
LECTURE 29: CONNECTIONS AND CURVATURES

1. Connections on vector bundles

Let E be a vector bundle overM , and s a smooth section. We would like to “differentiate”
s. Let’s first consider the case that E = M × Rr. In this case, a section s is just a vector-
valued function

s = (f1, · · · , fr)T ,
where fi ∈ C∞(M) are smooth functions. It is naturally to “define” ds to be

ds = (df1, · · · , dfr)T .

This is a “vector-valued 1-form”, in the sense that if we plug-in a smooth vector field X on
M into ds, we will get a vector-valued function

ds(X) = (df1(X), · · · , dfr(X))T ∈ C∞(M,Rr).

So to “differentiate” smooth sections of vector bundles, we are naturally led to extend the
conception of R-valued differential forms to vector-valued differential forms.

Recall that a k-tensor T on V is a multi-linear map

T : V × V × · · · × V → R.

For any vector space W , one may also study W -valued k-tensor, i.e. multi-linear map

T : V × V × · · · × V → W.

Similarly one may define W -valued linear k-form, which are anti-symmetric W -valued k-
tensor. Obviously they are not new objects at all: if we choose a basis of W , then we can
write down T as a vector of R-valued k-tensors or R-valued linear k-forms.

In particular, if M is a smooth manifold, then we can talk about W -valued k-forms,
which are pointwise multi-linear anti-symmetric maps

ηp : TpM × TpM × · · · × TpM → W

which depends on p smoothly. In other words, it is a bundle morphism (=fiberwise linear)

η : TM ⊗ TM ⊗ · · · ⊗ TM →M ×W.

which is anti-symmetric (c.f. PSet 6 Problem 2(c)). If we allow the target vector space W to
vary as the base point p changes, i.e. we want W to be Ep at p, where E is a vector bundle
over M , we will get E-valued differential forms (where E is a vector bundle over M), which
are anti-symmetric bundle morphisms

η : TM ⊗ TM ⊗ · · · ⊗ TM → E.
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Recall that any k-form on M can also be described as a smooth section of the exterior
power bundle ΛkT ∗M . Similarly an E-valued k-form on M can be described as a section of
the tensor product bundle ΛkT ∗M ⊗ E. We take this as our definition:

Definition 1.1. Let E be any smooth vector bundle over M . We call any smooth section
of ΛkT ∗M ⊗ E an E-valued k-form on M . The set of all E-valued k-forms is denoted by
Ωk(M ;E).

Of course locally on a small open set U in M , any element η ∈ Ωk(U ;E|U) can be written
as a linear combination of elements of the form ω ⊗ s, where ω ∈ Ωk(U) and s ∈ Γ∞(E|U).

Remark. Note that in general one can no longer define the wedge product between two E-
valued differential forms: what can (ω1 ⊗ s1) ∧ (ω2 ⊗ s2) be? We know ω1 ∧ ω2 gives us
a differential form on M , but we don’t know how to put sections s1 and s2 of E together
algebraically to get a new section of E. However, we have two rescue:

• One can define a wedge product ∧ : Ωk(M)×Ωl(M ;E)→ Ωk+l(M ;E) by extending
the following rule linearly:

ω1 ∧ (ω2 ⊗ s) := (ω1 ∧ ω2)⊗ s.
Similarly one can define the wedge product ∧ : Ωl(M ;E) ⊗ Ωk(M) → Ωk+l(M ;E).
(Thus Ω∗(M ;E) is a graded (left- and right-)module over the graded algebra Ω∗(M).)
• If the fiber Ep’s are not just vector spaces, but in fact algebras (so that one can “mul-

tiply” vectors in each Ep), then one can define the wedge products between elements
in Ωk(M ;E) and Ωl(M ;E). This is the case, for example, for Ωk(M ; End(E)):

∧ : Ωk(M ; End(E))× Ωl(M ; End(E))→ Ωk+l(M ; End(E)),

(ω1 ⊗ s1) ∧ (ω2 ⊗ s2) := (ω1 ∧ ω2)⊗ (s1 ◦ s2).
(Recall: End(E) is the vector bundle over M whose fiber at p is End(Ep). Since
End(Ep) ' Ep ⊗ E∗p (c.f. PSet 6 Problem 2(b)), we have End(E) ' E ⊗ E∗.) Note
that if E has rank r, then each End(Ep) can be identified with the general linear
algebra gl(r,R).

Our next goal is to extend the conception of exterior derivative to E-valued differential
forms. We start with E-valued 0-forms, i.e. sections of E.

As we have seen, if E = M × Rr, then we can differentiate a section s = (f1, · · · , fr)T
via the formula

ds := (df1, · · · , dfr)T ,
which, in our new terminology, is a E-valued 1-form. This seems to be the most natural
definition. However, if E is a trivial rank r-bundle over M , but not already in the product
form M × Rr, then we may have many different ways to trivialize E: For example, if
s1, · · · , sr is a global trivialization of E, and if g1, · · · , gr are positive functions on M , then
s1/g1, · · · , sr/gr is another trivialization of E. Using the trivialization s1, · · · , sr, one may
identify a section s as a vector (f1, · · · , fr)T if s =

∑
fisi. But if we use the trivialization

s1/g1, · · · , sr/gr, then we has to identify the same section s with the vector (g1f1, · · · , grfr).
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As a result, the differential ds can be defined to be (df1, · · · , dfr)T in the frame s1, · · · , sr,
which is

“ds = ”df1 ⊗ s1 + · · ·+ dfr ⊗ sr,
or ds can be defined to be (d(g1f1), · · · , d(grfr))

T in the frame s1/g1, · · · , sr/gr, which is

“ds = ”d(g1f1)⊗ s1/g1 + · · ·+ d(grfr)⊗ sr/gr
=df1 ⊗ s1 + (dg1)f1/g1 ⊗ s1 + · · ·+ dfr ⊗ sr + (dgr)fr/gr ⊗ sr.

So we conclude that even for trivial bundles, we can define different ds’s, which are different
but are “natural” with respect to different choices of global trivialization.

Two implications that we can see from the above example:

(1) There is no “god-given” way to differentiate a section. We could have many different
ways. It is given by an extra structure on E (called a linear connection below). To
differentiate sections, we have to choose a linear connection first.

(2) For a general vector bundle, there is no global frame in general. However, we can
always choose local frames and define ds locally. Then we are naturally led to study
“the same linear connection in different frame”.

So if E is an arbitrary vector bundle, and s a section of E, then after applying a linear
connection ∇, we should get an E-valued 1-form ∇s. Moreover, using either “definition” of
ds above, we can check that the Leibnitz rule still holds:

“d(fs)” = df ⊗ s+ fds.

So we define

Definition 1.2. Let E be a vector bundle over M . A linear connection on E is a linear
map

∇ : Ω0(M ;E) = Γ∞(E)→ Γ∞(T ∗M ⊗ E) = Ω1(M ;E)

such that for any f ∈ C∞(M) and any s ∈ Γ∞(E), we have

∇(fs) = df ⊗ s+ f∇s.

Example. If E = M ×Rr is a trivial vector bundle, then any section in Γ∞(E) is of the form
s = (f1, · · · , fr)T , where each fi is a smooth function on M . In this case one can define a
trivial connection ∇0 by

∇0(f1, · · · , fr) := (df1, · · · , dfr)T ∈ Γ∞(T ∗M ⊗ E).

Remark. If ∇0 and ∇1 are linear connections on E, then for any ρ ∈ C∞(M),

∇ := ρ∇0 + (1− ρ)∇1

is again a linear connection on E. As a consequence, one can easily prove the existence of
linear connections by using “trivial connections on trivialization neighborhoods” and parti-
tion of unity. (WARNING: If ∇1,∇2 are linear connections, ∇1 +∇2 and λ∇1 are no longer
linear connections in general.)
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Remark. A connection is not a tensor since it is not C∞(M)-linear. However, if ∇0 and ∇1

are two linear connections on E, then one can check that

A := ∇1 −∇0 : Γ∞(E)→ Γ∞(T ∗M ⊗ E)

satisfies A(fs) = fA(s):

A(fs) = ∇1(fs)−∇0(fs) = df ⊗ s+ f∇1s− df ⊗ s− f∇0s = fA(s).

In other words, A is a tensor:

A ∈ Γ∞(T ∗M ⊗ E ⊗ E∗) ' Ω1(M ;E ⊗ E∗) ' Ω1(M ; End(E)).

Conversely, for any connection ∇0 and any A ∈ Ω1(M,End(E)) (viewed as a map from
Γ∞(E) to Γ∞(T ∗M ⊗ E) as explained above), one can check that ∇0 + A is a connection:

(∇0 + A)(fs) = ∇0(fs) + fA⊗ s = df ⊗ s+ f∇0s+ fA⊗ s = df ⊗ s+ f(∇0 + A)s.

So
The set of linear connections on E = ∇0 + Ω1(M ; End(E)).

Remark. Given vector bundles with connections, one can perform new connections on new
bundles:

• If E is a vector bundle over M and ∇ is a linear connection on E, then one can define
a linear connection ∇∗ on the dual bundle E∗ by requiring

d〈s, s∗〉 = 〈∇s, s∗〉+ 〈s,∇∗s∗〉, ∀s ∈ Γ∞(E), s∗ ∈ Γ∞(E∗),

where 〈·, ·〉 is the pairing between E and E∗.
• If E1, E2 are vector bundles over M , with two linear connections ∇1,∇2, then one

can define the direct sum connection ∇ = ∇1 ⊕∇2 on E1 ⊕ E2 by requiring

∇(s1 ⊕ s2) := ∇1s1 ⊕∇2s2.

Similarly we can define the tensor product connection ∇ = ∇1 ⊗ ∇2 on the tensor
product bundle E1 ⊗ E2 by requiring

∇(s1 ⊗ s2) := ∇1s1 ⊗ s2 + s1 ⊗∇2s2.

As a consequence, any linear connection ∇ on E gives rise to a linear connection on
the vector bundle End(E).

Now let’s describe a linear connection ∇ on E locally. Let {e1, · · · , er} be a local frame
of E near x ∈ M , i.e. for each y in a neighborhood U of x, {e1(y), · · · , er(y)} form a
basis of Ey. Then any section of E|U can be written as [In what follows we will apply
Einstein’s summation convention: automatically sum over repeated upper and
lower subscripts]

u = ujej.

By definition, one has
∇u = duj ⊗ ej + uj∇ej.

So ∇ is completely determined by ∇ej for a local frame {e1, · · · , er}.
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Next let’s assume that U is a local coordinate patch and the corresponding coordinates
near x are given by {x1, · · · , xn}. Then we get a local frame

dxi ⊗ ej, 1 ≤ i ≤ n, 1 ≤ j ≤ r

of T ∗M ⊗ E. As a consequence, there exist functions Γjil on U so that

∇el = Γjildx
i ⊗ ej.

This implies that for any u = ujej,

∇u = duj ⊗ ej + Γjilu
ldxi ⊗ ej.

We let Γ be the following r × r matrix-valued 1-form (i.e. when paired with a vector, you
will get a r × r matrix)

Γ =
(
Γjildx

i
)
1≤j,l≤r ∈ Ω1(U)⊗ gl(r,R)

Then the previous equation can be abbreviated as

∇u = du+ Γu.

We will call Γ the connection 1-form associated to the given local frame {e1, · · · , er}.
Note that the connection 1-form depends on the choice of local frame. Let {ẽ1, · · · , ẽr}

be another local frame defined on a coordinate patch U near x. Then we can write u in two
ways

ujej = u = ũj ẽj

Let g be the invertible r × r matrix so that

(ẽ1, · · · , ẽr) = (e1, · · · , er)g.
Then we get

∇ẽl = Γ̃jildx
i ⊗ ẽj = Γ̃jildx

i ⊗ esgsj = (gsj Γ̃
j
il)dx

i ⊗ es.
and

∇ẽl = ∇(ejg
j
l ) = dgjl ⊗ ej + gjl∇el = dgsl ⊗ es + gjl Γ

s
ijdx

i ⊗ es.
Compare the above two formulae we get gΓ̃ = dg + Γg, i.e.

Γ̃ = g−1dg + g−1Γg.

This is the transition rule relating the connection 1-forms in different local frames.

Conversely, one can prove

Proposition 1.3. Let E be a rank r vector bundle over M and (Uα) an open cover of M
consisting of local trivialization charts for E. Let gαβ : Uα ∩ Uβ → GL(r,R) be transition
maps of E. Then any collection of matrix-valued 1-forms Γα ∈ Ω1(Uα)⊗ gl(r,R) satisfying

Γβ = g−1αβdgαβ + g−1αβΓαgαβ

uniquely defines a linear connection on E.

Proof. Exercise. �
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2. Curvatures of connections

Now let E be a vector bundle over M and ∇ : Ω0(M ;E)→ Ω1(M ;E) a linear connection
on E. One can extend ∇ to a family of operators

∇ : Ωk(M ;E)→ Ωk+1(M ;E)

by (Compare: Theorem 2.2 in Lecture 21)

Definition 2.1. Given a linear connection ∇ on E, ∇ : Ωk(M ;E) → Ωk+1(M ;E) is given
by the formula

∇(ω ⊗ s)(X0, · · · , Xk) =
k∑
i=0

(−1)i∇(ω(X0, · · · , X̂i, · · · , Xk)s)(Xi)

+
∑
i<j

(−1)i+jω([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xk)s.

One can check

∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s, ∀ω ∈ Ωk(U), s ∈ Γ∞(E).

and
∇(ω ∧ η) = dω ∧ η + (−1)kω ∧∇η, ∀ω ∈ Ωk(M), η ∈ Ωl(M ;E).

Example. Let E = M × Rr be the trivial bundle and ∇ = ∇0 : Ω0(M ;E) → Ω1(M ;E)
be the trivial connection as stated above. Then any element of Ωk(M ;E) is of the form
η = (η1, · · · , ηr)T with ηi ∈ Ωk(M), and the map ∇ : Ωk(M ;E) → Ωk+1(M ;E) is merely
given by

∇(η1, · · · , ηr)T = (dη1, · · · , dηr)T ∈ Ωk+1(M ;E).

More generally, if ∇ = d+ A for some r × r-matrix valued 1-form A, then

∇(η1, · · · , ηr)T = (dη1, · · · , dηr)T + A ∧ (η1, · · · , ηr)T ∈ Ωk+1(M ;E).

We have explained that ∇ is not C∞(M)-linear. It turns out that the composition
∇2 = ∇ ◦∇ : Ωk(M ;E)→ Ωk+2(M ;E) is C∞(M)-linear:

Lemma 2.2. For any f ∈ C∞(M) and any ω ∈ Ωk(M ;E) one has

∇2(fω) = f(∇2ω).

Proof. We have

∇2(fω) = ∇(df ∧ ω + f∇ω) = −df ∧∇ω + df ∧∇ω + f∇2ω = f∇2ω.

�

In particular, we see that

∇2 : Ω0(M ;E) = Γ∞(E)→ Ω2(M ;E) = Γ∞(∧2T ∗M ⊗ E)

is a tensor, and in fact is an r × r matrix valued 2-form:

∇2 ∈ Γ∞(∧2T ∗M ⊗ E ⊗ E∗) ' Ω2(M ;E ⊗ E∗) ' Ω2(M ; End(E)).
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Note that although the matrix-valued 1-form Γ is only locally defined, the matrix-valued
2-form ∇2 is globally defined.

Definition 2.3. Given any connection ∇ on E, we will call

R∇ := ∇2 ∈ Ω2(M ; End(E))

the curvature of ∇.

Example. Again consider the trivial bundle E = M × Rr. Let ∇ = d + A be any linear
connection on E, where A is any r × r matrix-valued 1-form on M . Then the curvature of
∇ is the two form such that for any u = (f1, · · · , fr)T ,

R∇u = ∇(du+ Au) = A ∧ du+ d(Au) + A ∧ Au = (dA+ A ∧ A)u.

In other words,
R∇ = dA+ A ∧ A.

Note that in the above example, we have R∇0 = 0.

Definition 2.4. A connection ∇ on E is called flat if R∇ = 0.

Let’s do some local computation. Let Γ be the local matrix-valued connection 1-form.
In other words, locally after choosing a frame, we have ∇ = d + Γ. Then by the example
above,

R∇ = dΓ + Γ ∧ Γ.

This is called the structure equation. This equation has two consequences:

(1) If we choose a different local frame, then we have seen Γ̃ = g−1dg+ g−1Γg, where g :
U → gl(r,R) is the matrix-valued function transforming the frame (e1, · · · , er) to the
new frame (ẽ1, · · · , ẽr). Then using the fact dg−1 = −g−1(dg)g−1 (since d(gg−1) = 0),
we can get

R̃∇ = g−1R∇ g.

(2) If we differentiate both sides of the structure equation, we get

dR∇ = dΓ ∧ Γ− Γ ∧ dΓ = R∇ ∧ Γ− Γ ∧R∇.
This is known as the Bianchi identity. One can prove that if we write ∇̃ as the
induced linear connection on Ω2(M ; End(E), then the Bianchi identity is induced to

∇̃R∇ = 0.


