LECTURE 25: THE HODGE LAPLACIAN

1. The Hodge star operator

Let (M, g) be an oriented Riemannian manifold of dimension m. Then in lecture 3 we have seen that for any orientation-preserving chart, the Riemannian volume form (which is independent of the choice of coordinates) is given by

$$\omega_g = \sqrt{G} dx^1 \wedge \dots \wedge dx^m$$

Now let $p \in M$. Then the Riemannian metric g induces a dual inner product structure on T_p^*M via

$$\langle \omega_i dx^i, \eta_j dx^j \rangle = g^{ij} \omega_i \eta_j.$$

More generally, one can define an inner product on $\Lambda^k T_p^* M$ as follows: For any orthogonal basis $\theta^1, \dots, \theta^m$ of $T_p^* M$, we require the set

$$\{\theta^{i_1} \wedge \cdots \wedge \theta^{i_k} \mid i_1 < \cdots < i_k\}$$

form an orthonormal basis of $\Lambda^k T_p^* M$. One can check that this definition is independent of the choice of θ^i 's. Note that in particular we have

$$\langle \omega_g, \omega_g \rangle = 1$$

since in normal coordinates $(g_{ij}) = I$ at p.

As in the case of functions, the pointwise inner product induces an L^2 inner product structure on $\Omega_c^k(M)$ via

$$(\omega,\eta) := \int_M \langle \omega,\eta \rangle \omega_g$$

To define the Hodge-Laplacian of a differential form, one need to define the so-called Hodge star operator. We first use the pointwise inner product to get an identification between $\Lambda^k T_p^* M$ and $(\Lambda^k T_p^* M)^*$ that sends $\beta \in \Lambda^k T_p^* M$ to

$$L_{\beta}: \Lambda^{k} T_{p}^{*} M \to \mathbb{R} = \Lambda^{m} T_{p}^{*} M, \quad \alpha \mapsto \langle \alpha, \beta \rangle \omega_{g}.$$

On the other hand, the wedge product gives us a non-degenerate pairing

$$\wedge : \Lambda^k T_p^* M \times \Lambda^{m-k} T_p^* M \to \mathbb{R} = \Lambda^m T_p^* M, \quad (\alpha, \beta) \mapsto \alpha \wedge \beta.$$

which identifies any element in $(\Lambda^k T_p^* M)^*$ as an element in $\Lambda^{m-k} T_p^* M$. In particular, for $\beta \in \Lambda^k T_p^* M$ one can get an element $\star \beta \in \Lambda^{m-k} T_p^* M$ that is identified with L_{β} , i.e.

$$\alpha \wedge \star \beta = \langle \alpha, \beta \rangle \omega_g.$$

This construction gives us a linear isomorphism

$$\star: \Lambda^k T^*_p M \to \Lambda^{m-k} T^*_p M$$

at each point. Glue these constructions together, we are able to define

Definition 1.1. The Hodge star operator $\star : \Omega^k(M) \to \Omega^{m-k}(M)$ maps any k-form $\eta \in \Omega^k(M)$ to the (m-k)-form $\star \eta \in \Omega^{m-k}(M)$ so that for any $\omega \in \Omega^k(M)$,

$$\omega \wedge \star \eta = \langle \omega, \eta \rangle \omega_q.$$

Remark. Obviously \star is $C^{\infty}(M)$ -linear.

Remark. The L^2 inner product structure on $\Omega_c^k(M)$ can be written as

$$(\omega,\eta) = \int_M \omega \wedge \star \eta$$

Note that by definition,

$$\star 1 = \omega_g, \quad \star \omega_g = 1, \quad \omega \wedge \star \eta = \eta \wedge \star \omega.$$

More generally, if we let $\omega^1, \dots, \omega^m$ be a (local) basis of T^*M so that

$$\omega^1 \wedge \dots \wedge \omega^m = f\omega_g$$

is a positive *m*-form, then for $i_1 < \cdots < i_k$, if we let $j_1 < \cdots < j_{m-k}$ be the complement indeces of *i*'s, i.e., such that

$$\{i_1, \cdots, i_k, j_1, \cdots, j_{m-k}\} = \{1, \cdots, m\}$$

we have

$$\star(\omega^{i_1}\wedge\cdots\wedge\omega^{i_k})=\pm\frac{\langle\omega,\omega\rangle}{f}\omega^{j_1}\wedge\cdots\wedge\omega^{j_{m-k}},$$

where we denoted $\omega = \omega^{i_1} \wedge \cdots \wedge \omega^{i_k}$, and the sign \pm is chosen so that

$$\omega \wedge \star \omega = \langle \omega, \omega \rangle \omega_g,$$

i.e. so that

$$\omega^{i_1} \wedge \dots \wedge \omega^{i_k} \wedge \omega^{j_1} \wedge \dots \wedge \omega^{j_{m-k}} = \pm \omega^1 \wedge \dots \wedge \omega^m.$$

One can check that in this case

$$\pm = (-1)^{i_1 + \dots + i_k + 1 + \dots + k}.$$

Lemma 1.2. For $\omega \in \Omega^k(M)$, $\star \star \omega = (-1)^{k(m-k)}\omega$.

Proof. By $C^{\infty}(M)$ -linearity, we may assume without loss of generality that

$$\omega = \omega^{i_1} \wedge \dots \wedge \omega^{i_k},$$

where $\omega^1, \cdots, \omega^m$ is an orthonormal basis at one point p. Then the above computations show

$$\star \omega = (-1)^{i_1 + \dots + i_k + 1 + \dots + k} \omega^{j_1} \wedge \dots \wedge \omega^{j_{m-k}}$$

and thus

$$\star \star \omega = (-1)^{i_1 + \dots + i_k + 1 + \dots + k} (-1)^{j_1 + \dots + j_{m-k} + 1 + \dots + m - k} \omega.$$

It remains to check the following elementary identity

$$\frac{m(m+1)}{2} + \frac{k(k+1)}{2} + \frac{(m-k)(m-k+1)}{2} \equiv k(m-k) \quad (\text{mod}2).$$

As a consequence, we see \star is in fact a linear isometry:

Corollary 1.3. For any $\omega, \eta \in \Omega^k(M)$, one has $\langle \star \omega, \star \eta \rangle = \langle \omega, \eta \rangle$.

Proof. We have

$$\langle \star \omega, \star \eta \rangle \omega_g = (\star \omega) \wedge \star (\star \eta) = (-1)^{k(m-k)} (\star \omega) \wedge \eta = \eta \wedge \star \omega = \langle \eta, \omega \rangle \omega_g.$$

So $\langle \star \omega, \star \eta \rangle = \langle \eta, \omega \rangle = \langle \omega, \eta \rangle.$

Remark. The Hodge star operator is of particular important in dimension 4. In fact, for m = 4 and k = 2, the linear map $\star : \Lambda^2 T_p^* M \to \Lambda^2 T_p^* M$ satisfies

$$\star^2 = I.$$

So one can decompose (according to eigenvalues of \star)

$$\Lambda^2 T_p^* M = \Lambda_+^2 T_p^* M \oplus \Lambda_-^2 T_p^* M.$$

Sections of $\Lambda^2_+ T^* M$ are called *self-dual* 2-forms, while sections of $\Lambda^2_- T^* M$ are called *anti-self-dual* 2-forms.

2. The Hodge-Laplace operator

Using the Hodge star operator, one can define

Definition 2.1. The *co-differential* of $\omega \in \Omega^k(M)$ is $\delta \omega \in \Omega^{k-1}(M)$ defined by $\delta \omega = (-1)^{km+m+1} \star d \star.$

The next lemma states that when we endow all $\Omega_c^k(M)$'s with this L^2 structure, the co-differential operator $\delta: \Omega_c^k(M) \to \Omega_c^{k-1}(M)$ is the *adjoint* of the differential operator $d: \Omega_c^{k-1}(M) \to \Omega_c^k(M)$.

Lemma 2.2. For any $\omega \in \Omega_c^k(M)$ and $\eta \in \Omega_c^{k-1}(M)$, $(\omega, d\eta) = (\delta \omega, \eta).$

Proof. By Stokes' theorem, we have

$$(\omega, d\eta) = (d\eta, \omega) = \int_M d\eta \wedge \star \omega = \int_M d(\eta \wedge \star \omega) - (-1)^{k-1} \eta \wedge d \star \omega = (-1)^k \int_M \eta \wedge d \star \omega$$

On the other hand, by lemma 1.2,

$$((-1)^{km+m+1} \star d \star \omega, \eta) = \int_{M} \eta \wedge (-1)^{m(k+1)+1} \star \star d \star \omega = (-1)^{km+m+1} (-1)^{(m-k+1)(k-1)} \int_{M} \eta \wedge d \star \omega,$$

so the conclusion follows from the fact $(-1)^{km+m+1} (-1)^{(m-k+1)(k-1)} = (-1)^{k}.$

The following formula will be useful.

Proposition 2.3. Let $\{e_i\}$ be an orthonormal frame and $\{\omega^i\}$ the dual frame. Let ∇ be the Levi-Civita connection. Then

(1)
$$d = \omega^i \wedge \nabla_{e_i}$$
.
(2) $\delta = -\sum_j \iota_{e_j} \nabla_{e_j}$.

Proof. (1) One can check that the right hand side is independent of choice of basis. So at each point p that is fixed, with out loss of generality one may take $e_i = \partial_i$ to be the coordinate vector field for a normal coordinate system centered at p. The dual basis is then dx^i . Recall that by definition, at the point p one has, for any i, j, k,

$$(\nabla_{\partial_i} dx^j)(\partial_k) = \nabla_{\partial_i} (dx^j(\partial_k)) - dx^j (\nabla_{\partial_i} \partial_j) = 0.$$

So at p one has $\nabla_{\partial_i} dx^j = 0$ for any i, j.

Now we denote

$$\bar{d} = \omega^i \wedge \nabla_{e_i} = dx^i \wedge \nabla_{\partial_i}.$$

Consider $\eta = f dx^{i_1} \wedge \cdots \wedge dx^{i_k}$. Then at p,

$$\bar{d}\eta = \frac{\partial f}{\partial x^i} dx^i \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} = d\eta.$$

This implies $d = \overline{d}$.

(2) The proof is similar. We denote

$$\bar{\delta} = -\sum_{j} \iota_{e_j} \nabla_{e_j} = -\sum_{j} \iota_{\partial_j} \nabla_{\partial_j}.$$

Then at p,

$$\bar{\delta}\eta = -\sum_{j} (-1)^{j-1} (\partial_{i_j} f) dx^{i_1} \wedge \dots \wedge \widehat{dx^{i_j}} \wedge \dots \wedge dx^{i_k}.$$

On the other hand, by the definition of δ one can calculate $\delta \eta$ and prove that at p,

$$\delta\eta = \sum_{j} (-1)^{j} (\partial_{i_{j}} f) dx^{i_{1}} \wedge \dots \wedge \widehat{dx^{i_{j}}} \wedge \dots \wedge dx^{i_{k}}.$$

This completes the proof.

Definition 2.4. The *Hodge-Laplace operator* on *k*-forms is

$$\Delta = d\delta + \delta d : \Omega^k(M) \to \Omega^k(M).$$

Remark. Since $d^2 = 0, \star^2 = \pm 1$, we immediately get

 $\delta^2 = 0.$

As a consequence,

$$\Delta = (d+\delta)^2.$$

Example. One can check that when k = 0, the operator $\Delta = \delta d$ equals with the Laplace-Beltrami operator Δ that we defined in lecture 3. To see this, again we do computation in normal coordinates. Then for any $f \in C^{\infty}(M)$ we have

$$df = (\partial_j f) dx^j$$

and thus

$$\star df = \sum (\partial_j f) (-1)^{j-1} dx^1 \wedge \dots \wedge \widehat{dx^j} \wedge \dots \wedge dx^m,$$

which implies

$$d \star df = \sum \partial_j (\partial_j f) dx^1 \wedge \dots \wedge dx^m.$$

It follows

$$\Delta f = \delta df = -\star d \star df = -\sum \partial_j (\partial_j f),$$

which is exactly the Laplace-Beltrami operator we defined in lecture 3 (but now calculated in normal coordinates).

One can also see this by applying proposition 2.3:

$$\Delta f = \delta df = -\iota_{e_j} \nabla_{e_j} df = -\mathrm{tr}(\nabla^2 f).$$

Like the Beltrami-Laplacian, the Hodge-Laplacian also have very nice propositions:

Proposition 2.5. We have

- (1) $(\omega, \Delta \eta) = (\Delta \omega, \eta)$, *i.e.* Δ is symmetric.
- (2) $(\Delta \omega, \omega) = |\delta \omega|^2 + |d\omega|^2 \ge 0$, i.e. Δ is non-negative.
- (3) $\star \Delta = \Delta \star$.

Proof. By lemma 2.2, for any $\omega, \eta \in \Omega_c^k(M)$,

$$(\omega, \Delta \eta) = (\omega, d\delta \eta) + (\omega, \delta d\eta) = (\delta \omega, \delta \eta) + (d\omega, d\eta).$$

Both (1) and (2) follows.

To prove (3), we let ω be any k-form. Then

$$\star \delta \omega = (-1)^{km+m+1} \star \star d \star \omega = (-1)^{km+m+1} (-1)^{(m-k+1)(k-1)} d \star \omega = (-1)^k d \star \omega.$$

Similarly

$$\delta \star \omega = (-1)^{(m-k)m+m+1} \star d \star \star \omega = (-1)^{(m-k)m+m+1} (-1)^{k(m-k)} \star d\omega = (-1)^{k+1} \star d\omega.$$

So we get

$$\star d\delta\omega = (-1)^k \delta \star \delta\omega = \delta d \star \omega$$

and

$$\star \delta d\omega = (-1)^{k+1} d \star d\omega = d\delta \star \omega.$$

It follows

$$\star \Delta = \star d\delta + \star \delta d = \delta d \star \omega + d\delta \star = \Delta \star .$$

In problem set 1 we have seen that if M is connected, then $\Delta f = 0$ if and only if f is a constant function.

Corollary 2.6. $\Delta(f\omega_a) = 0$ if and only if f is a constant function.

Proof. This follows from

$$\Delta(f\omega_g) = \Delta \star f = \star \Delta f = (\Delta f)\omega_g.$$

Definition 2.7. A k-form ω is called *harmonic* if $\Delta \omega = 0$.

We will denote the set of all harmonic k-forms on (M, g) by $\mathcal{H}^k(M)$. It is obviously a vector space. Obviously if M is connected,

$$\mathcal{H}^0(M) \simeq \mathbb{R}, \quad \mathcal{H}^m(M) \simeq \mathbb{R}$$

According to proposition 2.3, if $\omega \in \Omega^k(M)$ is parallel, i.e. $\nabla \omega = 0$, then ω is harmonic.

Example. Consider $M = \mathbb{T}^m$ equipped with the standard flat metric. Then any k-form can be written as

$$\omega = \sum \omega_{i_1 \cdots i_m} dx^{i_1} \wedge \cdots \wedge dx^{i_m}.$$

It is not hard to see that each $dx^{i_1} \wedge \cdots \wedge dx^{i_m}$ is parallel. So one can see $\Delta \omega = 0$ if and only if $\Delta \omega_{i_1 \cdots i_k} = 0$. As a consequence, we see

$$\dim \mathcal{H}^k(T^m) = \binom{n}{k}.$$

The following proposition can be viewed as an alternative definition of harmonic forms: For example, in symplectic Hodge theory, there is no Δ , however, one can still define harmonic form by this method.]

Corollary 2.8. Suppose M is closed. Then

$$\omega \in \mathcal{H}^k(M) \Longleftrightarrow d\omega = 0, \delta\omega = 0.$$

Proof. If $\Delta \omega = 0$, then by proposition 2.5, one must have $d\omega = 0, \delta \omega = 0$.

Conversely if $d\omega = 0$, $\delta\omega = 0$, then of course $\Delta\omega = 0$.

Corollary 2.9. If $\omega \in \mathcal{H}^k(M)$, then $\star \omega \in \mathcal{H}^{m-k}(M)$.

Proof. $\Delta \star \omega = \star \Delta \omega = 0.$