
LECTURE 8: SMOOTH SUBMANIFOLDS

1. Smooth submanifolds

Let M be a smooth manifold of dimension n. What object can be called a “smooth
submanifold” of M? (Recall: what is a vector subspace W of a vector space V ? W
should satisfy three conditions: W is a subset of V ; W is a vector space by itself; the
vector space structure on W should be the restriction of the vector space structure
on V . Similarly, what is a subgroup of a group? What is a topological subspace of a
topological space? In each case you can always write down the three conditions: the
inclusion relation, the structure itself, and the compatibility.) A smooth submanifold
S of M should satisfy three conditions:

• S should be a subset of M ;
• S itself should be a smooth manifold of dimension k ≤ n;
• the smooth structures on S and on M should be compatible.

The last condition, i.e. the compatibility, can be stated more precisely: the smooth
structure (=a set of coordinate charts) on S should be the “restriction” of the smooth
structure on M .

Definition 1.1. A subset S ⊂ M is a k-dimensional smooth submanifold of M if for
every p ∈ S, there is a chart (ϕ,U, V ) around p of M such that

ϕ(U ∩ S) = V ∩ (Rk × {0}) = {x ∈ ϕ(U) | xk+1 = · · · = xn = 0}.
We will call codim(S) = n− k the codimension of S.

Remark. Roughly speaking, smooth submanifolds are objects that are defined locally
by equations

ϕk+1 = · · · = ϕn = 0.

Note that ϕk+1, · · · , ϕn are smooth functions on U , since ϕ is a diffeomorphism.
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Example. Let M,N be smooth manifolds, and f : M → N is a smooth map. Then the
graph

Γf = {(p, q) | q = f(p)}
is a smooth submanifold of M × N . To see this, we take a chart (ϕ,U, V ) of M
near p and a chart (ψ,X, Y ) of N near q = f(p). Then (c.f. PSet 2 Problem 5)
(ϕ × ψ,U × X, V × Y ) is a chart of M × N near (p, q). But this chart is not good
for our purpose. To get a chart that is suitable for our purpose, we write the equation
q = f(p) as ψ−1(y) = f(ϕ−1(x)), i.e. y = ψ(f(ϕ−1(x))). Now we define a smooth map

Ψ : V × Y → Rm × Rn, (a, b) 7→ (a, b− ψ ◦ f ◦ ϕ−1(a)).

It is easy to see that Ψ is one-to-one and is a local diffeomorphism everywhere, thus is
a global diffeomorphism from V × Y onto its image Ψ(V × Y ), which is an Euclidian
open set. Thus (Ψ ◦ (ϕ × ψ), U × X,Ψ(V × Y )) is also a local chart of M × N near
(p, q). Moreover, with this local chart,

(p, q) ∈ Γf ∩ (U ×X) =⇒ ψ(q) = ψ(f(ϕ−1(ϕ(p)))) =⇒ Ψ(ϕ(p), ψ(q)) = (ϕ(p), 0),

so the conclusion follows.

Remark. In Lecture 2 we mentioned that the graph Γf of any continuous function
f : U ⊂ Rn → R is a smooth manifold of dimension n by itself. It is of course a
subset of Rn+1. However, in general Γf is not a smooth submanifold of Rn+1 if f is
not smooth. (If you repeat the arguments in the above example, which step does not
work?)(However, in PSet 3 Part 1 you will see an example where f is not a smooth
function on the whole domain, while Γf is a smooth submanifold.)

Example. The sphere Sn is a smooth submanifold of Rn+1. Can you construct a local
chart of Rn+1 near every point of Sn which satisfies the condition in the definition 1.1?

Note that in the definition of a smooth submanifold above, we did not spell out
the smooth structure on S. To construct natural charts on S, we denote

π : Rn → Rk, (x1, · · · , xn) 7→ (x1, · · · , xk)
 : Rk ↪→ Rn, (x1, · · · , xk) 7→ (x1, · · · , xk, 0, · · · , 0).

Then we have

Proposition 1.2. Let (ϕ,U, V ) be a chart on M that satisfies Definition 1.1. Let
X = U ∩ S, Y = π ◦ ϕ(X) and ψ = π ◦ ϕ|X . Then (ψ,X, Y ) is a smooth chart on S.

Proof. By definition, ψ is invertible and the inverse ψ−1 = ϕ−1 ◦ . So (ψ,X, Y ) is a
chart on S. It remains to check that charts of this type are compatible. In fact, the
transition maps are

ψβ ◦ ψ−1α = π ◦ ϕβ ◦ ϕ−1α ◦  = π ◦ ϕα,β ◦ ,

which are smooth. �
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So S is a smooth manifold by itself. Now consider the inclusion map ι : S ↪→ M .
With respect to the smooth structures described above, ι is a smooth immersion since

ϕ ◦ ι ◦ ψ−1 = .

So any smooth submanifold is the image of a smooth immersion.

It is natural to ask whether the image of any smooth immersion is a smooth sub-
manifold. Unfortunately this is not true in general:

Example. The following two graphs are the images of two immersions of R into R2.

For the first one, the immersion is not injective. For the second one, the immersion is
injective, while the image still have different topology than R.

One can construct an even more complicated example: consider f3 : R → T2 =
S1 × S1 defined by

f(t) = (eit, ei
√
2t).

Then f is an immersion, and the image f(R) is a “dense curve” in the torus S1 × S1.

Remark. For the three “immersion” above whose image are not submanifolds, the first
one is “worst” since the image is not a manifold in any sense: at the crossing point,
the image is not a manifold, no matter what topology you give to the image. On the
other hand, for the second one and the third one, we can easily see that

• if we use the “subspace topology” inherited from R2 or T2, then the images are
not manifolds;
• if we endow the images with the topology that “borrowed” from R, then the

images are smooth manifolds!

In general, the image of any injective immersion is a manifold, where the manifold
structure is “borrowed” from the source manifold. So people call the images of injec-
tive immersions immersed submanifolds. To distinguish immersed submanifolds with
smooth submanifolds defined in Definition 1.1, sometimes people call smooth subman-
ifolds embedded submanifolds or regular submanifolds.
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2. Embeddings

What is the difference between smooth submanifolds and immersed submanifolds?
As we just described, the topology that makes an immersed submanifold a manifold is
the topology from the source manifold, not the “subspace topology” from the target
manifold. On the other hand, if S is a smooth submanifold of M , then the topology
underlying the smooth manifold S is the topology generated by charts (ψ,X, Y ) in
Proposition 1.2. By definition 1.1 it is easy to see

Proposition 2.1. Let S be a smooth submanifold of M . Then ι : S ↪→ M is a
homeomorphism from S to ι(S) (endowed with the subspace topology from M).

Remark. If S is a smooth submanifold of M , then there is a unique topology/smooth
structure on S so that the inclusion map ι : S ↪→M is a smooth immersion which is a
homeomorphism onto its image. (See Theorem 5.31 in Lee’s book.)

So for any smooth submanifold S, the inclusion map ι : S ↪→ M is a special
immersion which is a homeomorphism onto its image.

Definition 2.2. Let M,N be smooth manifolds, and f : N → M an immersion. f is
called an embedding if it is a homeomorphism onto its image f(N), where the topology
on f(N) is the subspace topology as a subset of M .

By definition, the inclusion map ι : S ↪→M is an embedding. So

each smooth submanifold is the image of an embedding.

Conversely,

Theorem 2.3. Let f : N → M be an embedding. Then the image f(N) is a smooth
submanifold of M .

Proof. Let p ∈ N and q = f(p). Since f is an immersion, the canonical immersion
theorem implies that there exists charts (ϕ1, U1, V1) near p and (ψ1, X1, Y1) near q such
that on V1, ψ1 ◦ f ◦ ϕ−11 is the canonical embedding  : Rm → Rn restricted to V1, i.e.

ψ1 ◦ f =  ◦ ϕ1

on U1. Since f is a homeomorphism onto its image, f(U1) is open in f(N) ⊂ M . In
other words, there exists an open set X ⊂ M such that f(U1) = f(N) ∩ X. Replace
X1 by X1 ∩X, and Y1 by ψ1(X1 ∩X). Then for this new chart (ψ1, X1, Y1),

ψ1(X1 ∩ f(N)) = Y1 ∩ ψ1(f(U1)) = Y1 ∩ (ϕ1(U1)) = Y1 ∩ (Rm × {0}).
�

Please repeat the above argument on the “dense curve in T2” example to see what’s
wrong there.

Here is the main difference between an immersion and an embedding:

• If f : N → M is an immersion, then by the canonical immersion theorem, any
point p ∈ N has a neighborhood in N whose image is “nice” in M .
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• If f : N → M is an embedding, then by Theorem 2.3, any point q ∈ f(N) has
a neighborhood in f(N) that is “nice” in M .

In general an immersion need not be an embedding. However, if N is compact,
then

Theorem 2.4. If f : N →M is an injective immersion, and N is compact, then f is
an embedding.

Proof. Since f is injective, f : N → f(N) is invertible. Since f : N →M is continuous,
f : N → f(N) is also continuous. It remains to show that f−1 : f(N) → N is
continuous. To prove this, we take an arbitrary closed set A in N . Then since N
is compact, A has to be compact. So (f−1)−1(A) = f(A) is a compact since f is
continuous. Because f(N) is Hausdorff, f(A) is a closed set in f(N). In other words,
(f−1)−1(A) is closed as long as A is closed. So f−1 is continuous. �

As a consequence of this theorem, we can prove that any compact smooth manifold
can be realized as a submanifold of the Euclidian space:

Theorem 2.5 (The Whitney embedding theorem: the easiest version). Any compact
smooth manifold M can be embedded into RK for sufficiently large K.

Here is the idea: For any local chart {ϕ,U, V }, ϕ is an embedding from U into the
Euclidian space of the same dimension. If M is compact, then M can be covered by
finitely many charts. Although ϕ’s are only defined on U ’s, one can multiply ϕ’s by
functions in a P.O.U. so that they are defined on M . It turns out that this idea almost
work.

Next time we will prove the theorem. We will also remove the compactness assump-
tion in the theorem, and show that the dimension K could be chosen to be 2n+ 1.


