
LECTURE 25: THE HODGE LAPLACIAN

1. The Hodge star operator

Let (M, g) be an oriented Riemannian manifold of dimension m. Then in lecture
3 we have seen that for any orientation-preserving chart, the Riemannian volume
form (which is independent of the choice of coordinates) is given by

ωg =
√
Gdx1 ∧ · · · ∧ dxm.

Now let p ∈ M . Then the Riemannian metric g induces a dual inner product
structure on T ∗pM via

〈ωidxi, ηjdxj〉 = gijωiηj.

More generally, one can define an inner product on ΛkT ∗pM as follows: For any

orthogonal basis θ1, · · · , θm of T ∗pM , we require the set

{θi1 ∧ · · · ∧ θik | i1 < · · · < ik}
form an orthonormal basis of ΛkT ∗pM . One can check that this definition is inde-

pendent of the choice of θi’s. Note that in particular we have

〈ωg, ωg〉 = 1

since in normal coordinates (gij) = I at p.

As in the case of functions, the pointwise inner product induces an L2 inner
product structure on Ωk

c (M) via

(ω, η) :=

∫
M

〈ω, η〉ωg.

To define the Hodge-Laplacian of a differential form, one need to define the
so-called Hodge star operator. We first use the pointwise inner product to get an
identification between ΛkT ∗pM and (ΛkT ∗pM)∗ that sends β ∈ ΛkT ∗pM to

Lβ : ΛkT ∗pM → R = ΛmT ∗pM, α 7→ 〈α, β〉ωg.
On the other hand, the wedge product gives us a non-degenerate pairing

∧ : ΛkT ∗pM × Λm−kT ∗pM → R = ΛmT ∗pM, (α, β) 7→ α ∧ β.

which identifies any element in (ΛkT ∗pM)∗ as an element in Λm−kT ∗pM . In particular,

for β ∈ ΛkT ∗pM one can get an element ?β ∈ Λm−kT ∗pM that is identified with Lβ,
i.e.

α ∧ ?β = 〈α, β〉ωg.
1
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This construction gives us a linear isomorphism

? : ΛkT ∗pM → Λm−kT ∗pM

at each point. Glue these constructions together, we are able to define

Definition 1.1. The Hodge star operator ? : Ωk(M)→ Ωm−k(M) maps any k-form
η ∈ Ωk(M) to the (m− k)-form ?η ∈ Ωm−k(M) so that for any ω ∈ Ωk(M),

ω ∧ ?η = 〈ω, η〉ωg.

Remark. Obviously ? is C∞(M)-linear.

Remark. The L2 inner product structure on Ωk
c (M) can be written as

(ω, η) =

∫
M

ω ∧ ?η.

Note that by definition,

?1 = ωg, ?ωg = 1, ω ∧ ?η = η ∧ ?ω.
More generally, if we let ω1, · · · , ωm be a (local) basis of T ∗M so that

ω1 ∧ · · · ∧ ωm = fωg

is a positive m-form, then for i1 < · · · < ik, if we let j1 < · · · < jm−k be the
complement indeces of i’s, i.e., such that

{i1, · · · , ik, j1, · · · , jm−k} = {1, · · · ,m},
we have

?(ωi1 ∧ · · · ∧ ωik) = ±〈ω, ω〉
f

ωj1 ∧ · · · ∧ ωjm−k ,

where we denoted ω = ωi1 ∧ · · · ∧ ωik , and the sign ± is chosen so that

ω ∧ ?ω = 〈ω, ω〉ωg,
i.e. so that

ωi1 ∧ · · · ∧ ωik ∧ ωj1 ∧ · · · ∧ ωjm−k = ±ω1 ∧ · · · ∧ ωm.
One can check that in this case

± = (−1)i1+···+ik+1+···+k.

Lemma 1.2. For ω ∈ Ωk(M), ? ? ω = (−1)k(m−k)ω.

Proof. By C∞(M)-linearity, we may assume without loss of generality that

ω = ωi1 ∧ · · · ∧ ωik ,
where ω1, · · · , ωm is an orthonormal basis at one point p. Then the above compu-
tations show

?ω = (−1)i1+···+ik+1+···+kωj1 ∧ · · · ∧ ωjm−k
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and thus

? ? ω = (−1)i1+···+ik+1+···+k(−1)j1+···+jm−k+1+···+m−kω.

It remains to check the following elementary identity

m(m+ 1)

2
+
k(k + 1)

2
+

(m− k)(m− k + 1)

2
≡ k(m− k) (mod2).

�

As a consequence, we see ? is in fact a linear isometry:

Corollary 1.3. For any ω, η ∈ Ωk(M), one has 〈?ω, ?η〉 = 〈ω, η〉.

Proof. We have

〈?ω, ?η〉ωg = (?ω) ∧ ?(?η) = (−1)k(m−k)(?ω) ∧ η = η ∧ ?ω = 〈η, ω〉ωg.

So 〈?ω, ?η〉 = 〈η, ω〉 = 〈ω, η〉. �

Remark. The Hodge star operator is of particular important in dimension 4. In fact,
for m = 4 and k = 2, the linear map ? : Λ2T ∗pM → Λ2T ∗pM satisfies

?2 = I.

So one can decompose (according to eigenvalues of ?)

Λ2T ∗pM = Λ2
+T
∗
pM ⊕ Λ2

−T
∗
pM.

Sections of Λ2
+T
∗M are called self-dual 2-forms, while sections of Λ2

−T
∗M are called

anti-self-dual 2-forms.

2. The Hodge-Laplace operator

Using the Hodge star operator, one can define

Definition 2.1. The co-differential of ω ∈ Ωk(M) is δω ∈ Ωk−1(M) defined by

δω = (−1)km+m+1 ? d ? .

The next lemma states that when we endow all Ωk
c (M)’s with this L2 structure,

the co-differential operator δ : Ωk
c (M) → Ωk−1

c (M) is the adjoint of the differential
operator d : Ωk−1

c (M)→ Ωk
c (M).

Lemma 2.2. For any ω ∈ Ωk
c (M) and η ∈ Ωk−1

c (M),

(ω, dη) = (δω, η).

Proof. By Stokes’ theorem, we have

(ω, dη) = (dη, ω) =

∫
M

dη∧?ω =

∫
M

d(η∧?ω)−(−1)k−1η∧d?ω = (−1)k
∫
M

η∧d?ω
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On the other hand, by lemma 1.2,

((−1)km+m+1?d?ω, η) =

∫
M

η∧(−1)m(k+1)+1??d?ω = (−1)km+m+1(−1)(m−k+1)(k−1)
∫
M

η∧d?ω,

so the conclusion follows from the fact (−1)km+m+1(−1)(m−k+1)(k−1) = (−1)k. �

The following formula will be useful.

Proposition 2.3. Let {ei} be an orthonormal frame and {ωi} the dual frame. Let
∇ be the Levi-Civita connection. Then

(1) d = ωi ∧∇ei.
(2) δ = −

∑
j ιej∇ej .

Proof. (1) One can check that the right hand side is independent of choice of basis.
So at each point p that is fixed, with out loss of generality one may take ei = ∂i to
be the coordinate vector field for a normal coordinate system centered at p. The
dual basis is then dxi. Recall that by definition, at the point p one has, for any
i, j, k,

(∇∂idx
j)(∂k) = ∇∂i(dx

j(∂k))− dxj(∇∂i∂j) = 0.

So at p one has ∇∂idx
j = 0 for any i, j.

Now we denote

d̄ = ωi ∧∇ei = dxi ∧∇∂i .

Consider η = fdxi1 ∧ · · · ∧ dxik . Then at p,

d̄η =
∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik = dη.

This implies d = d̄.

(2) The proof is similar. We denote

δ̄ = −
∑
j

ιej∇ej = −
∑
j

ι∂j∇∂j .

Then at p,

δ̄η = −
∑
j

(−1)j−1(∂ijf)dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxik .

On the other hand, by the definition of δ one can calculate δη and prove that at p,

δη =
∑
j

(−1)j(∂ijf)dxi1 ∧ · · · ∧ d̂xij ∧ · · · ∧ dxik .

This completes the proof. �

Definition 2.4. The Hodge-Laplace operator on k-forms is

∆ = dδ + δd : Ωk(M)→ Ωk(M).
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Remark. Since d2 = 0, ?2 = ±1, we immediately get

δ2 = 0.

As a consequence,

∆ = (d+ δ)2.

Example. One can check that when k = 0, the operator ∆ = δd equals with the
Laplace-Beltrami operator ∆ that we defined in lecture 3. To see this, again we do
computation in normal coordinates. Then for any f ∈ C∞(M) we have

df = (∂jf)dxj

and thus

?df =
∑

(∂jf)(−1)j−1dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm,
which implies

d ? df =
∑

∂j(∂jf)dx1 ∧ · · · ∧ dxm.
It follows

∆f = δdf = − ? d ? df = −
∑

∂j(∂jf),

which is exactly the Laplace-Beltrami operator we defined in lecture 3 (but now
calculated in normal coordinates).

One can also see this by applying proposition 2.3:

∆f = δdf = −ιej∇ejdf = −tr(∇2f).

Like the Beltrami-Laplacian, the Hodge-Laplacian also have very nice proposi-
tions:

Proposition 2.5. We have

(1) (ω,∆η) = (∆ω, η), i.e. ∆ is symmetric.
(2) (∆ω, ω) = |δω|2 + |dω|2 ≥ 0, i.e. ∆ is non-negative.
(3) ?∆ = ∆?.

Proof. By lemma 2.2, for any ω, η ∈ Ωk
c (M),

(ω,∆η) = (ω, dδη) + (ω, δdη) = (δω, δη) + (dω, dη).

Both (1) and (2) follows.

To prove (3), we let ω be any k-form. Then

?δω = (−1)km+m+1 ? ?d ? ω = (−1)km+m+1(−1)(m−k+1)(k−1)d ? ω = (−1)kd ? ω.

Similarly

δ ? ω = (−1)(m−k)m+m+1 ? d ? ?ω = (−1)(m−k)m+m+1(−1)k(m−k) ? dω = (−1)k+1 ? dω.

So we get

?dδω = (−1)kδ ? δω = δd ? ω
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and
?δdω = (−1)k+1d ? dω = dδ ? ω.

It follows
?∆ = ?dδ + ?δd = δd ? ω + dδ? = ∆ ? .

�

In problem set 1 we have seen that if M is connected, then ∆f = 0 if and only
if f is a constant function.

Corollary 2.6. ∆(fωg) = 0 if and only if f is a constant function.

Proof. This follows from

∆(fωg) = ∆ ? f = ?∆f = (∆f)ωg.

�

Definition 2.7. A k-form ω is called harmonic if ∆ω = 0.

We will denote the set of all harmonic k-forms on (M, g) by Hk(M). It is
obviously a vector space. Obviously if M is connected,

H0(M) ' R, Hm(M) ' R.
According to proposition 2.3, if ω ∈ Ωk(M) is parallel, i.e. ∇ω = 0, then ω is
harmonic.

Example. Consider M = Tm equipped with the standard flat metric. Then any
k-form can be written as

ω =
∑

ωi1···imdx
i1 ∧ · · · ∧ dxim .

It is not hard to see that each dxi1 ∧ · · · ∧ dxim is parallel. So one can see ∆ω = 0
if and only if ∆ωi1···ik = 0. As a consequence, we see

dimHk(Tm) =

(
n

k

)
.

The following proposition can be viewed as an alternative definition of harmonic
forms: [For example, in symplectic Hodge theory, there is no ∆, however, one can
still define harmonic form by this method.]

Corollary 2.8. Suppose M is closed. Then

ω ∈ Hk(M)⇐⇒ dω = 0, δω = 0.

Proof. If ∆ω = 0, then by proposition 2.5, one must have dω = 0, δω = 0.

Conversely if dω = 0, δω = 0, then of course ∆ω = 0. �

Corollary 2.9. If ω ∈ Hk(M), then ?ω ∈ Hm−k(M).

Proof. ∆ ? ω = ?∆ω = 0. �


