LECTURE 25: THE HODGE LAPLACIAN

1. THE HODGE STAR OPERATOR

Let (M, g) be an oriented Riemannian manifold of dimension m. Then in lecture
3 we have seen that for any orientation-preserving chart, the Riemannian volume
form (which is independent of the choice of coordinates) is given by

wg:\/gdxl/M--/\da:m.
Now let p € M. Then the Riemannian metric g induces a dual inner product
structure on T;M via
(wida', n;da’)y = g7 win;.

More generally, one can define an inner product on AkTI;k M as follows: For any
orthogonal basis 0!, ---,0™ of T’ » M, we require the set

{0 N NG |y < oo < g}
form an orthonormal basis of AkT;M . One can check that this definition is inde-
pendent of the choice of #"’s. Note that in particular we have
(wg,wg) =1
since in normal coordinates (g;;) = I at p.

As in the case of functions, the pointwise inner product induces an L? inner
product structure on QF(M) via

)= [ G,

To define the Hodge-Laplacian of a differential form, one need to define the
so-called Hodge star operator. We first use the pointwise inner product to get an
identification between A"T*M and (A*TM)* that sends 3 € A*T M to

Ly : N"TIM —» R =A"T"M, o (a, Bw,.
On the other hand, the wedge product gives us a non-degenerate pairing
A AYTIM x A"TM — R =AM, (o, B) = a A B.
which identifies any element in (A*T M)* as an element in A™~*T* M. In particular,
for 8 € A"T7 M one can get an element x3 € A™ FT*M that is identified with Lg,
ie.

aAxf = (a, fw,.
1
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This construction gives us a linear isomorphism
*: AMTEM — A RTEM
at each point. Glue these constructions together, we are able to define

Definition 1.1. The Hodge star operator x : QF(M) — Q™ *(M) maps any k-form
n € QF(M) to the (m — k)-form xn € Q™ *(M) so that for any w € Q*(M),

w A *1 = (w, N)wy.
Remark. Obviously  is C*°(M)-linear.

Remark. The L? inner product structure on QF(M) can be written as

= fonon

Note that by definition,
*l=wy, *wy=1 wA*xn=nA*w.
More generally, if we let w!, -+, w™ be a (local) basis of T*M so that
wl/\---/\wm:fwg

is a positive m-form, then for ¢y < --- < 4, if we let j; < --- < j_r be the
complement indeces of i’s, i.e., such that

{ila"' 7i/€7j17"' 7jm—/€} = {1’ 7m}’

(w}w) it

where we denoted w = w® A --- Aw®, and the sign £ is chosen so that

we have
KW A Aw') =+ A Awlmk,
w A *w = (W, w)wg,
i.e. so that
WEA AW AW A AR = ot A A W™
One can check that in this case
+ = (_1)i1+"‘+ik+1+"'+k'

Lemma 1.2. For w € Q¥(M), xxw = (—1)Fm=ky,

Proof. By C*°(M)-linearity, we may assume without loss of generality that
Ww=wlA - Aw,
where w!, -+, w™ is an orthonormal basis at one point p. Then the above compu-

tations show
*W = (—1)Zl+m+zk+1+'"+kw31 Ao A wlm—k
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and thus

(—1)ittint bt ()it etk mek

xR W = W.

It remains to check the following elementary identity
m(m+1) k(k+1) (m—Fk)(m—Fk+1)
2 + 2 * 2

=k(m — k) (mod2).

As a consequence, we see * is in fact a linear isometry:
Corollary 1.3. For any w,n € Q¥(M), one has (xw,*n) = (w,n).
Proof. We have
(s, sy = (x0) A x(r) = (=D (1) Ay = 1 Ao = {1, )iy,
So (xw,*n) = (n,w) = (w, 7). O

Remark. The Hodge star operator is of particular important in dimension 4. In fact,
for m = 4 and k = 2, the linear map x : AQT;M — A2T;M satisfies

K2 =1.
So one can decompose (according to eigenvalues of *)
2%k 2 * 2 *
AN TIM = ATy M @ AT M.
Sections of A2T*M are called self-dual 2-forms, while sections of A2T*M are called

anti-self-dual 2-forms.

2. THE HODGE-LAPLACE OPERATOR

Using the Hodge star operator, one can define
Definition 2.1. The co-differential of w € QF(M) is dw € QF~1(M) defined by

dw = (—=1)Fmrm+l gy

The next lemma states that when we endow all Q(M)’s with this L? structure,
the co-differential operator § : QF(M) — QF~1(M) is the adjoint of the differential
operator d : QF1(M) — QF(M).

Lemma 2.2. For any w € Q¥(M) and n € Q¥1(M),
(w, dn) = (6w, n).

Proof. By Stokes’ theorem, we have

(w,dn) = (dn,w) = /Mdn/\*w = /Md(n/\*w)—(—l)kln/\d*w = (—1)'“/M7]/\d*w
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On the other hand, by lemma 1.2,

((—1)km+m+1*d*w, 77) _ /M77/\(_1)m(k—&—l)+1**d*(/u _ (_1)km+m+1(_1)(m—k+1)(k—1) /M

so the conclusion follows from the fact (—1)km+m+1(_1)m=k+Dk-1) — (_1)k ]

The following formula will be useful.

Proposition 2.3. Let {e;} be an orthonormal frame and {w'} the dual frame. Let
V be the Levi-Civita connection. Then

(1) d=w'AV,,.

(2) 0=—2";t;Ve;-

Proof. (1) One can check that the right hand side is independent of choice of basis.
So at each point p that is fixed, with out loss of generality one may take e; = 0; to
be the coordinate vector field for a normal coordinate system centered at p. The
dual basis is then da’. Recall that by definition, at the point p one has, for any
/L” j? k"
(Vazdl"])(gk) = Vai(dﬂfj (ak)) - d,iEj (Vaz(?]) = 0.
So at p one has Vy.dax/ = 0 for any i, j.
Now we denote B
d=w" AV, =dz" AV,
Consider n = fdz®™ A --- Adx™. Then at p,

—9f . .
dn = —fdx’ Adx™ A ANdx'™ = dn.
ox’
This implies d = d.
(2) The proof is similar. We denote

5 = —Zbejvej = —Zbajv(aj.
J

j
Then at p,
on==> (=1)7(0;, f)da" A+ A dz's A -+ A da'™,

J
On the other hand, by the definition of § one can calculate o1 and prove that at p,

on =" (~1)(8;, )z A+ Adats Ao A da
J

This completes the proof. O
Definition 2.4. The Hodge-Laplace operator on k-forms is

A =d§+dd: QF(M) — QF(M).
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Remark. Since d* = 0,+*> = &1, we immediately get
6% = 0.
As a consequence,

A= (d+0)%

Ezxample. One can check that when & = 0, the operator A = dd equals with the
Laplace-Beltrami operator A that we defined in lecture 3. To see this, again we do
computation in normal coordinates. Then for any f € C°°(M) we have

df = (0;f)da’
and thus .
*wdf = (0, ) (=1 dat A Adad A Ada™,
which implies
dxdf = 0;(0;f)dx’ A+ Ada™,
It follows
Af=6df = —xdxdf ==Y 9;(0;f),

which is exactly the Laplace-Beltrami operator we defined in lecture 3 (but now
calculated in normal coordinates).

One can also see this by applying proposition 2.3:
Af =0df = —1;Ve,df = —tr(V2£).

Like the Beltrami-Laplacian, the Hodge-Laplacian also have very nice proposi-
tions:

Proposition 2.5. We have

(1) (w,An) = (Aw,n), i.e. A is symmetric.

(2) (Aw,w) = |6w|* + |dw|* > 0, i.e. A is non-negative.

(3) *A = Ax.
Proof. By lemma 2.2, for any w,n € QF(M),

(w, An) = (w, ddn) + (w, ddn) = (dw, dn) + (dw, dn).

Both (1) and (2) follows.

To prove (3), we let w be any k-form. Then

*ow = (—1)FmFmHl sd s w = (=1)kmtmH () kDG g = (—1)Rd % w.
Similarly

Sxw = (=1)m=Rmtmtl gy g = (—1)m=Rmtmtl )=k gy, = (=1)¥ % dw.

So we get

*xddw = (—1)F0 % dw = 6d * w
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and

*xodw = (=1 d % dw = db * w.

It follows
*/A\ = xdd + *x0d = dd x w + dox = A % .

O

In problem set 1 we have seen that if M is connected, then Af = 0 if and only
if f is a constant function.

Corollary 2.6. A(fw,) =0 if and only if f is a constant function.

Proof. This follows from
A(fwy) = Ax f=+Af = (Af)w,.

Definition 2.7. A k-form w is called harmonic if Aw = 0.

We will denote the set of all harmonic k-forms on (M,g) by H*(M). It is
obviously a vector space. Obviously if M is connected,

HOM) ~R, H™(M)~R.

According to proposition 2.3, if w € QF(M) is parallel, i.e. Vw = 0, then w is
harmonic.

Example. Consider M = T™ equipped with the standard flat metric. Then any
k-form can be written as

W= Zwil...imdac“ Ao Adx'™,

It is not hard to see that each dxz® A --- A dx' is parallel. So one can see Aw = 0
if and only if Aw;,..;, = 0. As a consequence, we see

dim H*(T™) = <Z>

The following proposition can be viewed as an alternative definition of harmonic
forms: [For example, in symplectic Hodge theory, there is no A, however, one can
still define harmonic form by this method.]

Corollary 2.8. Suppose M 1is closed. Then
w € H M) <= dw=0,6w=0.
Proof. If Aw = 0, then by proposition 2.5, one must have dw = 0, dw = 0.
Conversely if dw = 0, dw = 0, then of course Aw = 0. 0
Corollary 2.9. If w € HF(M), then xw € H™*(M).

Proof. A xw =*xAw = 0. OJ



