
LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

1. Vector Bundles

In general, smooth manifolds are very “non-linear”. However, there exist many
smooth manifolds which admit very nice “partial linear structures”. For example,
given any smooth manifold M of dimension n, the tangent bundle

TM = {(p,Xp) | p ∈M,Xp ∈ TpM}
is “linear in tangent variables”. We have seen in PSet 2 Problem 9 that TM is a
smooth manifold of dimension 2n so that the canonical projection π : TM → M is a
smooth submersion. A local chart of TM is given by

Tϕ = (π, dϕ) : π−1(U)→ U × Rn,

where {ϕ,U, V } is a local chart of M . Note that the local chart map Tϕ “preserves” the
linear structure nicely: it maps the vector space π−1(p) = TpM isomorphically to the

vector space {p}×Rn. As a result, if you choose another chart (ϕ̃, Ũ , Ṽ ) containing p,
then the map T ϕ̃◦Tϕ−1 : {p}×Rn → {p}×Rn is a linear isomorphism which depends
smoothly on p.

In general, we define

Definition 1.1. Let E,M be smooth manifolds, and π : E → M a surjective smooth
map. We say (π,E,M) is a vector bundle of rank r if for every p ∈ M , there exits an
open neighborhood Uα of p and a diffeomorphism (called the local trivialization)

Φα : π−1(Uα)→ Uα × Rr

so that

(1) Ep = π−1(p) is a r dimensional vector space, and Φα|Ep : Ep → {p} × Rr is a
linear map.

(2) For Uα ∩ Uβ 6= ∅, there is a smooth map gβα : Uα ∩ Uβ → GL(r,R) so that

Φβ ◦ Φ−1α (m, v) = (m, gβα(m)(v)), ∀m ∈ Uα ∩ Uβ, v ∈ Rr.

We will call E the total space, M the base and π−1(p) the fiber over p. (In the case
there is no ambiguity about the base, we will denote a vector bundle by E for short.)

(Roughly speaking, a vector bundle E over M is “a smooth varying family of vector
spaces parameterized by a base manifold M”.)

Remark. A vector bundle of rank 1 is usually called a line bundle.

Remark. It is easy to define conception of a vector sub-bundle: a vector bundle (π1, E1,M)
is a sub-bundle of (π,E,M) if (E1)p ⊂ Ep for any p, and π1 = π|E1 .
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Example. Here are some known examples:

(1) For any smooth manifold M , E = M × Rr is a trivial bundle over M .
(2) The tangent bundle TM and the cotangent bundle T ∗M are both vector bundles

over M .
(3) Given any smooth submanifold X ⊂M , the normal bundle

NX = {(p, v) | p ∈ X, v ∈ NpX},

(where NpX is the quotient vector space TpM/TpX) is a vector bundle over X.
Note: NX is NOT a vector sub-bundle of TM .

(4) Any rank r distribution V on M is a rank r vector bundle over M . It is a vector
sub-bundle of the tangent bundle TM .

Example. The canonical line bundle over RPn = {l is a line through 0 in Rn+1} is

γ1n = {(l, x) | l ∈ RPn, x ∈ l ⊂ Rn+1}.

(Can you write down a local trivialization?)

In particular if n = 1, we have RP1 ' S1. In this case the canonical line bundle γ11
is nothing else but the infinite Möbius band, which is a line bundle over S1.

Another way to obtain the infinite Möbius band γ11 is to identify S1 with [0, 1],
with end points 0 and 1 “glued together”. Then the Möbius band is [0, 1] × R, with
“boundary lines {0} × R and {1} × R glued together” via (0, t) ∼ (1,−t).

Example. One can extend operations on vector spaces to operations on vector bundles.

(1) Given any vector bundle (π,E,M), one can define the dual vector bundle by
replacing each Ep with its dual E∗p . (How to define local trivializations? What
are the transition maps gβα’s?) For example, T ∗M is the dual bundle of TM .

(2) Let (π1, E1,M) and (π2, E2,M) be two vector bundles over M of rank r1 and
r2 respectively. Then the direct sum bundle (π1 ⊕ π2, E1 ⊕ E2,M) is the rank
r1 + r2 vector bundle over M with fiber (π1 ⊕ π2)−1(p) = (E1)p ⊕ (E2)p. (How
to define local trivializations? What are the transition maps gβα’s?)

(3) Then the tensor product bundle (π1 ⊗ π2, E1 ⊗ E2,M) is the rank r1r2 vector
bundle over M with fiber (π1 ⊗ π2)−1(p) = (E1)p ⊗ (E2)p. (How to define local
trivializations? What are the transition maps gβα’s?) For example, we have the
(k, l)-tensor bundle ⊗k,lTM := (TM)⊗k ⊗ (T ∗M)⊗l over M .

(4) Similarly one can define the exterior power bundle ΛkT ∗M , whose fiber at point
p ∈M is the linear space ΛkT ∗pM . (Local trivializations? Transition maps?)

(5) Let f : N →M be a smooth map, and (π,E,M) a vector bundle over M . Then
one can define a pull-back bundle f ∗E over N by setting the fiber over x ∈ N
to be the fiber of Ef(x). (Local trivializations? Transition maps?)

In particular, the restriction of a vector bundle (π,E,M) to a submanifold
N of the base manifold M is a vector bundle over the submanifold N . (Note:
this is not a vector sub-bundle of (π,E,M)!)
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We have seen that any smooth manifold can be embedded into the simplest mani-
fold: an Euclidian space. A natural question is whether the same conclusion holds for
vector bundles? More precisely, can we embed any vector bundle (π,E,M) into some
trivial bundle M × RN as a vector sub-bundle? The answer is yes if M is compact,
and the proof is similar to the proof of the “simple Whitney embedding theorem” in
Lecture 9. (The conclusion could be wrong if M is non-compact.)

Theorem 1.2. If M is compact, then any vector bundle E over M is isomorphic to a
sub-bundle of a trivial vector bundle over M .

Proof. (Please compare this proof with the proof of Theorem 1.1 in Lecture 9). Take a
finite open cover {Ui}1≤i≤k of M so that E is trivial over each Ui via the trivialization
maps Φi = (π,Φ2

i ) : π−1(Ui) → Ui × Rr. Let {ρi}1≤i≤k be a P.O.U. subordinate to
{Ui}1≤i≤k. Consider

Φ : E →M × (Rr)k, v 7→ (π(v), ρ1(π(v))Φ2
1(v), · · · , ρk(π(v))Φ2

k(v)).

Note that on each fiber Ep, Φ is a linear isomorphism onto its image. The conclusion
follows, since the image of Φ is a vector sub-bundle of M × Rrk: for any p ∈M , there
exists i so that ρi(p) 6= 0. Then the map Φ2

i induces a local trivialization near p. �

As a corollary we get the following fundamental fact in topological K-theory:

Corollary 1.3. If M is compact, then for any vector bundle E over M , there exists a
vector bundle F over M so that E ⊕ F is a trivial bundle over M .

Proof. We have seen that E is a vector sub-bundle of a trivial bundle M × RN over
M . Now we put an inner product on RN , and take the fiber Fp of F at p ∈ M to be
the orthogonal complement of Ep in RN . (One should check that F is a vector bundle
over M .) �

2. Sections of vector bundles

The following definition is natural:

Definition 2.1. A (smooth) section of a vector bundle (π,E,M) is a (smooth) map
s : M → E so that π ◦ s = IdM . The set of all sections of E is denoted by Γ(E), and
the set of all smooth sections of E is denoted by Γ∞(E).

Remark. Obviously if s1, s2 are smooth sections of E, so is as1 + bs2. So Γ∞(E) is
an (infinitely dimensional) vector space. In fact, one can say more: if s is a smooth
section of E and f is a smooth function on M , then fs is a smooth section of E. So
Γ∞(E) is a C∞(M)-module. (According to the famous Serre-Swan theorem, there is
an equivalence of categories between that of finite rank vector bundles over M and
finitely generated projective modules over C∞(M).)

Remark. Many geometrically interesting objects on M are defined as smooth sections
of some (vector) bundles over M . For example,
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• A smooth vector field on M = a smooth section of TM .
• A smooth (k, l)-tensor field on M = a smooth section of ⊗k,lTM .
• A smooth k-form on M = a smooth section of ΛkT ∗M .
• A volume form on M = a non-vanishing smooth section of ΛnT ∗M .
• A Riemannian metric on M = a smooth section of ⊗2T ∗M satisfying some

extra (symmetric, positive definite) conditions
• A symplectic form on M = a smooth section of Λ2T ∗M satisfying some extra

(closed, non-degenerate) conditions

By definition any vector bundle admits a trivial smooth section: the zero section

s0 : M → E, p 7→ (p, 0).

On the other hand, it is possible that a vector bundle admits no non-vanishing section.
For example, we have seen

• M is orientable if and only if ΛnT ∗M admits a global non-vanishing section.
• TS2n admits no non-vanishing section.

Here is another example:

Example. Consider the canonical line bundle γ1n over RPn. We claim that there is no
non-vanishing smooth section s : RPn → γ1n. To see this we consider the composition

ϕ : Sn
P−→ RPn s−→ γ1n,

where P is the projection p(±x) = lx, the line through x. By definition, ϕ is of form

x 7→ (lx, f(x)x),

where f is a smooth function on Sn satisfying f(−x) = −f(x). By mean value property,
f vanishes at some x0. It follows that s vanishes at x0 also.

Although there might be no non-vanishing global sections, locally there are plenty
of non-vanishing sections. Let E be a rank r vector bundle over M , and U an open set
in M .

Definition 2.2. A local frame of E over U is an ordered r-tuple s1, · · · , sr of smooth
section of E over U so that for each p ∈ U , s1(p), · · · , sr(p) form a basis of Ep.

Example. Let M be a smooth manifold and U be a coordinate patch. Then

• ∂1, · · · , ∂n form a local frame of TM over U .
• dx1, · · · , dxn form a local frame of T ∗M over U .

The following fact is basic. We will leave the proof as an exercise.

Proposition 2.3. Let E be a smooth vector bundle over M .

(1) A section s ∈ Γ(E) is smooth if and only if for any p ∈M , there is a neighbor-
hood U of p and a local frame s1, · · · , sr of E over U so that s = c1s1+ · · ·+crsr
for some smooth functions c1, · · · , cr defined in U .

(2) E is a trivial bundle if and only if there exists a global frame of E on M .
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3. De Rham cohomology groups of vector bundles

We have seen

Hk
dR(M × Rr) ' Hk

dR(M) and Hk
c (M × Rr) ' Hk−r

c (M).

A vector bundle E can be viewed as a “twisted product” of a smooth manifold M (the
base) with a vector space (the fiber). So it is natural to study the relation between the
cohomology groups of E and the cohomology groups of M .

Proposition 3.1. For any vector bundle E over M , one has

Hk
dR(E) = Hk

dR(M), ∀k.

Proof. This is a consequence of the homotopy invariance: E is homotopy equivalent to
M , since if we let s0 : M → E be the zero section, then π ◦ s0 = IdM , and s0 ◦ π ∼ IdE
via the homotopy

F : E × R→ E, (x, v, t) 7→ (x, tv).

�

In general, the same result fails for compact supported cohomology groups. For
example, let E be the infinite Möbius band, which is a line bundle over S1. Since E is
non-orientable, one has

H2
c (E) = 0 6' R ' H1

dR(S1) = H1
c (S1).

On the other hand, if we assume orientablity, then

Proposition 3.2. Let E be a rank r vector bundle over M . Assume both E and M are
oriented with finite dimensional compact supported de Rham cohomology groups, then

Hk
c (E) ' Hk−r

c (M), ∀k.

Proof. We apply Poincaré duality twice:

Hk
c (E) ' Hn+r−k

dR (E) ' Hn+r−k
dR (M) ' Hk−r

c (M).

�

Now let M be an oriented, compact and connected smooth n-manifold, and E
an oriented vector bundle of rank r over M . The constant function 1 on M gives us
a degree-0 cohomology class [1] ∈ H0

dR(M). So the isomorphism above produces an
element

[T ] ∈ Hr
c (E).

Definition 3.3. We call [T ] the Thom class of (π,E,M).

Remark. The isomorphism Hk
c (E) ' Hk−r

c (M) is called the Thom duality. It is given
explicitly by an integration along the fibers map

π∗ : Ωk
c (E)→ Ωk−r(M).



6 LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

More precisely, on a local trivialization we can pick coordinates x1, · · · , xn of M and
s1, · · · , sr of the fiber. For any k-form (k ≥ r) ω on M , locally we can write

ω = f(x, s)(π∗θ) ∧ ds1 · · · ∧ dsr + terms with less fiber 1-forms,

where θ is a (k − r)-form on M , and f is compactly supported. Then

π∗ω := θ

∫
Rr

f(x, s) ds1 · · · dsr.

One can check that

• π∗ω is well-defined.
– To prove the independence of the choices of the fiber variables s1, · · · , sr,

one need the following fact: Since E and M are both orientable, one can
always choose fiber variables so that the transition maps gαβ ∈ GL+(n,R).

• dπ∗ = π∗d. (=⇒ π∗ induces a linear map π∗ : Hk
c (E)→ Hk−c

c (M).)
• The induced map π∗ : Hk

c (E)→ Hk−c
c (M) is an isomorphism.

• Moreover, one has the projection formula

π∗(π
∗θ ∧ ω) = θ ∧ π∗ω, ∀θ ∈ Ω∗(M) and ω ∈ Ω∗c(E).

The Thom class gives us the “inverse” to the “integration along fibers map”. More
precisely, by definition, π∗([T ]) = 1. By using the projection formula above, one has

(π∗)
−1([ω]) = [π∗ω] ∪ [T ], ∀ω ∈ Z∗c (E).

Let E be an oriented vector bundle of rank r over an oriented connected compact
smooth manifold M . Let s : M → E be any global section of E. Then by using the
pull-back, we get an element

s∗([T ]) ∈ Hr
dR(M).

Proposition 3.4. The de Rham cohomology class s∗([T ]) is independent of the choices
of s.

Proof. Let s0 : M → E be the zero section. Then s0 ∼ s via the homotopy

F : M × R, (m, t) 7→ (m, ts(m)).

So s∗([T ]) = s∗0([T ]). �

Definition 3.5. The de Rham cohomology class

χ(E) := s∗([T ]) ∈ Hr
dR(M)

is called the Euler class of E.

The Euler class of a vector bundle is an obstruction to the existence of a non-
vanishing global section.

Theorem 3.6. If an oriented vector bundle E over an oriented compact connected
smooth manifold M admits a non-vanishing global section, then χ(E) = 0.
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Proof. Let s : M → E be an non-vanishing section. Take T ∈ Zr
c (E) so that [T ] is the

Thom class. Take c ∈ R so that the section s1 = cs does not intersect supp(T ). It
follows

χ(E) = s∗1([T ]) = [s∗1T ] = 0.

�

Finally we remark that for E = TM the tangent bundle, one has

χ(TM) = χ(M)[µ],

where µ ∈ Ωn(M) is any top form with
∫
M
µ = 1, and

χ(M) =
n∑
i=0

(−1)i dimH i
dR(M)

is the Euler characteristic number of M . This explains the name “Euler class”. More-
over, this explains why any smooth vector field on S2n admits at least one zero, while
there exists non-vanishing smooth vector fields on S2n+1:

χ(S2n) 6= 0 while χ(S2n+1) = 0.


