
LECTURE 9: THE WHITNEY EMBEDDING THEOREM

Historically, the word “manifold” (Mannigfaltigkeit in German) first appeared in
Riemann’s doctoral thesis in 1851. At the early times, manifolds are defined extrinsi-
cally: they are the set of all possible values of some variables with certain constraints.
Translated into modern language,“smooth manifolds” are objects that are (locally) de-
fined by smooth equations and, according to last lecture, are embedded submanifolds
in Euclidean spaces. In 1912 Weyl gave an intrinsic definition for smooth manifolds.
A natural question is: what is the difference between the extrinsic definition and the
intrinsic definition? Is there any “abstract” manifold that cannot be embedded into
any Euclidian space?

In 1930s, Whitney and others settled this foundational problem: the two ways of
defining smooth manifolds are in fact the same. In fact, Whitney’s result is much more
stronger than this. He showed that not only one can embed any smooth manifold into
some Euclidian space, but that the dimension of the Euclidian space can be chosen to
be (as low as) twice the dimension of the manifold itself!

Theorem 0.1 (The Whitney embedding theorem). Any smooth manifold M of di-
mension m can be embedded into R2m+1.

Remark. In 1944, by using completely different techniques (now known as the “Whitney
trick”), Whitney was able to prove

Theorem 0.2 (The Strong Whitney Embedding Theorem). Any smooth man-
ifold M of dimension m ≥ 2 can be embedded into R2m (and can be immersed
into R2m−1).

We will not prove this stronger version in this course, but just mention that the Whitney
trick was further developed in h-cobordism theory by Smale, using which he proved the
Poincare conjecture in dimension ≥ 5 in 1961!

Remark. Many shaper results were proved during the second half of 20th century:

• Any smooth compact orientable m-manifold can be embedded into R2m−1.
• For m 6= 2k, any smooth m-manifold can be embedded into R2m−1. (But if
m = 2k, RPm cannot be embedded into R2m−1).
• Any smooth m-manifold can be immersed into R2m−a(m), where a(m) is the

number of 1’s that appear in the binary expansion of m.
Here is an example of a 2-manifold which can be im-
mersed into R3, but cannot be embedded into R3: the
Klein bottle. (Note: “immersed into” 6= “the image is
an immersed submanifold”, since the immersion need
not be injective.)
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In what follows we will prove Theorem 0.1. The case when M is compact is easier,
and the non-compact case is a bit harder. In both cases the proof can be divided
into two steps. In step 1, we can prove that there exists a large K so that M can be
injectively immersed into RK . (When M is compact, the idea of the proof for Step
1 is already explained at the end of last lecture.) Then in step 2, we prove that if
K > 2m + 1, then one can always replace RK by some RK−1. For the compact case,
this already implies the Whitney embedding theorem. For the non-compact case, we
need to do a bit more work to get an embedding from an injective immersion. (The
idea is somehow hidden in the proof of Theorem 2.4 in Lecture 8: The condition that
N is compact is used to show that f is a closed map, from which one can conclude
f is an embedding. In topology we also learned other conditions that guarantee the
closedness of a map, e.g. a proper continuous map onto a locally compact Hausdorff
space is closed.)

Although the proof of the theorem is a bit technical (which uses Sard’s theorem and
thus is not quite “constructive”), there is a “naive philosophy” behind the theorem:
each small piece of the manifold can be embedded as a small piece of Rm inside a
larger ambient Euclidian space; if you want to embed two “consecutive” pieces, they
may “intersect”, but it should be possible to avoid the “intersection” if the ambient
space that the two pieces lie has dimension greater than the sum of the dimensions of
two pieces!

1. The Whitney embedding theorem: Compact Case

We will first prove the Whitney embedding theorem for the simple case where M
is compact. We start with

Theorem 1.1. Any compact smooth manifold M admits an injective immersion into
RK for sufficiently large K.

Proof. Let {ϕi, Ui, Vi}1≤i≤k be a finite set of coordinate charts on M that covers M .
Let {ρi | 1 ≤ i ≤ k} be a P.O.U. subordinate to {Ui | 1 ≤ i ≤ k}. Define

Φ : M → Rk(m+1), p 7→ (ρ1(p)ϕ1(p), · · · , ρk(p)ϕk(p), ρ1(p), · · · , ρk(p)).

We shall prove

• Φ is an injective map.

Suppose Φ(p1) = Φ(p2). Take an index i so that ρi(p1) = ρi(p2) 6= 0. Then
p1, p2 ∈ supp(ρi) ⊂ Ui. It follows that ϕi(p1) = ϕi(p2). So we must have p1 = p2

since ϕi is bijective.

• Φ is an immersion, i.e. dΦp is injective for any p ∈M .

For any Xp ∈ TpM , by Leibniz law,

dΦp(Xp) = (Xp(ρ1)ϕ1(p) + ρ1(p)(dϕ1)p(Xp), · · · ,
Xp(ρk)ϕk(p) + ρk(p)(dϕk)p(Xp), Xp(ρ1), · · · , Xp(ρk)).
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It follows that if dΦp(Xp) = 0, thenXp(ρi) = 0 for all i, and thus ρi(p)(dϕi)p(Xp) =
0 for all i. Pick an index i so that ρi(p) 6= 0. We see (dϕi)p(Xp) = 0. Since ϕi

is a diffeomorphism, we conclude that Xp = 0. So dΦp is injective.

�

Remark. In fact we proved a stronger result:

Theorem 1.2. If M can be covered by finitely many coordinate charts, then
there exists an injective immersion from M into some Euclidian space.

Next we apply Sard’s theorem to prove (note: we don’t assume compactness here)

Theorem 1.3. If a smooth manifold M of dimension m admits an injective immersion
into RK for some K > 2m+ 1, then it admits an injective immersion into RK−1.

Proof. Suppose we already have an injective immersion Φ : M → RK with K > 2m+1.
We want to produce an injective immersion of M into RK−1. To do so, we study the
compositions of Φ with projections from RK to all possible K − 1 dimensional vector
subspaces in RK , and we will show that for “almost all” projections, we still get injective
immersions.

Note that any K−1 dimensional vector subspace in RK is uniquely determined by
its normal direction, which is a 1-dimensional line passing the origin, and the set of all
1-dimensional lines passing the origin in RK is the real projective space RPK−1, which
is a smooth manifold of dimension K − 1. For any [v] ∈ RPK−1, we let

P[v] = {u ∈ RN | u · v = 0} ' RK−1

be the orthogonal complement space of [v] in RK . Let

π[v] : RK → P[v]

be the orthogonal projection to this hyperplane. We claim that the set of [v]’s for
which

Φ[v] = π[v] ◦ Φ

is not an injective immersion has measure zero in RPK−1. Hence for most [v] ∈ RPK−1,
the map Φ[v] is an injective immersion from M into some RK−1.

First let’s consider [v]’s so that Φ[v] is not injective. Then one can find p1 6= p2 so
that Φ[v](p1) = Φ[v](p2), i.e. 0 6= Φ(p1)− Φ(p2) lies in the line [v]. In other words,

[v] = [Φ(p1)− Φ(p2)].

So [v] must lie in the image of the smooth map

α : (M ×M) \∆M → RPK−1, (p1, p2) 7→ [Φ(p1)− Φ(p2)],

where ∆M = {(p, p) | p ∈ M} is the “diagonal” in M ×M . Since (M ×M) \ ∆M is
a smooth manifold of dimension 2m < K − 1, Sard’s theorem implies that the image
of α is of measure zero in RPK−1. So the set of [v]’s so that Φ[v] is not injective is of
measure zero.
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Next let’s consider [v]’s so that Φ[v] is not an immersion. Then there exists some
p ∈M and some 0 6= Xp ∈ TpM so that (dΦ[v])p(Xp) = 0, i.e.

(dπ[v])Φ(p)(dΦ)p(Xp) = 0.

Since π[v] is linear, dπ[v] = π[v]. A conceptional proof: What is the differential of a
smooth map? It’s the linear approximation of the smooth map. What if the smooth
map is already linear then? It follows that 0 6= (dΦ)p(Xp) is in [v], i.e.

[v] = [(dΦ)p(Xp)].

In other words, [v] lies in the image of

β : TM \ {0} → RPK−1, (p,Xp) 7→ [(dΦ)p(Xp)],

where TM \ {0} = {(p,Xp) | Xp 6= 0} is an open submanifold of the tangent bundle
TM , which is a smooth manifold of dimension 2m (c.f. PSet 2). Again since TM has
dimension 2m < K − 1, by Sard’s theorem, the image of β is of measure zero. So the
set of [v]’s so that Φ[v] is not an immersion is of measure zero. �

In view of the fact

(dΦ[v])p(Xp) = 0⇐⇒ (dΦ[v])p(
Xp

|Xp|
) = 0,

one can modify the last step and prove

Theorem 1.4. If a smooth manifold M of dimension m can be embedded into R2m+1,
then it can be immersed into R2m.

Sketch of proof. We first embed M into R2m+1, then repeat the last step in the proof of
Theorem 1.3, with the modification that we choose Xp ∈ TpM so that |Xp| = 1 (here
the length of a vector Xp ∈ TpM“ ⊂ TpR2m+1” is the “Euclidian” length). In other
words, the map β in the proof above can be replaced by the map

β̃ : SM → RP2m, (p,Xp) 7→ [(dΦ)p(Xp)],

where SM = {(p,Xp) | |Xp| = 1} is the “sphere bundle” of M , which is a smooth
manifold of dimension 2m− 1. (Please write down the details.) �

Remark. Here you already see the advantage of the existence of an embedding into
Euclidian spaces: you can now talk about the “length” of tangent vectors (which is an
“extrinsic” conception here). (One can also define length of tangent vectors on smooth
manifolds intrinsically, which leads to the subject Riemannian Geometry.)

Since any injective immersion from a compact manifold is an embedding, we im-
mediately see

Theorem 1.5 (The Whitney Embedding Theorem, Compact Case). Any smooth com-
pact manifold M of dimension m can be embedded into R2m+1.

In combining with Theorem 1.4, we get

Theorem 1.6 (The Whitney Immersion Theorem, Compact Case). Any smooth com-
pact manifold M of dimension m can be immersed into R2m.
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2. The Whitney embedding theorem: Non-Compact Case

Of course the above arguments fail when the manifold M is non-compact, since we
can no longer cover M by finitely many coordinate charts, and an injective immersion
from a non-compact manifold could be non-embedding. In general non-compact objects
could behave quite differently from compact objects. For example, any compact Lie
group must be a linear Lie group. The same conclusion does not hold for non-compact
Lie groups. Fortunately for the Whitney embedding theorem, the non-compact version
holds as well. We start with a non-compact version of Theorem 1.1:

Theorem 2.1. Any non-compact smooth manifold M admits an injective immersion
into RK for sufficiently large K.

Proof. According to PSet 1 Part 2 Problem 3, one can find a positive smooth exhaustion
function f on M . For each i ∈ N, we define

Mi = f−1([i, i+ 1]).

Since Mi is compact, it can be covered by finitely many coordinate charts U1, · · · , Uk.
We let

Ni = (U1 ∪ · · · ∪ Uk) ∩ f−1((i− 0.1, i+ 1.1)).

Then each Ni is an open submanifold of M so that Mi ⊂ Ni. Moreover, Ni ∩ Nj = ∅
if |i − j| ≥ 2. By construction, each Ni can be covered by finitely many coordinate
charts. So according to Theorem 1.2, there is an injective immersion from Ni into some
RK for K large. Since Ni is a smooth manifold (without boundary) of dimension m,
Theorem 1.3 implies that we can find injective immersions ϕi from Ni into R2m+1.

Now pick smooth bump function ρi so that ρi = 1 in an open neighborhood of Mi

and suppρi ⊂ Ni. Define

Φ : M → R4m+3, p 7→

(∑
i odd

ρi(p)ϕi(p),
∑
i even

ρi(p)ϕi(p), f(p)

)
.

Note that near each point p ∈ M , at most one term in each summations above is
nonzero. So Φ is a smooth map. It remains to show that Φ is an injective immersion:

• Φ is injective If Φ(p1) = Φ(p2), then ∃i ∈ N so that f(p1) = f(p2) ∈ [i, i+ 1].

So p1, p2 ∈Mi ⊂ Ni and ϕi(p1) = ϕi(p2). Since ϕi is injective, we get p1 = p2.

• Φ is an immersion Suppose p ∈ Mi. Without loss of generality, we assume i
is odd. Then for any 0 6= Xp ∈ TpM ,

dΦp(Xp) = ((dϕi)p(Xp), ∗, ∗).

Since ϕi is an immersion on Ui 3 p, we get (dϕi)p(Xp) 6= 0. Thus dΦp(Xp) 6= 0.

This completes the proof. �

According to Theorem 1.3, any smooth manifold of dimensionm admits an injective
immersion into R2m+1. But for non-compact manifolds, such injective immersion need
not to be an embedding. So one still need some trick.
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We recall that a map f between topological spaces is called a proper map if the
pre-image of any compact set is compact. (So the positive exhaustion function we
constructed in PSet 1 Part 2 Problem 3 is proper.) The following proposition is an
extension of Theorem 2.4 in Lecture 8: (Note that if N is compact, then continuous
map f : N →M is proper. In some sense, properness is a substitution of compactness.
We will use such idea again later.)

Proposition 2.2. Let f : N → M be an injective immersion. If f is proper, then f
is an embedding.

Proof. Left as an exercise. �

Now we are ready to prove

Theorem 2.3 (The Whitney Embedding Theorem, Non-Compact Case). Any smooth
non-compact manifold M of dimension m can be embedded into R2m+1.

Proof. By Theorem 2.1 and Theorem 1.3, there exists an injective immersion Φ : M →
R2m+1. Composing Φ with the diffeomorphism

R2m+1 → B2m+1(1) = {x ∈ R2m+1 | |x| ≤ 1}, x 7→ x

1 + |x|2

if necessary, we may assume that |Φ(p)| ≤ 1 for all p ∈M .

Take any positive smooth exhaustion function f on M , and define

Φ̃ = (Φ, f) : M → R2m+2, p 7→ (Φ(p), f(p)).

Repeating the proof of Theorem 1.3, we get another injective immersion

Ψ = π[v] ◦ Φ̃ : M → R2m+1,

where π[v] is some projection π : R2m+2 → P[v] ' R2m+1. Moreover, since almost all

[v] ∈ RP2m+1 work for our purpose, we can always choose [v] so that [v] 6= [0 : · · · : 0 : 1].
We claim that Ψ is proper. So according to Proposition 2.2, Ψ is an embedding.

It remains to prove that Ψ is proper. WLOG, we may assume v ∈ S2m+1. Denote
v = (v′, v2m+1). Then the condition [v] 6= [0 : · · · : 0 : 1] is equivalent to |v2m+1| < 1.
Since |v| = 1, we have π[v](x) = x− (x · v)v. So we get

Ψ(p) = (Φ(p), f(p))−
[
(Φ(p), f(p)) · (v′, v2m+1)

]
(v′, v2m+1)

=
(
∗, f(p)[1− (v2m+1)2]− (Φ(p) · v′)v2m+1

)
.

Now we prove properness. For any compact set K ⊂ R2m+1, ∃A > 0 so that

K ⊂ {x | |x2m+1| < A}.

Since |Φ(p)| ≤ 1, |v2m+1| ≤ 1 and |v′| ≤ 1, we have∣∣f(p)[1− (v2m+1)2]− (Φ(p) · v′)v2m+1
∣∣ < A

=⇒
∣∣f(p)[1− (v2m+1)2]

∣∣ ≤ A+
∣∣(Φ(p) · v′)v2m+1

∣∣ ≤ A+ 1.
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It follows that Ψ−1(K) ⊂ f−1([− A+1
1−|v2m+1|2 ,

A+1
1−|v2m+1|2 ]). But Ψ−1(K) is closed in M

since Ψ is continuous, and f−1([− A+1
1−|v2m+1|2 ,

A+1
1−|v2m+1|2 ]) is compact in M since f is

proper. So Ψ−1(K) is compact. By definition, Ψ is proper. �

In view of Theorem 1.4, we get

Theorem 2.4 (The Whitney Immersion Theorem, Non-Compact Case). Any smooth
non-compact manifold M of dimension m can be immersed into R2m.

Finally we remark that the Whitney embedding/immersion theorems also holds for
smooth manifolds with boundary.


