
LECTURE 27: THE BOCHNER TECHNIQUE

1. Bochner’s Technique

Let ω be a k-form. One can think of ω as a (0, k)-tensor. Recall ∇ω is then a
(0, k + 1) tensor, and ∇2ω is a (0, k + 2) tensor. Let {ei} be an orthonormal frame.
In what follows we will always denote {ωi} the dual coframe of {ei}. We define

tr(∇2ω)(· · · ) :=
∑

(∇2ω)(· · · , ei, ei).

Obviously the definition is independent of the choice of an orthonormal frame {ei}.

Lemma 1.1. tr(∇2ω) =
∑(
∇ei∇eiω −∇∇eiei

ω
)
.

Proof. One can check the right hand side is also independent of the choice of or-
thonormal frames [In the computation we see ∇ei∇eiω depends on the choice of
orthonormal frame]: If we let {fi} be another orthonormal frame, then ei = cjifj for

some orthogonal matrix (cji ). So
∑

i c
j
ic

k
i = δjk and thus∑

i

∇ei∇eiω =
∑
i,j,k

∇cji fj
∇cki fk

ω

=
∑
i,j,k

cjifj(c
k
i )∇fkω +

∑
k

∇fk∇fkω.

Similarly one can check∑
i

∇∇eiei
ω =

∑
i,j,k

cjifj(c
k
i )∇fkω +

∑
k

∇∇fk
fkω.

So to prove the lemma, it is enough to prove the formula in a particular frame.
To make the computation as easy as possible, we will use the normal frame around
a point p. Then at p, ∇eiej = 0 for all i, j. In the following computations we will
choose · · · to be e′js. Then at p,

∇2ω(· · · , ei, ei) = (∇ei∇ω)(· · · , ei)
= ei ((∇ω)(· · · , ei))− (∇ω)(·,∇ei ·, ·, ei)
= ei ((∇ω)(· · · , ei))
= ei((∇eiω)(· · · )).

On the other hand, at p we also have

(∇ei∇eiω)(· · · ) = ei((∇eiω)(· · · ))− (∇eiω)(·,∇ei ·, ·) = ei((∇eiω)(· · · )).
So the formula follows. �

1



2 LECTURE 27: THE BOCHNER TECHNIQUE

Theorem 1.2 (Weitzenböck formula). For any k-form ω,

∆ω = −tr(∇2ω) + ωi ∧ ιejR(ei, ej)ω.

Proof. Similarly one can check that the right hand side is independent of the choice
of orthonormal frame. So we only need to do the computations at one point p using
a normal frame {ei} centered at p. Since ∇eiej = 0, we get (c.f. Lecture 5)

∇ei(C(ej ⊗∇ejω)) = C(∇ei(ej ⊗∇ejω)) = C(ej ⊗∇ei∇ejω).

Recall

d = ωi ∧∇ei , δ = −
∑
j

ιej∇ej ,

so together with the fact ∇ejω
i = 0 we get

∆ω = dδω + δdω

= −ωi ∧∇ei(ιej∇ejω)− ιej∇ej(ω
i ∧∇eiω)

= −ωi ∧ ιej∇ei∇ejω − ιej(ωi ∧∇ej∇eiω)

= −ωi ∧ ιej∇ei∇ejω −∇ei∇eiω + ωi ∧ ιej∇ej∇eiω

= −tr(∇2ω) + ωi ∧ ιejR(ei, ej)ω.

�

As a consequence, we have

Proposition 1.3 (Bochner). For any k-form,

−1

2
∆|ω|2 = −〈∆ω, ω〉+ |∇ω|2 + F (ω),

where F (ω) = 〈ωi ∧ ιejR(ei, ej)ω, ω〉.

Proof. Again let’s do computation in local normal coordinates. We have

−〈∆ω, ω〉+ F (ω) = 〈tr(∇2ω), ω〉 =
〈∑

∇ei∇eiω, ω
〉

=
∑
∇ei〈∇eiω, ω〉 − 〈∇eiω,∇eiω〉

=
1

2

∑
∇ei∇ei(〈ω, ω〉|)− |∇ω|2

= −1

2
∆|ω|2 − |∇ω|2.

�

Now suppose k = 1, i.e. ω is a 1-form. Then

〈(R(X, Y )ω)(Z) = [(−∇X∇Y +∇Y∇X +∇[X,Y ])ω](Z) = −ω(R(X, Y )Z)
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since

(∇X∇Y ω)(Z) = X((∇Y ω)(Z))− (∇Y ω)(∇XZ)

= X(Y (ω(Z)))−X(ω(∇YZ))− Y (ω(∇XZ)) + ω(∇Y∇XZ)

and
(∇[X,Y ]ω)(Z) = [X, Y ](ω(Z))− ω(∇[X,Y ]Z).

So if we denote ]ω be the vector field corresponds to ω that we introduced in lecture
1, then with respect to orthonormal frame, ]ω = 〈ω, ωi〉ei. So

F (ω) = 〈ωi ∧ ιejR(ei, ej)ω, ω〉 =
(
ιejR(ei, ej)ω

)
〈ωi, ω〉

= −ω(R(ei, ej)ej)〈ωi, ω〉
= −〈]ω,R(ei, ej)ej〉〈ωi, ω〉
= −〈]ω,R(]ω, ej)ej〉
= Ric(]ω, ]ω).

In other words, we get

Corollary 1.4. For any 1-form ω,

−1

2
∆|ω|2 = −〈∆ω, ω〉+ |∇ω|2 +Ric(]ω, ]ω).

Now we are ready to prove

Theorem 1.5 (Bochner). Let (M, g) be a closed oriented RIemannian manifold.

(1) If Ric ≥ 0 on M , then any harmonic 1-form ω is parallel, i.e. ∇ω = 0.
(2) If Ric ≥ 0 on M but Ric > 0 at one point, then there is no non-trivial

harmonic 1-form.

Proof. Recall from lecture 3 that for any function f ,
∫
M

∆fdx = 0. Apply this to
f = |ω|2, where ω is a harmonic 1-form on M , we get

0 =

∫
M

(
|∇ω|2 +Ric(]ω, ]ω)

)
dx ≥ 0.

So if Ric ≥ 0 we must have ∇ω = 0, i.e. ω is parallel; if Ric > 0 we must have
]ω = 0, i.e. ω = 0. �

Combine the result with Hodge theorem Hk ' Hk
dR(M), we immediately get the

following theorem on the Betti number b1 = dimH1
dR(M):

Corollary 1.6. Let (M, g) be a closed oriented Riemannian manifold.

(1) If Ric ≥ 0 on M , then b1(M) ≤ dimM .
(2) If Ric ≥ 0 on M but Ric > 0 at one point, then b1(M) = 0.

Proof. Case (1) follows from the fact that any parallel 1-form is determined by its
value at one point. Case (2) is clear. �
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Remark. For higher Betti number,

• The curvature operator R : Λ2TM → Λ2TM is defined as

R(ei ∧ ej) = Rijklek ∧ el,

where {ei} is a local orthonormal frame. One can check that the definition
is independent of the choice of {ei}’s. Moreover, it is symmetric:

〈R(X ∧ Y ), Z ∧W 〉 = 〈X ∧ Y,R(Z ∧W )〉.

So the eigenvalues of R are real numbers. We say (M, g) has nonnegative
(positive) curvature operator if all eigenvalues of R are nonnegative (posi-
tive). Moreover, one can show that if R is nonnegative (positive), then the
sectional curvature is nonnegative (positive). Similarly one can prove

Theorem 1.7. Let (M, g) be a closed oriented Riemannian manifold.
(1) If R is nonnegative, then any harmonic k-form is parallel. In particular,

bk(M) ≤
(
m
k

)
.

(2) If R is nonnegative and is postive at one point, then there is no non-
trivial harmonic k-form. In particular, bk(M) = 0 for 0 < k < m.

• People conjectured that if K > 0, then b2(M) ≤ 1. Note that this conjecture
implies Hopf’s problem.

For vector fields, we have a similar formula:

Theorem 1.8. Let X be a vector field so that [X is a closed 1-form,

−1

2
∆|X|2 = |∇X|2 + 〈∇(divX), X〉+Ric(X,X).

Proof. One just apply corollary 1.4 to ω = [X. It is not hard to check |ω|2 = |X|2
and |∇ω|2 = |∇X|2. So the formula follows from

〈∆([X), [X〉 = 〈dδ([X), [X〉 = 〈∇δ([X), X〉

and the fact [Prove this!] divX = −δ([X). �

For any smooth function f on M , the gradient field ∇f satisfies the condition
since [(∇f) = df . So one gets

Corollary 1.9. For any smooth function f ,

−1

2
∆|∇f |2 = |∇2f |2 − 〈∇(∆f),∇f〉+Ric(∇f,∇f).
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2. Eigenvalues of the Laplacian

Let (M, g) be a closed oriented Riemannian manifold. We call a number λ an
eigenvalue of ∆, if there exists a smooth function u 6= 0 so that

∆u = λu.

We have seen from PSet 1 that

• All eigenvalues of ∆ are non-negative real numbers.
• λ = 0 is always an eigenvalue, whose eigenfunctions are constant functions.
• If u1 and u2 are eigenfunctions of different eigenvalues, then u1 ⊥ u2.

Obviously the first and the third fact can easily be extended to the Hodge Laplcian,
and the second fact should be modified: the eigenspace that corresponds to the
eigenvalue 0 is exactly the space H of harmonic k-forms.

Now with Hodge decomposition we can say more on the eigenvalues. Last time
we have seen that ∆ is invertible on H⊥, and the inverse G is a compact operator.
So according to the structural theory of the spectrum of compact operators, we see
that the eigenvalues of G (restricted to H⊥) must be a sequence of postive numbers
that tends to 0, each eigenvalue is of finite multiplicity, and 0 is the only limit point.
Moreover, the eigenfunctions can be chosen to be an orthonormal basis of the whole
space. As a consequence, we get

Theorem 2.1. The eigenvalues of ∆ form an increasing sequence that tends to ∞:

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤→∞.

Moreover, each eigenvalue has finite multiplicity, and one can choose an eigenbasis
{u1, u2, u3, · · · } which form a complete orthonormal basis of L2(M).

For the case of functions, i.e. the Laplace-Beltrami operator, since 0 is always
an eigenvalue of multiplicity 1, one usually denote the eigenvalue sequence as

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞.

The first non-zero eigenvalue λ1 is quite interesting. Finally let’s apply Bochner’s
formula to prove a lower bound estimate (and a rigidity theorem) for λ1.

Theorem 2.2 (Lichnerowitz). Let (M, g) be a closed Riemannian manifold with
Ric ≥ (m− 1)C for some C > 0. Then the first eigenvalue

λ1 ≥ mC.

Proof. First by Schwartz inequality, for any function f we have

|∇2f |2 ≥ 1

m
(tr(∇2f))2 =

1

m
(∆f)2.
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So if we take f = u be an eigenfunction, i.e. ∆u = λu, and apply corollary 1.9, we
get

(1) −1

2
∆|∇u|2 ≥ λ

m
u∆u− λ〈∇u,∇u〉+Ric(∇u,∇u).

Integrate over M and apply the Green’s formula
∫
M
u∆udx =

∫
M
|∇u|2dx we get

0 ≥
∫
M

(
λ

m
− λ+ (m− 1)C

)
|∇u|2dx.

This implies
λ

m
− λ+ (m− 1)C ≤ 0,

i.e.
λ ≥ mC.

�

One can prove that the first eigenvalue of the standard sphere Sm is m. In fact,
this is the only case where λ1 = m if (M, g) satisfies the conditions in the above
theorem.

Theorem 2.3 (Obata). Let (M, g) be a closed Riemannian manifold with Ric ≥
(m−1)C for some C > 0. If λ1 = mC, then (M, g) is isometric to the round sphere
(Sm( 1√

C
), ground).

Proof. Without loss of generality we may assume C = 1. If λ1 = m, then from the
proof above we see

Ric(∇u,∇u) = (m− 1)|∇u|2.
Since ∆(u2) = 2u∆u− 2|∇u|2 (see PSet 1), from (1) we get

−1

2
∆
(
|∇u|2 + u2

)
≥ u∆u−m|∇u|2 + (m− 1)|∇u|2 − u∆u+ |∇u|2 = 0.

It follows ∆ (|∇u|2 + u2) ≡ 0 since its integral over M is 0. In other words,

|∇u|2 + u2 = constant.

We normalize u so that maxM u2 = 1. Since ∇u = 0 at the maximum/minimum
points of u, we get

|∇u|2 + u2 = 1 and max
M

u = −min
M

= 1.

Now let p, q ∈ M be points such that u(p) = −1, u(q) = 1. Let l = d(p, q) and
let γ : [0, l]→M be a normal geodesic from p to q. Let f(t) = u(γ(t)). Then

|f ′(t)|√
1− f 2(t)

≤ |∇u(γ(t))|√
1− u(γ(t))2

= 1.

Integrating, we get
π ≤ d(p, q).
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So diam(M, g) ≥ π. But by Bonnet-Meyer, diam(M, g) ≤ π. So diam(M, g) = π.
Finally by Cheng’s maximal diameter theorem, (M, g) is isomorphic to the standard
sphere. �

Spectral geometry is the branch of differential geometry that studies the relations
between the spectrum of the Laplace-type operator and the underline geometry.
There are many many beautiful results that have been proved, and at the meantime
there are also many many open problems to be studied in the future.


