LECTURE 4: PARTITION OF UNITY

1. Existence of P.O.U.

We will prove the following fundamental theorem:

Theorem 1.1 (Existence of P.O.U.). Let M be a smooth manifold, and $\{U_{\alpha}\}$ an open cover of M. Then there exists a P.O.U. subordinate to $\{U_{\alpha}\}$.

In other words, we need to find a family $\{\rho_{\alpha}\}\$ of smooth functions so that

- (1) $0 \le \rho_{\alpha} \le 1$ for all α .
- (2) supp $(\rho_{\alpha}) \subset U_{\alpha}$ for all α .
- (3) each point $p \in M$ has a neighborhood which intersects supp (ρ_{α}) for only finitely many α .
- (4) $\sum_{\alpha} \rho_{\alpha}(p) = 1$ for all $p \in M$.

The proof depends on the following technical lemma.

Lemma 1.2. Let M be any topological manifold. For any open cover $\mathcal{U} = \{U_{\alpha}\}$ of M, one can find two countable family of open covers $\mathcal{V} = \{V_j\}$ and $\mathcal{W} = \{W_j\}$ of M so that

- For each j, \overline{V}_j is compact and $\overline{V}_j \subset W_j$.
- W is a refinement of U: For each j, there is an $\alpha = \alpha(j)$ so that $W_j \subset U_\alpha$.
- W is a locally finite cover: Any $p \in M$ has a neighborhood W such that $W \cap W_i \neq \emptyset$ for only finitely many W_i 's.

Remark. A topological space X is called paracompact if every open cover admits a locally finite open refinement.

We will first prove Theorem 1.1, then prove Lemma 1.2.

Proof of Theorem 1.1. [Please compare the first paragraph of this proof with the proof of Theorem 1.2 in Lecture 3.] Since \overline{V}_j is compact and $\overline{V}_j \subset W_j$, according to Theorem 1.2 in Lecture 3 we can find nonnegative functions $\varphi_j \in C_0^{\infty}(M)$ so that $0 \leq \varphi_j \leq 1$, $\varphi_j \equiv 1$ on \overline{V}_j and $\sup(\varphi_j) \subset W_j$. Since \mathcal{W} is a locally finite cover, the function

$$\varphi = \sum_{j} \varphi_{j}$$

is a well-defined smooth function on M. Since each φ_j is nonnegative, and \mathcal{V} is a cover of M, φ is strictly positive on M. It follows that the functions

$$\psi_j = \frac{\varphi_j}{\varphi}$$

are smooth and satisfy $0 \le \psi_j \le 1$ and $\sum_j \psi_j = 1$.

Next let's re-index the family $\{\psi_j\}$ to get the demanded P.O.U. For each j, we fix an index $\alpha(j)$ so that $W_j \subset U_{\alpha(j)}$, and define

$$\rho_{\alpha} = \sum_{\alpha(j)=\alpha} \psi_j.$$

Note that the right hand side is a finite sum near each point, so it does define a smooth function. According to Problem Set 1 part 2 problem 4,

$$\operatorname{supp} \rho_{\alpha} = \overline{\bigcup_{\alpha(j)=\alpha}} \operatorname{supp} \psi_j = \bigcup_{\alpha(j)=\alpha} \overline{\operatorname{supp} \psi_j} \subset U_{\alpha}.$$

Clearly the family $\{\rho_{\alpha}\}$ is a P.O.U. subordinate to $\{U_{\alpha}\}$.

It remains to prove Lemma 1.2. In particular, we want to prove the existence of locally finite open refinement. The proof is quite geometric:

First we prove

Lemma 1.3. For any topological manifold M, there exists a countable collection of open sets $\{X_i\}$ so that

- (1) For each j, the closure \overline{X}_j is compact.
- (2) For each j, $\overline{X}_i \subset X_{i+1}$.
- (3) $M = \bigcup_j X_j$.

Proof. Since M is second countable, there is a countable basis of the topology of M. Out of this countable collection of open sets, we pick those that have compact closures, and denote them by Y_1, Y_2, \cdots . Since M is locally Euclidean, it is easy to see that $\mathcal{Y} = \{Y_j\}$ is an open cover of M.

We let $X_1 = Y_1$. Since \mathcal{Y} is an open cover of \overline{X}_1 which is compact, there exist finitely many open sets Y_{i_1}, \dots, Y_{i_k} so that

$$\overline{X}_1 \subset Y_{i_1} \cup \cdots \cup Y_{i_k}$$
.

Let

$$X_2 = Y_2 \cup Y_{i_1} \cup \cdots \cup Y_{i_k}.$$

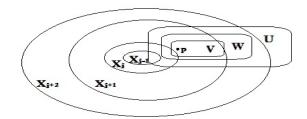
Obviously \overline{X}_2 is compact. Repeat this procedure again and again, we could get a sequence of open sets X_1, X_2, X_3, \cdots . Obviously the sequence satisfies (1) and (2). It satisfies (3) since $X_k \supset \bigcup_{i=1}^k Y_i$

Remark. Such a collection of subsets is called an exhaustion of M.

Proof of Lemma 1.2. For each $p \in M$, there is an j and an $\alpha(p)$ so that $p \in \overline{X}_{j+1} \setminus X_j$ and $p \in U_{\alpha(p)}$. Since M is locally Euclidean, one can always choose open neighborhoods V_p, W_p of p so that \overline{V}_p is compact and

$$\overline{V}_p \subset W_p \subset U_{\alpha(p)} \cap (X_{j+2} \setminus \overline{X}_{j-1}).$$

Now for each j, since the "stripe" $\overline{X}_{j+1} \setminus X_j$ is compact, one can choose finitely many points $p_1^j, \dots, p_{k_j}^j$ so that $V_{p_1^j}, \dots, V_{p_{k_j}^j}$ is an open cover of $\overline{X}_{j+1} \setminus X_j$. Denote all



these $V_{p_k^j}$'s by V_1, V_2, \dots , and the corresponding $W_{p_k^j}$'s by W_1, W_2, \dots . Then $\mathcal{V} = \{V_k\}$ and $\mathcal{W} = \{W_k\}$ are open covers of M that satisfies all the conditions in Lemma 1.2. For example, the local finiteness property of \mathcal{W} follows from the fact that there are only finitely many W_k 's (that correspond to j and j-1 above) intersect $X_{j+1} \setminus \overline{X}_{j-1}$. \square

We end with two questions:

- Where did we use the second countable condition in proving P.O.U.?
- Where did we use the Hausdorff condition in proving P.O.U.?

2. An application: Whitney Approximation Theorem

As another application of P.O.U., we prove the following

Theorem 2.1 (Whitney Approximation Theorem). Let M be a smooth manifold. Then for any continuous function $g: M \to \mathbb{R}$ and any positive continuous function $\delta: M \to \mathbb{R}_{>0}$, there exists a smooth function $f: M \to \mathbb{R}$ so that $|f(p) - g(p)| < \delta(p)$ holds for all $p \in M$.

In fact we will prove a stronger version of this theorem. Let $A \subset M$ be any closed set. We say a function $g: M \to \mathbb{R}$ is *smooth on* A if there exists an open set $U \supset A$ and a smooth function g_0 defined on U so that $g_0 = g$ on A. [As a consequence, any function g is smooth on any single point set $\{p\}$, although it may not be smooth at g.]

Theorem 2.2 (Whitney Approximation Theorem). Let M be a smooth manifold, and $A \subset M$ a closed subset. Then for any continuous function $g: M \to \mathbb{R}$ which is smooth on A and any positive continuous function $\delta: M \to \mathbb{R}_{>0}$, there exists $f \in C^{\infty}(M)$ so that

$$f(p) = g(p), \quad \forall p \in A$$

and

$$|f(p) - g(p)| < \delta(p), \quad \forall p \in M.$$

By taking $A = \emptyset$ we see that Theorem 2.2 implies Theorem 2.1

Proof. [The idea: approximate g by g_0 near A, and approximate g by constant functions elsewhere.] By definition, there exists an open set $U \supset A$ and a smooth function g_0 defined on U so that $g_0 = g$ on A. Let

$$U_0 = \{ p \in U : |g_0(p) - g(p)| < \delta(p) \}.$$

Then U_0 is open in M and $U_0 \supset A$.

Next we construct a (nice) open cover of $M \setminus A$. For any $q \in M \setminus A$, we let

$$U_q = \{ p \in M \setminus A : |g(p) - g(q)| < \delta(p) \}.$$

Then $\{U_q \mid q \in M \setminus A\}$ is an open covering of $M \setminus A$.

Now let $\{\rho_0, \rho_q : q \in M\}$ be P.O.U. subordinate to the open cover $\{U_0, U_q : q \in M\}$ of M, and define a function on M via

$$f(p) = \rho_0(p)g_0(p) + \sum_{q \in M} \rho_q(p)g(q).$$

Since the summation is locally finite, f is smooth. Also by definition, $f = g_0 = g$ on A. Moreover, for any $g \in M$ one has

$$|f(p) - g(p)| = \left| \rho_0(p)g_0(p) + \sum_q \rho_q(p)g(q) - \rho_0(p)g(p) - \sum_q \rho_q(p)g(p) \right|$$

$$\leq \rho_0(p)|g_0(p) - g(p)| + \sum_q \rho_q(p)|g(q) - g(p)|$$

$$< \rho_0(p)\delta(p) + \sum_q \rho_q(p)\delta(p)$$

$$= \delta(p),$$

where in the last inequality, the fact $\rho_0(p)|g_0(p) - g(p)| < \rho_0(p)\delta(p)$ follows from the facts that if $p \in U_0$, then by definition $|g_0(p) - g(p)| < \delta(p)$, while if $p \notin U_0$, then $\rho_0(p)=0$; the fact $\rho_q(p)|g(q) - g(p)| < \rho_q(p)\delta(p)$ follows from a similar argument. \square