
LECTURE 6: LOCAL PROPERTIES OF SMOOTH MAPS

1. Submersions and Immersions

Last time we showed that if f : M → N is a diffeomorphism, then dfp : TpM →
Tf(p)N is a linear isomorphism. As in the Euclidean case (see Lecture 2), we can prove
the following partial converse:

Theorem 1.1 (Inverse Mapping Theorem). Let f : M → N be a smooth map such
that dfp : TpM → Tf(p)N is a linear isomorphism, then f is a local diffeomorphism
near p, i.e. it maps a neighborhood U1 of p diffeomorphically to a neighborhood X1 of
q = f(p).

Proof. Take a chart {ϕ,U, V } near p and a chart {ψ,X, Y } near f(p) so that f(U) ⊂ X
(This is always possible by shrinking U and V ). Since ϕ : U → V and ψ : X → Y are
diffeomorphisms,

d(ψ ◦ f ◦ ϕ−1)ϕ(p) = dψq ◦ dfp ◦ dϕ−1
ϕ(p) : Tϕ(p)V = Rn → Tψ(q)Y = Rn

is a linear isomorphism. It follows from the inverse function theorem in Lecture 2
that there exist neighborhoods V1 of ϕ(p) and Y1 of ψ(q) so that ψ ◦ f ◦ ϕ−1 is a
diffeomorphism from V1 to Y1. Take U1 = ϕ−1(V1) and X1 = ψ−1(Y1). Then

f = ψ−1 ◦ (ψ ◦ f ◦ ϕ−1) ◦ ϕ

is a diffeomorphism from U1 to X1. �

Again we cannot conclude global diffeomorphism even if dfp is a linear isomorphism
everywhere, since f might not be invertible. In fact, now we can construct an example
which is much simpler than the example we constructed in Lecture 2: Let f : S1 → S1

be given by f(eiθ) = e2iθ. Then it is only a local diffeomorphism.

It is natural to ask: what if dfp is not a linear isomorphism? Of course the simplest
cases are the full-rank ones.

Definition 1.2. Let f : M → N be a smooth map.

(1) f is a submersion at p if dfp : TpM → Tf(p)N is surjective.
(2) f is an immersion at p if dfp : TpM → Tf(p)N is injective.

We say f is a submersion/immersion if it is a submersion/immersion at each point.

Obviously

• If f is a submersion, then dimM ≥ dimN .
• If f is an immersion, then dimM ≤ dimN .
• If f is a submersion/immersion at p, then it is a submersion/immersion near p.
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Example. If m ≥ n, then the projection map

π : Rm → Rn, (x1, · · · , xm) 7→ (x1, · · · , xn)

is a submersion

Example. If m ≤ n, then the inclusion map

ι : Rm → Rn, (x1, · · · , xm) 7→ (x1, · · · , xm, 0, · · · , 0)

is an immersion.

It turns out that any submersion/immersion locally looks like the above two maps.

Theorem 1.3 (Canonical Submersion Theorem). Let f : M → N be a submersion at
p ∈ M , then m = dimM ≥ n = dimN , and there exist charts (ϕ1, U1, V1) around p
and (ψ1, X1, Y1) around q = f(p) such that

ψ1 ◦ f ◦ ϕ−1
1 = π|V1 .

Theorem 1.4 (Canonical Immersion Theorem). Let f : M → N be an immersion at
p ∈ M , then m = dimM ≤ n = dimN , and there exist charts (ϕ1, U1, V1) around p
and (ψ1, X1, Y1) around q = f(p) such that

ψ1 ◦ f ◦ ϕ−1
1 = ι|V1 .

Proof of the Canonical Submersion Theorem. [The construction is shown in the follow-
ing graph:]

Take a chart {ϕ,U, V } near p and a chart {ψ,X, Y } near f(p) so that f(U) ⊂ X.
Since f is a submersion,

d(ψ ◦ f ◦ ϕ−1)ϕ(p) = dψq ◦ dfp ◦ dϕ−1
ϕ(p) : Tϕ(p)V = Rm → Tψ(q)Y = Rn

is surjective. Denote F = ψ ◦ f ◦ ϕ−1. Then the Jacobian matrix (∂Fi

∂xj
) is an n × m

matrix of rank n at ϕ(p). By changing coordinates on V (which can be realized by a
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diffeomorphism σ : Rm → Rm that exchange some of the coordinates), we can get a
new map F0 = F ◦ σ−1 : V0 = σ(V )→ Y such that(

∂(F0)i
∂xj

)
1≤i,j≤n

is nonsingular at σ(ϕ(p)). We denote ϕ0 = σ◦ϕ and V0 = ϕ0(U), so that F0 = ψ◦f◦ϕ−1
0 .

Define
G : V0 → Rm, (x1, · · · , xm) 7→ (F0(x

1, · · · , xm), xn+1, · · · , xm).

Then G satisfies the following two properties (they are the reasons that we define G
by the above formula)

(a) F0 = π ◦G,

(b) The differential dGϕ(p) =

((
∂(F0)i
∂xj

)
1≤i,j≤n

∗
0 Idm−n

)
is nonsingular.

By the inverse function theorem, there is a neighborhood V0,0 of ϕ0(p) in V0 so that G
is a diffeomorphism from V0,0 to V1 := G(V0,0). Let H be the inverse of G that maps
V1 to V0,0. Let U1 = ϕ−1

0 (V0,0) and ϕ1 = G ◦ ϕ0. Then (ϕ1, U1, V1) is a chart near p,
and on V1 one has

ψ ◦ f ◦ ϕ−1
1 = ψ ◦ f ◦ (ϕ−1

0 ◦H) = F0 ◦H = π ◦G ◦H = π.

This completes the proof. �

Proof of the Canonical Immersion Theorem. The proof is “contained” in the following
graph:

where the map H is defined so that

(a)H ◦ ι = F0, (b) dH is non-singular at ι(ϕ(p)),

which can be chosen to be

H : V × Rn−m → Rn, (x1, · · · , xm, y1, · · · , yn−m) 7→ F (x) + (0, · · · , 0, y1, · · · , yn−m).

We will leave the details as an exercise. �
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Remark. By using a similar method, one can prove

Theorem 1.5 (Constant Rank Theorem). Let f : M → N be a smooth map
so that rank(df) ≡ r near p. Then there exists charts (ϕ1, U1, V1) around p
and (ψ1, X1, Y1) near f(p) such that that

ψ1 ◦ f ◦ ϕ−1
1 (x1, · · ·xm) = (x1, · · · , xr, 0, · · · , 0).

The proof will be left as an exercise.

2. Sard’s Theorem

Recall that in calculus, a point a is called a critical point of a smooth function f if
all partial derivatives of f at a is zero. More generally, if f : U → V is a smooth map,
we say a ∈ U is a critical point of f if dfa is not surjective, i.e. f is not a submersion at
a. This conception can be easily extended to smooth maps between smooth manifolds:

Definition 2.1. Let f : M → N be a smooth map.

(1) We say p ∈M is a critical point of f if dfp is not surjective1. We say p ∈M is
a regular point of f if it is not a critical point.

(2) We say q ∈ N is a regular value of f if any p ∈ f−1(q) is a regular point. We
say q ∈ N is a critical value of f if it is not a regular value.

Remark. By definition, any q ∈ N \Im(f) is automatically a regular value.

Remark. Critical values are exactly the image of critical points, but the pre-image of
critical values may contain regular points. We will denote the set of all critical points
of f by Crit(f).

Example. Let f : Sn → R be the “height function”,

f(x1, · · · , xn+1) = xn+1.

Then the north pole (0, · · · , 0, 1) and the south pole (0, · · · , 0,−1) are critical points
of f , and all other points in Sn are regular points of f . The critical values of f are 1
and −1, and all other values in R are regular values of f .

The following theorem due to Sard is a remarkable theorem in differential topology.
The theorem claims that almost all points in the target manifold N are regular values.
We will see in the future how to use regular values to construct smooth submanifolds.

Theorem 2.2 (Sard’s Theorem). For any smooth map f : M → N , the set of all
critical values is of measure zero in N .

In particular, if dimM < dimN , then f(M) is of measure zero in N .

Remark. The theorem does not claim that the set of critical points in M is a measure
zero subset. In fact, if we consider a constant map f(p) ≡ q0 ∈ N , then any point in
M is a critical point. However, the set of critical values contains only one point in this
case, which is of course of measure zero.

1We define critical points to be those points such that rank(dfp) < dimN . In some books critical
points are defined to be those points such that rank(dfp) < min(dimM,dimN).
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We will prove Sard’s theorem next time. In the rest of today’s lecture, we will
explain the words “of measure zero” in the theorem. Note that we have not introduce
any measure on M or N yet. One may want to “transplant” the Lebesgue measure on
the Euclidean space to manifolds by using local charts. However, this does not give
us a well-defined measure on manifolds since it depends on the choice of local charts.
In fact, a measure structure is an extra structure on manifold. With only a smooth
structure at hand, we don’t have a canonical choice of measure structure. (We will
endow a smooth manifold with a measure using a volume form in the future).

However, “whether a set is of measure zero or not” make sense without introducing
a measure: again the idea is to use the Lebesgue measure on Euclidian space. Recall
that a subset A ⊂ Rn is of measure zero if for any ε > 0, there exists a countable union
of open boxes Ui ∈ Rn so that

A ⊂
⋃
i

Ui and
∑
i

volume(Ui) < ε.

For measure zero sets, we have the following properties:

(i) A countable union of measure zero sets is a measure zero set.
(ii) If A ⊂ Rn is a measure zero set, and f : Rn → Rn is smooth, then f(A) is a

measure zero set in Rn. 2

(iii) Fubini’s Theorem: Let A be a countable union of compact sets in Rn such that
the “slice” A ∩ ({c} × Rn−r) has measure zero in Rn−r for all c ∈ Rr. Then A
has measure zero in Rn.

Since any manifold M can by covered by countable many charts, and each chart
identify an open set in M with an open set in Rn, the following definition is independent
of coordinate charts (and thus is reasonable):

Definition 2.3. We say A ⊂M is a measure zero set if for any p ∈ A, one can find a
chart (ϕ,U, V ) of M near p so that ϕ(A ∩ U) is a measure zero set in V .

2In real analysis we know that a continuous function could map a measure zero set in Rn to a set
with positive measure in Rn. However, a (local) Lipschitz map will always map a measure zero set in
Rn to a measure zero set in Rn.


