}^{k}(M)$ and $\eta \in \Omega_{c}^{k-1}(M)$,

$$
(\omega, d \eta)=(\delta \omega, \eta)
$$

Proof. By Stokes' theorem, we have
$(\omega, d \eta)=(d \eta, \omega)=\int_{M} d \eta \wedge \star \omega=\int_{M} d(\eta \wedge \star \omega)-(-1)^{k-1} \eta \wedge d \star \omega=(-1)^{k} \int_{M} \eta \wedge d \star \omega$

On the other hand, by lemma 1.2,

$$
\left((-1)^{k m+m+1} \star d \star \omega, \eta\right)=\int_{M} \eta \wedge(-1)^{m(k+1)+1} \star \star d \star \omega=(-1)^{k m+m+1}(-1)^{(m-k+1)(k-1)} \int_{M} \eta \wedge d \star \omega,
$$

so the conclusion follows from the fact $(-1)^{k m+m+1}(-1)^{(m-k+1)(k-1)}=(-1)^{k}$.
The following formula will be useful.
Proposition 2.3. Let $\left\{e_{i}\right\}$ be an orthonormal frame and $\left\{\omega^{i}\right\}$ the dual frame. Let ∇ be the Levi-Civita connection. Then
(1) $d=\omega^{i} \wedge \nabla_{e_{i}}$.
(2) $\delta=-\sum_{j} \iota_{e_{j}} \nabla_{e_{j}}$.

Proof. (1) One can check that the right hand side is independent of choice of basis. So at each point p that is fixed, with out loss of generality one may take $e_{i}=\partial_{i}$ to be the coordinate vector field for a normal coordinate system centered at p. The dual basis is then $d x^{i}$. Recall that by definition, at the point p one has, for any i, j, k,

$$
\left(\nabla_{\partial_{i}} d x^{j}\right)\left(\partial_{k}\right)=\nabla_{\partial_{i}}\left(d x^{j}\left(\partial_{k}\right)\right)-d x^{j}\left(\nabla_{\partial_{i}} \partial_{j}\right)=0 .
$$

So at p one has $\nabla_{\partial_{i}} d x^{j}=0$ for any i, j.
Now we denote

$$
\bar{d}=\omega^{i} \wedge \nabla_{e_{i}}=d x^{i} \wedge \nabla_{\partial_{i}}
$$

Consider $\eta=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}$. Then at p,

$$
\bar{d} \eta=\frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}=d \eta
$$

This implies $d=\bar{d}$.
(2) The proof is similar. We denote

$$
\bar{\delta}=-\sum_{j} \iota_{e_{j}} \nabla_{e_{j}}=-\sum_{j} \iota_{\partial_{j}} \nabla_{\partial_{j}} .
$$

Then at p,

$$
\bar{\delta} \eta=-\sum_{j}(-1)^{j-1}\left(\partial_{i_{j}} f\right) d x^{i_{1}} \wedge \cdots \wedge \widehat{d x^{i_{j}}} \wedge \cdots \wedge d x^{i_{k}}
$$

On the other hand, by the definition of δ one can calculate $\delta \eta$ and prove that at p,

$$
\delta \eta=\sum_{j}(-1)^{j}\left(\partial_{i_{j}} f\right) d x^{i_{1}} \wedge \cdots \wedge \widehat{d x^{i_{j}}} \wedge \cdots \wedge d x^{i_{k}}
$$

This completes the proof.
Definition 2.4. The Hodge-Laplace operator on k-forms is

$$
\Delta=d \delta+\delta d: \Omega^{k}(M) \rightarrow \Omega^{k}(M)
$$

Remark. Since $d^{2}=0, \star^{2}= \pm 1$, we immediately get

$$
\delta^{2}=0
$$

As a consequence,

$$
\Delta=(d+\delta)^{2}
$$

Example. One can check that when $k=0$, the operator $\Delta=\delta d$ equals with the Laplace-Beltrami operator Δ that we defined in lecture 3. To see this, again we do computation in normal coordinates. Then for any $f \in C^{\infty}(M)$ we have

$$
d f=\left(\partial_{j} f\right) d x^{j}
$$

and thus

$$
\star d f=\sum\left(\partial_{j} f\right)(-1)^{j-1} d x^{1} \wedge \cdots \wedge \widehat{d x^{j}} \wedge \cdots \wedge d x^{m}
$$

which implies

$$
d \star d f=\sum \partial_{j}\left(\partial_{j} f\right) d x^{1} \wedge \cdots \wedge d x^{m}
$$

It follows

$$
\Delta f=\delta d f=-\star d \star d f=-\sum \partial_{j}\left(\partial_{j} f\right)
$$

which is exactly the Laplace-Beltrami operator we defined in lecture 3 (but now calculated in normal coordinates).

One can also see this by applying proposition 2.3:

$$
\Delta f=\delta d f=-\iota_{e_{j}} \nabla_{e_{j}} d f=-\operatorname{tr}\left(\nabla^{2} f\right)
$$

Like the Beltrami-Laplacian, the Hodge-Laplacian also have very nice propositions:

Proposition 2.5. We have
(1) $(\omega, \Delta \eta)=(\Delta \omega, \eta)$, i.e. Δ is symmetric.
(2) $(\Delta \omega, \omega)=|\delta \omega|^{2}+|d \omega|^{2} \geq 0$, i.e. Δ is non-negative.
(3) $\star \Delta=\Delta \star$.

Proof. By lemma 2.2, for any $\omega, \eta \in \Omega_{c}^{k}(M)$,

$$
(\omega, \Delta \eta)=(\omega, d \delta \eta)+(\omega, \delta d \eta)=(\delta \omega, \delta \eta)+(d \omega, d \eta)
$$

Both (1) and (2) follows.
To prove (3), we let ω be any k-form. Then

$$
\star \delta \omega=(-1)^{k m+m+1} \star \star d \star \omega=(-1)^{k m+m+1}(-1)^{(m-k+1)(k-1)} d \star \omega=(-1)^{k} d \star \omega
$$

Similarly
$\delta \star \omega=(-1)^{(m-k) m+m+1} \star d \star \star \omega=(-1)^{(m-k) m+m+1}(-1)^{k(m-k)} \star d \omega=(-1)^{k+1} \star d \omega$.
So we get

$$
\star d \delta \omega=(-1)^{k} \delta \star \delta \omega=\delta d \star \omega
$$

and

$$
\star \delta d \omega=(-1)^{k+1} d \star d \omega=d \delta \star \omega .
$$

It follows

$$
\star \Delta=\star d \delta+\star \delta d=\delta d \star \omega+d \delta \star=\Delta \star .
$$

In problem set 1 we have seen that if M is connected, then $\Delta f=0$ if and only if f is a constant function.

Corollary 2.6. $\Delta\left(f \omega_{g}\right)=0$ if and only if f is a constant function.
Proof. This follows from

$$
\Delta\left(f \omega_{g}\right)=\Delta \star f=\star \Delta f=(\Delta f) \omega_{g} .
$$

Definition 2.7. A k-form ω is called harmonic if $\Delta \omega=0$.
We will denote the set of all harmonic k-forms on (M, g) by $\mathcal{H}^{k}(M)$. It is obviously a vector space. Obviously if M is connected,

$$
\mathcal{H}^{0}(M) \simeq \mathbb{R}, \quad \mathcal{H}^{m}(M) \simeq \mathbb{R}
$$

According to proposition 2.3, if $\omega \in \Omega^{k}(M)$ is parallel, i.e. $\nabla \omega=0$, then ω is harmonic.

Example. Consider $M=\mathbb{T}^{m}$ equipped with the standard flat metric. Then any k-form can be written as

$$
\omega=\sum \omega_{i_{1} \cdots i_{m}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{m}}
$$

It is not hard to see that each $d x^{i_{1}} \wedge \cdots \wedge d x^{i_{m}}$ is parallel. So one can see $\Delta \omega=0$ if and only if $\Delta \omega_{i_{1} \cdots i_{k}}=0$. As a consequence, we see

$$
\operatorname{dim} \mathcal{H}^{k}\left(T^{m}\right)=\binom{n}{k}
$$

The following proposition can be viewed as an alternative definition of harmonic forms: [For example, in symplectic Hodge theory, there is no Δ, however, one can still define harmonic form by this method.]
Corollary 2.8. Suppose M is closed. Then

$$
\omega \in \mathcal{H}^{k}(M) \Longleftrightarrow d \omega=0, \delta \omega=0
$$

Proof. If $\Delta \omega=0$, then by proposition 2.5 , one must have $d \omega=0, \delta \omega=0$.
Conversely if $d \omega=0, \delta \omega=0$, then of course $\Delta \omega=0$.
Corollary 2.9. If $\omega \in \mathcal{H}^{k}(M)$, then $\star \omega \in \mathcal{H}^{m-k}(M)$.
Proof. $\Delta \star \omega=\star \Delta \omega=0$.

