LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

1. Vector Bundles

In general, smooth manifolds are very "non-linear". However, there exist many smooth manifolds which admit very nice "partial linear structures". For example, given any smooth manifold M of dimension n, the tangent bundle

$$TM = \{ (p, X_p) \mid p \in M, X_p \in T_p M \}$$

is "linear in tangent variables". We have seen in PSet 2 Problem 9 that TM is a smooth manifold of dimension 2n so that the canonical projection $\pi:TM\to M$ is a smooth submersion. A local chart of TM is given by

$$T\varphi = (\pi, d\varphi) : \pi^{-1}(U) \to U \times \mathbb{R}^n,$$

where $\{\varphi, U, V\}$ is a local chart of M. Note that the local chart map $T\varphi$ "preserves" the linear structure nicely: it maps the vector space $\pi^{-1}(p) = T_p M$ isomorphically to the vector space $\{p\} \times \mathbb{R}^n$. As a result, if you choose another chart $(\tilde{\varphi}, \tilde{U}, \tilde{V})$ containing p, then the map $T\tilde{\varphi} \circ T\varphi^{-1} : \{p\} \times \mathbb{R}^n \to \{p\} \times \mathbb{R}^n$ is a linear isomorphism which depends smoothly on p.

In general, we define

Definition 1.1. Let E, M be smooth manifolds, and $\pi : E \to M$ a surjective smooth map. We say (π, E, M) is a *vector bundle of rank* r if for every $p \in M$, there exits an open neighborhood U_{α} of p and a diffeomorphism (called the *local trivialization*)

$$\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^r$$

so that

- (1) $E_p = \pi^{-1}(p)$ is a r dimensional vector space, and $\Phi_{\alpha}|_{E_p} : E_p \to \{p\} \times \mathbb{R}^r$ is a linear map.
- (2) For $U_{\alpha} \cap U_{\beta} \neq \emptyset$, there is a smooth map $g_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to GL(r, \mathbb{R})$ so that

$$\Phi_{\beta} \circ \Phi_{\alpha}^{-1}(m, v) = (m, g_{\beta\alpha}(m)(v)), \quad \forall m \in U_{\alpha} \cap U_{\beta}, v \in \mathbb{R}^{r}.$$

We will call E the total space, M the base and $\pi^{-1}(p)$ the fiber over p. (In the case there is no ambiguity about the base, we will denote a vector bundle by E for short.)

(Roughly speaking, a vector bundle E over M is "a smooth varying family of vector spaces parameterized by a base manifold M".)

Remark. A vector bundle of rank 1 is usually called a line bundle.

Remark. It is easy to define conception of a vector sub-bundle: a vector bundle (π_1, E_1, M) is a sub-bundle of (π, E, M) if $(E_1)_p \subset E_p$ for any p, and $\pi_1 = \pi|_{E_1}$.

Example. Here are some known examples:

- (1) For any smooth manifold M, $E = M \times \mathbb{R}^r$ is a trivial bundle over M.
- (2) The tangent bundle TM and the cotangent bundle T^*M are both vector bundles over M.
- (3) Given any smooth submanifold $X \subset M$, the normal bundle

$$NX = \{(p, v) \mid p \in X, v \in N_p X\},\$$

(where N_pX is the quotient vector space T_pM/T_pX) is a vector bundle over X. Note: NX is NOT a vector sub-bundle of TM.

(4) Any rank r distribution \mathcal{V} on M is a rank r vector bundle over M. It is a vector sub-bundle of the tangent bundle TM.

Example. The canonical line bundle over $\mathbb{RP}^n = \{l \text{ is a line through } 0 \text{ in } \mathbb{R}^{n+1}\}$ is

$$\gamma_n^1 = \{(l,x) \mid l \in \mathbb{RP}^n, x \in l \subset \mathbb{R}^{n+1}\}.$$

(Can you write down a local trivialization?)

In particular if n=1, we have $\mathbb{RP}^1 \simeq S^1$. In this case the canonical line bundle γ_1^1 is nothing else but the infinite Möbius band, which is a line bundle over S^1 .

Another way to obtain the infinite Möbius band γ_1^1 is to identify S^1 with [0,1], with end points 0 and 1 "glued together". Then the Möbius band is $[0,1] \times \mathbb{R}$, with "boundary lines $\{0\} \times \mathbb{R}$ and $\{1\} \times \mathbb{R}$ glued together" via $(0,t) \sim (1,-t)$.

Example. One can extend operations on vector spaces to operations on vector bundles.

- (1) Given any vector bundle (π, E, M) , one can define the dual vector bundle by replacing each E_p with its dual E_p^* . (How to define local trivializations? What are the transition maps $g_{\beta\alpha}$'s?) For example, T^*M is the dual bundle of TM.
- (2) Let (π_1, E_1, M) and (π_2, E_2, M) be two vector bundles over M of rank r_1 and r_2 respectively. Then the direct sum bundle $(\pi_1 \oplus \pi_2, E_1 \oplus E_2, M)$ is the rank $r_1 + r_2$ vector bundle over M with fiber $(\pi_1 \oplus \pi_2)^{-1}(p) = (E_1)_p \oplus (E_2)_p$. (How to define local trivializations? What are the transition maps $g_{\beta\alpha}$'s?)
- (3) Then the tensor product bundle $(\pi_1 \otimes \pi_2, E_1 \otimes E_2, M)$ is the rank r_1r_2 vector bundle over M with fiber $(\pi_1 \otimes \pi_2)^{-1}(p) = (E_1)_p \otimes (E_2)_p$. (How to define local trivializations? What are the transition maps $g_{\beta\alpha}$'s?) For example, we have the (k, l)-tensor bundle $\otimes^{k,l}TM := (TM)^{\otimes k} \otimes (T^*M)^{\otimes l}$ over M.
- (4) Similarly one can define the exterior power bundle $\Lambda^k T^*M$, whose fiber at point $p \in M$ is the linear space $\Lambda^k T_p^*M$. (Local trivializations? Transition maps?)
- (5) Let $f: N \to M$ be a smooth map, and (π, E, M) a vector bundle over M. Then one can define a *pull-back bundle* f^*E over N by setting the fiber over $x \in N$ to be the fiber of $E_{f(x)}$. (Local trivializations? Transition maps?)

In particular, the restriction of a vector bundle (π, E, M) to a submanifold N of the base manifold M is a vector bundle over the submanifold N. (Note: this is not a vector sub-bundle of (π, E, M) !)

We have seen that any smooth manifold can be embedded into the simplest manifold: an Euclidian space. A natural question is whether the same conclusion holds for vector bundles? More precisely, can we embed any vector bundle (π, E, M) into some trivial bundle $M \times \mathbb{R}^N$ as a vector sub-bundle? The answer is yes if M is compact, and the proof is similar to the proof of the "simple Whitney embedding theorem" in Lecture 9. (The conclusion could be wrong if M is non-compact.)

Theorem 1.2. If M is compact, then any vector bundle E over M is isomorphic to a sub-bundle of a trivial vector bundle over M.

Proof. (Please compare this proof with the proof of Theorem 1.1 in Lecture 9). Take a finite open cover $\{U_i\}_{1\leq i\leq k}$ of M so that E is trivial over each U_i via the trivialization maps $\Phi_i = (\pi, \Phi_i^2) : \pi^{-1}(U_i) \to U_i \times \mathbb{R}^r$. Let $\{\rho_i\}_{1\leq i\leq k}$ be a P.O.U. subordinate to $\{U_i\}_{1\leq i\leq k}$. Consider

$$\Phi: E \to M \times (\mathbb{R}^r)^k, \quad v \mapsto (\pi(v), \rho_1(\pi(v))\Phi_1^2(v), \cdots, \rho_k(\pi(v))\Phi_k^2(v)).$$

Note that on each fiber E_p , Φ is a linear isomorphism onto its image. The conclusion follows, since the image of Φ is a vector sub-bundle of $M \times \mathbb{R}^{rk}$: for any $p \in M$, there exists i so that $\rho_i(p) \neq 0$. Then the map Φ_i^2 induces a local trivialization near p. \square

As a corollary we get the following fundamental fact in topological K-theory:

Corollary 1.3. If M is compact, then for any vector bundle E over M, there exists a vector bundle F over M so that $E \oplus F$ is a trivial bundle over M.

Proof. We have seen that E is a vector sub-bundle of a trivial bundle $M \times \mathbb{R}^N$ over M. Now we put an inner product on \mathbb{R}^N , and take the fiber F_p of F at $p \in M$ to be the orthogonal complement of E_p in \mathbb{R}^N . (One should check that F is a vector bundle over M.)

2. Sections of vector bundles

The following definition is natural:

Definition 2.1. A (smooth) section of a vector bundle (π, E, M) is a (smooth) map $s: M \to E$ so that $\pi \circ s = \mathrm{Id}_M$. The set of all sections of E is denoted by $\Gamma(E)$, and the set of all smooth sections of E is denoted by $\Gamma^{\infty}(E)$.

Remark. Obviously if s_1, s_2 are smooth sections of E, so is $as_1 + bs_2$. So $\Gamma^{\infty}(E)$ is an (infinitely dimensional) vector space. In fact, one can say more: if s is a smooth section of E and f is a smooth function on M, then fs is a smooth section of E. So $\Gamma^{\infty}(E)$ is a $C^{\infty}(M)$ -module. (According to the famous Serre-Swan theorem, there is an equivalence of categories between that of finite rank vector bundles over M and finitely generated projective modules over $C^{\infty}(M)$.)

Remark. Many geometrically interesting objects on M are defined as smooth sections of some (vector) bundles over M. For example,

- A smooth vector field on M = a smooth section of TM.
- A smooth (k, l)-tensor field on M = a smooth section of $\otimes^{k, l} TM$.
- A smooth k-form on M = a smooth section of $\Lambda^k T^*M$.
- A volume form on M = a non-vanishing smooth section of $\Lambda^n T^*M$.
- A Riemannian metric on M = a smooth section of $\otimes^2 T^*M$ satisfying some extra (symmetric, positive definite) conditions
- A symplectic form on M= a smooth section of Λ^2T^*M satisfying some extra (closed, non-degenerate) conditions

By definition any vector bundle admits a trivial smooth section: the zero section

$$s_0: M \to E, \quad p \mapsto (p, 0).$$

On the other hand, it is possible that a vector bundle admits no non-vanishing section. For example, we have seen

- M is orientable if and only if $\Lambda^n T^*M$ admits a global non-vanishing section.
- TS^{2n} admits no non-vanishing section.

Here is another example:

Example. Consider the canonical line bundle γ_n^1 over \mathbb{RP}^n . We claim that there is no non-vanishing smooth section $s: \mathbb{RP}^n \to \gamma_n^1$. To see this we consider the composition

$$\varphi: S^n \xrightarrow{P} \mathbb{RP}^n \xrightarrow{s} \gamma_n^1,$$

where P is the projection $p(\pm x) = l_x$, the line through x. By definition, φ is of form $x \mapsto (l_x, f(x)x)$,

where f is a smooth function on S^n satisfying f(-x) = -f(x). By mean value property, f vanishes at some x_0 . It follows that s vanishes at x_0 also.

Although there might be no non-vanishing global sections, locally there are plenty of non-vanishing sections. Let E be a rank r vector bundle over M, and U an open set in M.

Definition 2.2. A local frame of E over U is an ordered r-tuple s_1, \dots, s_r of smooth section of E over U so that for each $p \in U$, $s_1(p), \dots, s_r(p)$ form a basis of E_p .

Example. Let M be a smooth manifold and U be a coordinate patch. Then

- $\partial_1, \dots, \partial_n$ form a local frame of TM over U.
- dx^1, \dots, dx^n form a local frame of T^*M over U.

The following fact is basic. We will leave the proof as an exercise.

Proposition 2.3. Let E be a smooth vector bundle over M.

- (1) A section $s \in \Gamma(E)$ is smooth if and only if for any $p \in M$, there is a neighborhood U of p and a local frame s_1, \dots, s_r of E over U so that $s = c_1s_1 + \dots + c_rs_r$ for some smooth functions c_1, \dots, c_r defined in U.
- (2) E is a trivial bundle if and only if there exists a global frame of E on M.

3. DE RHAM COHOMOLOGY GROUPS OF VECTOR BUNDLES

We have seen

$$H_{dR}^k(M \times \mathbb{R}^r) \simeq H_{dR}^k(M)$$
 and $H_c^k(M \times \mathbb{R}^r) \simeq H_c^{k-r}(M)$.

A vector bundle E can be viewed as a "twisted product" of a smooth manifold M (the base) with a vector space (the fiber). So it is natural to study the relation between the cohomology groups of E and the cohomology groups of M.

Proposition 3.1. For any vector bundle E over M, one has

$$H_{dR}^k(E) = H_{dR}^k(M), \quad \forall k.$$

Proof. This is a consequence of the homotopy invariance: E is homotopy equivalent to M, since if we let $s_0: M \to E$ be the zero section, then $\pi \circ s_0 = \mathrm{Id}_M$, and $s_0 \circ \pi \sim \mathrm{Id}_E$ via the homotopy

$$F: E \times \mathbb{R} \to E, \qquad (x, v, t) \mapsto (x, tv).$$

In general, the same result fails for compact supported cohomology groups. For example, let E be the infinite Möbius band, which is a line bundle over S^1 . Since E is non-orientable, one has

$$H_c^2(E) = 0 \not\simeq \mathbb{R} \simeq H_{dR}^1(S^1) = H_c^1(S^1).$$

On the other hand, if we assume orientablity, then

Proposition 3.2. Let E be a rank r vector bundle over M. Assume both E and M are oriented with finite dimensional compact supported de Rham cohomology groups, then

$$H_c^k(E) \simeq H_c^{k-r}(M), \quad \forall k.$$

Proof. We apply Poincaré duality twice:

$$H_c^k(E) \simeq H_{dR}^{n+r-k}(E) \simeq H_{dR}^{n+r-k}(M) \simeq H_c^{k-r}(M).$$

Now let M be an oriented, compact and connected smooth n-manifold, and E an oriented vector bundle of rank r over M. The constant function 1 on M gives us a degree-0 cohomology class $[1] \in H^0_{dR}(M)$. So the isomorphism above produces an element

$$[T] \in H_c^r(E).$$

Definition 3.3. We call [T] the *Thom class* of (π, E, M) .

Remark. The isomorphism $H_c^k(E) \simeq H_c^{k-r}(M)$ is called the Thom duality. It is given explicitly by an integration along the fibers map

$$\pi_*: \Omega^k_c(E) \to \Omega^{k-r}(M).$$

More precisely, on a local trivialization we can pick coordinates x^1, \dots, x^n of M and s^1, \dots, s^r of the fiber. For any k-form $(k \ge r)$ ω on M, locally we can write

$$\omega = f(x, s)(\pi^*\theta) \wedge ds^1 \cdots \wedge ds^r + \text{terms with less fiber 1-forms},$$

where θ is a (k-r)-form on M, and f is compactly supported. Then

$$\pi_*\omega := \theta \int_{\mathbb{R}^r} f(x,s) \ ds^1 \cdots ds^r.$$

One can check that

- $\pi_*\omega$ is well-defined.
 - To prove the independence of the choices of the fiber variables s^1, \dots, s^r , one need the following fact: Since E and M are both orientable, one can always choose fiber variables so that the transition maps $g_{\alpha\beta} \in GL^+(n,\mathbb{R})$.
- $d\pi_* = \pi_*d$. $(\Longrightarrow \pi_* \text{ induces a linear map } \pi_*: H^k_c(E) \to H^{k-c}_c(M)$.) The induced map $\pi_*: H^k_c(E) \to H^{k-c}_c(M)$ is an isomorphism.
- Moreover, one has the projection formula

$$\pi_*(\pi^*\theta \wedge \omega) = \theta \wedge \pi_*\omega, \quad \forall \theta \in \Omega^*(M) \text{ and } \omega \in \Omega^*_c(E).$$

The Thom class gives us the "inverse" to the "integration along fibers map". More precisely, by definition, $\pi_*([T]) = 1$. By using the projection formula above, one has

$$(\pi_*)^{-1}([\omega]) = [\pi^*\omega] \cup [T], \qquad \forall \omega \in Z_c^*(E).$$

Let E be an oriented vector bundle of rank r over an oriented connected compact smooth manifold M. Let $s: M \to E$ be any global section of E. Then by using the pull-back, we get an element

$$s^*([T]) \in H^r_{dR}(M).$$

Proposition 3.4. The de Rham cohomology class $s^*([T])$ is independent of the choices of s.

Proof. Let $s_0: M \to E$ be the zero section. Then $s_0 \sim s$ via the homotopy

$$F: M \times \mathbb{R}, (m, t) \mapsto (m, ts(m)).$$

So
$$s^*([T]) = s_0^*([T])$$
.

Definition 3.5. The de Rham cohomology class

$$\chi(E) := s^*([T]) \in H^r_{dR}(M)$$

is called the Euler class of E.

The Euler class of a vector bundle is an obstruction to the existence of a nonvanishing global section.

Theorem 3.6. If an oriented vector bundle E over an oriented compact connected smooth manifold M admits a non-vanishing global section, then $\chi(E) = 0$.

Proof. Let $s: M \to E$ be an non-vanishing section. Take $T \in Z_c^r(E)$ so that [T] is the Thom class. Take $c \in \mathbb{R}$ so that the section $s_1 = cs$ does not intersect supp(T). It follows

$$\chi(E) = s_1^*([T]) = [s_1^*T] = 0.$$

Finally we remark that for E = TM the tangent bundle, one has

$$\chi(TM) = \chi(M)[\mu],$$

where $\mu \in \Omega^n(M)$ is any top form with $\int_M \mu = 1$, and

$$\chi(M) = \sum_{i=0}^{n} (-1)^{i} \dim H_{dR}^{i}(M)$$

is the Euler characteristic number of M. This explains the name "Euler class". Moreover, this explains why any smooth vector field on S^{2n} admits at least one zero, while there exists non-vanishing smooth vector fields on S^{2n+1} :

$$\chi(S^{2n}) \neq 0$$
 while $\chi(S^{2n+1}) = 0$.