
LECTURE 3: SMOOTH FUNCTIONS

1. Smooth Functions

Definition 1.1. Let (M,A) be a smooth manifold, and f : M → R a function.

(1) We say f is smooth at p ∈ M if there exists a chart {ϕα, Uα, Vα} ∈ A with
p ∈ Uα, such that the function f ◦ ϕ−1α : Vα → R is smooth at ϕα(p).

(2) We say f is a smooth function on M if it is smooth at every x ∈M .

Remark. Suppose f ◦ ϕ−1α is smooth at ϕ(p). Let {ϕβ, Uβ, Vβ} be another chart in A
with p ∈ Uβ. Then by the compatibility of charts, the function

f ◦ ϕ−1β = (f ◦ ϕ−1α ) ◦ (ϕα ◦ ϕ−1β )

must be smooth at ϕβ(p). So the smoothness of a function is independent of the choice
of charts in the given atlas.

Remark. According to the chain rule, it is easy to see that if f : M → R is smooth at
p ∈M , and h : R→ R is smooth at f(p), then h ◦ f is smooth at p.

We will denote the set of all smooth functions on M by C∞(M). Note that this is a
(commutative) algebra, i.e. it is a vector space equipped with a (commutative) bilinear
“multiplication operation”: If f, g are smooth, so are af + bg and fg; moreover, the
multiplication is commutative, associative and satisfies the usual distributive laws.

Example. Each coordinate function fi(x
1, · · · , xn+1) = xi is a smooth function on Sn,

since

fi ◦ ϕ−1± (y1, · · · , yn) =

{
2yi

1+|y|2 , 1 ≤ i ≤ n

±1−|y|2
1+|y|2 , i = n+ 1

are smooth functions on Rn.

Now suppose f ∈ C∞(M). As usual, the support of f is by definition the set

supp(f) = {p ∈M | f(p) 6= 0}.
We say that f is compactly supported, denoted by f ∈ C∞0 (M), if the support of f is a
compact subset in M . Obviously

• If f, g ∈ C∞0 (M), then af + bg ∈ C∞0 (M).
• If f ∈ C∞0 (M) and g ∈ C∞(M), then fg ∈ C∞0 (M).

So C∞0 (M) is an ideal of of the algebra C∞(M). Note that if M is compact, then any
smooth function is compactly supported.
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Example (Bump function). A bump function (sometimes also called a test function) is
a compactly supported smooth function, which is usually supposed to be non-negative,
no more than 1, and equals to 1 on a given compact set.

Here is a how we construct a bump function on Rn: We will first define two auxiliary
functions f1 and f2 on R. Then we define the bump function f3 on Rn. In what follows
we list the definition of fk in the left, and list the properties of fk in the right. The
smoothness and properties of fk follows from that of fk−1:

f1(x) =

{
e−1/x, x > 0
0, x ≤ 0

=⇒ f1(x) =

{
∈ (0, 1), x > 0,
0, x ≤ 0,

f2(x) =
f1(x)

f1(x) + f1(1− x)
=⇒ f2(x) =

 0, x ≤ 0,
∈ (0, 1), 0 < x < 1,
1, x ≥ 1

f3(x) = f2(2− |x|) =⇒ f3(x) =

 0, |x| ≥ 2,
∈ (0, 1), 1 < |x| < 2,
1, |x| ≤ 1.

We have seen the graph of f1. Here are the graphs of f2 and f3 (with n = 1):

With the help of the Euclidean bump functions, we can construct bump functions
on any smooth manifold with prescribed support and prescribed “equal to one region”:

Theorem 1.2. Let M be a smooth manifold, A ⊂M is a compact subset, and U ⊂M
an open subset that contains A. Then there is a bump function ϕ ∈ C∞0 (M) so that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on A and supp(ϕ) ⊂ U .

Proof. [The idea of the proof: Cover the compact set A by finitely many small pieces,
where each piece is contained in one (carefully chosen) chart, so that one can copy the
“Euclidean bump function” that we constructed above to such pieces.]

For each q ∈ A, there is a chart {ϕq, Uq, Vq} near q so that Uq ⊂ U and Vq contains

the open ball B3(0) of radius 3 centered at 0 in Rn.1 Let Ũq = ϕ−1q (B1(0)), and let

fq(p) =

{
f3(ϕq(p)), p ∈ Uq,
0, p /∈ Uq.

1Think about this: Why one can find such a chart which is compatible with given charts?
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Then fq ∈ C∞0 (M), supp(fq) ⊂ Up and f ≡ 1 on Ũq. (Which assumption do we need
here?)

Now the family of open sets {Ũq}q∈A is an open cover of A. Since A is compact,

there is a finite sub-cover {Ũq1 , · · · , ŨqN}. Let ψ =
∑N

i=1 fqi . Then ψ is a smooth and
compactly supported function on M so that ψ ≥ 1 on A and supp(ψ) ⊂ U . It follows
that the function ϕ(p) = f2(ψ(p)) satisfies all the conditions we want. �

Here is what such a bump function will look like:

As a simple consequence, we see that the vector space C∞0 (M) (and thus C∞(M))
is infinitely dimensional (assuming dimM > 0).

2. Partition of unity

As we have just seen, for a compact subset K ⊂ M , one can always cover it by
finitely many nice neighborhoods on which we can construct nice “local” functions. By
adding these (finitely many) local functions, we can get nice global functions on M that
behaves nicely on K. It turns out that the same idea applies to the whole manifold
M : we can generate an infinite collection of smooth functions on M , and add them
to get a global smooth function, provide that near each point, there are only finitely
many functions in our collection that are nonzero. More importantly, we can use such a
collection of functions to “glue” geometric/analytic objects that can be defined locally
using charts.

Definition 2.1. Let M be a smooth manifold, and {Uα} an open cover of M . A
partition of unity (P.O.U. in brief) subordinate to the cover {Uα} is a collection of
smooth functions {ρα} so that

(1) 0 ≤ ρα ≤ 1 for all α.
(2) supp(ρα) ⊂ Uα for all α.
(3) each point p ∈M has a neighborhood which intersects supp(ρα) for only finitely

many α.
(4)

∑
α ρα(p) = 1 for all p ∈M .

Remark. Two consequences of the local finiteness condition (3): Let denote by Wp a
neighborhood of p which intersect only finitely many supp(ρα)’s.
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• Since {Wp}p∈M is an open cover of M , and since M is second countable, one
can find countably many Wpi ’s which also cover M . Since each Wpi intersect
only finitely many supp(ρα)’s, we conclude that there are only countable many
ρα’s whose support are non-empty. So even if we may start with uncountably
many open sets, the P.O.U. automatically “delete” most of them so that only
countably many of them are left (which still form an open cover of M).
• For each p, on the open set Wp the sum in (4) [which looks like an uncountable

sum, or maybe a countable infinite sum in view of the previous paragraph] is
in fact a finite sum.

P.O.U. is one of the main tools in this course. Next time we will prove the following
fundamental theorem:

Theorem 2.2 (Existence of P.O.U.). Let M be a smooth manifold, and {Uα} an open
cover of M . Then there exists a P.O.U. subordinate to {Uα}.

Locally each manifold looks like Rn, so that one have rich mathematics on it.
P.O.U. is the tool that can “glue” local smooth objects in a global smooth object. We
will see many such examples in the future. For example, we will define integrals of
differential forms in local charts, and use P.O.U. to define the integral of a differential
form on the whole manifold.

To apply P.O.U., one usually need to carefully choose an open cover. To illustrate
this, we give a couple examples below.

As a first consequence of P.O.U., we generalize Theorem 1.2 to closed subsets:

Corollary 2.3. Let M be a smooth manifold, A ⊂ M is a closed subset, and U ⊂ M
an open subset that contains A. Then there is a “bump” function ϕ ∈ C∞(M) so that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on A and supp(ϕ) ⊂ U .

Proof. Obviously {U,M\A} is an open cover of M . Let {ρ1, ρ2} be a P.O.U. subordinate
to this open cover. Then the function ϕ = ρ1 is what we need: ρ1 is smooth, 0 ≤ ρ1 ≤ 1,
supp(ρ1) ⊂ U , and finally ρ1 = 1 on A since ρ2 = 0 on A. �

As another application of P.O.U., next time we will prove the following

Theorem 2.4 (Whitney Approximation Theorem). LetM be a smooth manifold. Then
for any continuous function g : M → R and any positive continuous function δ : M →
R>0, there exists a smooth function f : M → R so that |f(p) − g(p)| < δ(p) holds for
all p ∈M .

[Here is the idea of the proof: For each p one can find a tiny small open set Up
containing p so that g is “almost constant” on Up. Then on Up one can approximate g
by the constant function f(q) = g(p) (for any q ∈ Up). Then “glue” all these constant
functions together via a P.O.U. ρp subordinate to the open cover {Up}. ]


