LECTURE 29: CONNECTIONS AND CURVATURES

1. Connections on vector bundles

Let E be a vector bundle over M, and s a smooth section. We would like to "differentiate" s. Let's first consider the case that $E=M \times \mathbb{R}^{r}$. In this case, a section s is just a vectorvalued function

$$
s=\left(f_{1}, \cdots, f_{r}\right)^{T}
$$

where $f_{i} \in C^{\infty}(M)$ are smooth functions. It is naturally to "define" $d s$ to be

$$
d s=\left(d f_{1}, \cdots, d f_{r}\right)^{T}
$$

This is a "vector-valued 1-form", in the sense that if we plug-in a smooth vector field X on M into $d s$, we will get a vector-valued function

$$
d s(X)=\left(d f_{1}(X), \cdots, d f_{r}(X)\right)^{T} \in C^{\infty}\left(M, \mathbb{R}^{r}\right)
$$

So to "differentiate" smooth sections of vector bundles, we are naturally led to extend the conception of \mathbb{R}-valued differential forms to vector-valued differential forms.

Recall that a k-tensor T on V is a multi-linear map

$$
T: V \times V \times \cdots \times V \rightarrow \mathbb{R}
$$

For any vector space W, one may also study W-valued k-tensor, i.e. multi-linear map

$$
T: V \times V \times \cdots \times V \rightarrow W
$$

Similarly one may define W-valued linear k-form, which are anti-symmetric W-valued k tensor. Obviously they are not new objects at all: if we choose a basis of W, then we can write down T as a vector of \mathbb{R}-valued k-tensors or \mathbb{R}-valued linear k-forms.

In particular, if M is a smooth manifold, then we can talk about W-valued k-forms, which are pointwise multi-linear anti-symmetric maps

$$
\eta_{p}: T_{p} M \times T_{p} M \times \cdots \times T_{p} M \rightarrow W
$$

which depends on p smoothly. In other words, it is a bundle morphism (=fiberwise linear)

$$
\eta: T M \otimes T M \otimes \cdots \otimes T M \rightarrow M \times W
$$

which is anti-symmetric (c.f. PSet 6 Problem 2(c)). If we allow the target vector space W to vary as the base point p changes, i.e. we want W to be E_{p} at p, where E is a vector bundle over M, we will get E-valued differential forms (where E is a vector bundle over M), which are anti-symmetric bundle morphisms

$$
\eta: T M \otimes T M \otimes \cdots \otimes T M \rightarrow E .
$$

Recall that any k-form on M can also be described as a smooth section of the exterior power bundle $\Lambda^{k} T^{*} M$. Similarly an E-valued k-form on M can be described as a section of the tensor product bundle $\Lambda^{k} T^{*} M \otimes E$. We take this as our definition:
Definition 1.1. Let E be any smooth vector bundle over M. We call any smooth section of $\Lambda^{k} T^{*} M \otimes E$ an E-valued k-form on M. The set of all E-valued k-forms is denoted by $\Omega^{k}(M ; E)$.

Of course locally on a small open set U in M, any element $\eta \in \Omega^{k}\left(U ;\left.E\right|_{U}\right)$ can be written as a linear combination of elements of the form $\omega \otimes s$, where $\omega \in \Omega^{k}(U)$ and $s \in \Gamma^{\infty}\left(\left.E\right|_{U}\right)$.

Remark. Note that in general one can no longer define the wedge product between two E valued differential forms: what can $\left(\omega_{1} \otimes s_{1}\right) \wedge\left(\omega_{2} \otimes s_{2}\right)$ be? We know $\omega_{1} \wedge \omega_{2}$ gives us a differential form on M, but we don't know how to put sections s_{1} and s_{2} of E together algebraically to get a new section of E. However, we have two rescue:

- One can define a wedge product $\wedge: \Omega^{k}(M) \times \Omega^{l}(M ; E) \rightarrow \Omega^{k+l}(M ; E)$ by extending the following rule linearly:

$$
\omega_{1} \wedge\left(\omega_{2} \otimes s\right):=\left(\omega_{1} \wedge \omega_{2}\right) \otimes s
$$

Similarly one can define the wedge product $\wedge: \Omega^{l}(M ; E) \otimes \Omega^{k}(M) \rightarrow \Omega^{k+l}(M ; E)$. (Thus $\Omega^{*}(M ; E)$ is a graded (left- and right-)module over the graded algebra $\Omega^{*}(M)$.)

- If the fiber E_{p} 's are not just vector spaces, but in fact algebras (so that one can "multiply" vectors in each E_{p}), then one can define the wedge products between elements in $\Omega^{k}(M ; E)$ and $\Omega^{l}(M ; E)$. This is the case, for example, for $\Omega^{k}(M ; \operatorname{End}(E))$:

$$
\begin{aligned}
\wedge: \Omega^{k}(M ; \operatorname{End}(E)) & \times \Omega^{l}(M ; \operatorname{End}(E)) \rightarrow \Omega^{k+l}(M ; \operatorname{End}(E)) \\
\left(\omega_{1} \otimes s_{1}\right) & \wedge\left(\omega_{2} \otimes s_{2}\right):=\left(\omega_{1} \wedge \omega_{2}\right) \otimes\left(s_{1} \circ s_{2}\right)
\end{aligned}
$$

(Recall: $\operatorname{End}(E)$ is the vector bundle over M whose fiber at p is $\operatorname{End}\left(E_{p}\right)$. Since $\operatorname{End}\left(E_{p}\right) \simeq E_{p} \otimes E_{p}^{*}\left(\right.$ c.f. PSet 6 Problem 2(b)), we have $\operatorname{End}(E) \simeq E \otimes E^{*}$.) Note that if E has rank r, then each $\operatorname{End}\left(E_{p}\right)$ can be identified with the general linear algebra $\mathfrak{g l}(r, \mathbb{R})$.

Our next goal is to extend the conception of exterior derivative to E-valued differential forms. We start with E-valued 0 -forms, i.e. sections of E.

As we have seen, if $E=M \times \mathbb{R}^{r}$, then we can differentiate a section $s=\left(f_{1}, \cdots, f_{r}\right)^{T}$ via the formula

$$
d s:=\left(d f_{1}, \cdots, d f_{r}\right)^{T}
$$

which, in our new terminology, is a E-valued 1 -form. This seems to be the most natural definition. However, if E is a trivial rank r-bundle over M, but not already in the product form $M \times \mathbb{R}^{r}$, then we may have many different ways to trivialize E : For example, if s_{1}, \cdots, s_{r} is a global trivialization of E, and if g_{1}, \cdots, g_{r} are positive functions on M, then $s_{1} / g_{1}, \cdots, s_{r} / g_{r}$ is another trivialization of E. Using the trivialization s_{1}, \cdots, s_{r}, one may identify a section s as a vector $\left(f_{1}, \cdots, f_{r}\right)^{T}$ if $s=\sum f_{i} s_{i}$. But if we use the trivialization $s_{1} / g_{1}, \cdots, s_{r} / g_{r}$, then we has to identify the same section s with the vector $\left(g_{1} f_{1}, \cdots, g_{r} f_{r}\right)$.

As a result, the differential $d s$ can be defined to be $\left(d f_{1}, \cdots, d f_{r}\right)^{T}$ in the frame s_{1}, \cdots, s_{r}, which is

$$
" d s=" d f_{1} \otimes s_{1}+\cdots+d f_{r} \otimes s_{r}
$$

or $d s$ can be defined to be $\left(d\left(g_{1} f_{1}\right), \cdots, d\left(g_{r} f_{r}\right)\right)^{T}$ in the frame $s_{1} / g_{1}, \cdots, s_{r} / g_{r}$, which is

$$
\begin{aligned}
" d s= & " d\left(g_{1} f_{1}\right) \otimes s_{1} / g_{1}+\cdots+d\left(g_{r} f_{r}\right) \otimes s_{r} / g_{r} \\
& =d f_{1} \otimes s_{1}+\left(d g_{1}\right) f_{1} / g_{1} \otimes s_{1}+\cdots+d f_{r} \otimes s_{r}+\left(d g_{r}\right) f_{r} / g_{r} \otimes s_{r} .
\end{aligned}
$$

So we conclude that even for trivial bundles, we can define different $d s$'s, which are different but are "natural" with respect to different choices of global trivialization.

Two implications that we can see from the above example:
(1) There is no "god-given" way to differentiate a section. We could have many different ways. It is given by an extra structure on E (called a linear connection below). To differentiate sections, we have to choose a linear connection first.
(2) For a general vector bundle, there is no global frame in general. However, we can always choose local frames and define $d s$ locally. Then we are naturally led to study "the same linear connection in different frame".

So if E is an arbitrary vector bundle, and s a section of E, then after applying a linear connection ∇, we should get an E-valued 1-form ∇s. Moreover, using either "definition" of $d s$ above, we can check that the Leibnitz rule still holds:

$$
" d(f s) "=d f \otimes s+f d s
$$

So we define
Definition 1.2. Let E be a vector bundle over M. A linear connection on E is a linear map

$$
\nabla: \Omega^{0}(M ; E)=\Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}\left(T^{*} M \otimes E\right)=\Omega^{1}(M ; E)
$$

such that for any $f \in C^{\infty}(M)$ and any $s \in \Gamma^{\infty}(E)$, we have

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

Example. If $E=M \times \mathbb{R}^{r}$ is a trivial vector bundle, then any section in $\Gamma^{\infty}(E)$ is of the form $s=\left(f_{1}, \cdots, f_{r}\right)^{T}$, where each f_{i} is a smooth function on M. In this case one can define a trivial connection ∇^{0} by

$$
\nabla^{0}\left(f_{1}, \cdots, f_{r}\right):=\left(d f_{1}, \cdots, d f_{r}\right)^{T} \in \Gamma^{\infty}\left(T^{*} M \otimes E\right)
$$

Remark. If ∇^{0} and ∇^{1} are linear connections on E, then for any $\rho \in C^{\infty}(M)$,

$$
\nabla:=\rho \nabla^{0}+(1-\rho) \nabla^{1}
$$

is again a linear connection on E. As a consequence, one can easily prove the existence of linear connections by using "trivial connections on trivialization neighborhoods" and partition of unity. (WARNING: If ∇_{1}, ∇_{2} are linear connections, $\nabla_{1}+\nabla_{2}$ and $\lambda \nabla_{1}$ are no longer linear connections in general.)

Remark. A connection is not a tensor since it is not $C^{\infty}(M)$-linear. However, if ∇^{0} and ∇^{1} are two linear connections on E, then one can check that

$$
A:=\nabla^{1}-\nabla^{0}: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}\left(T^{*} M \otimes E\right)
$$

satisfies $A(f s)=f A(s)$:

$$
A(f s)=\nabla^{1}(f s)-\nabla^{0}(f s)=d f \otimes s+f \nabla^{1} s-d f \otimes s-f \nabla^{0} s=f A(s)
$$

In other words, A is a tensor:

$$
A \in \Gamma^{\infty}\left(T^{*} M \otimes E \otimes E^{*}\right) \simeq \Omega^{1}\left(M ; E \otimes E^{*}\right) \simeq \Omega^{1}(M ; \operatorname{End}(E))
$$

Conversely, for any connection ∇^{0} and any $A \in \Omega^{1}(M, \operatorname{End}(E)$) (viewed as a map from $\Gamma^{\infty}(E)$ to $\Gamma^{\infty}\left(T^{*} M \otimes E\right)$ as explained above), one can check that $\nabla^{0}+A$ is a connection:

$$
\left(\nabla^{0}+A\right)(f s)=\nabla^{0}(f s)+f A \otimes s=d f \otimes s+f \nabla^{0} s+f A \otimes s=d f \otimes s+f\left(\nabla^{0}+A\right) s
$$

So

$$
\text { The set of linear connections on } E=\nabla^{0}+\Omega^{1}(M ; \operatorname{End}(E)) \text {. }
$$

Remark. Given vector bundles with connections, one can perform new connections on new bundles:

- If E is a vector bundle over M and ∇ is a linear connection on E, then one can define a linear connection ∇^{*} on the dual bundle E^{*} by requiring

$$
d\left\langle s, s^{*}\right\rangle=\left\langle\nabla s, s^{*}\right\rangle+\left\langle s, \nabla^{*} s^{*}\right\rangle, \quad \forall s \in \Gamma^{\infty}(E), s^{*} \in \Gamma^{\infty}\left(E^{*}\right),
$$

where $\langle\cdot, \cdot\rangle$ is the pairing between E and E^{*}.

- If E_{1}, E_{2} are vector bundles over M, with two linear connections ∇_{1}, ∇_{2}, then one can define the direct sum connection $\nabla=\nabla_{1} \oplus \nabla_{2}$ on $E_{1} \oplus E_{2}$ by requiring

$$
\nabla\left(s_{1} \oplus s_{2}\right):=\nabla_{1} s_{1} \oplus \nabla_{2} s_{2}
$$

Similarly we can define the tensor product connection $\nabla=\nabla_{1} \otimes \nabla_{2}$ on the tensor product bundle $E_{1} \otimes E_{2}$ by requiring

$$
\nabla\left(s_{1} \otimes s_{2}\right):=\nabla_{1} s_{1} \otimes s_{2}+s_{1} \otimes \nabla_{2} s_{2}
$$

As a consequence, any linear connection ∇ on E gives rise to a linear connection on the vector bundle $\operatorname{End}(E)$.

Now let's describe a linear connection ∇ on E locally. Let $\left\{e_{1}, \cdots, e_{r}\right\}$ be a local frame of E near $x \in M$, i.e. for each y in a neighborhood U of $x,\left\{e_{1}(y), \cdots, e_{r}(y)\right\}$ form a basis of E_{y}. Then any section of $\left.E\right|_{U}$ can be written as [In what follows we will apply Einstein's summation convention: automatically sum over repeated upper and lower subscripts]

$$
u=u^{j} e_{j} .
$$

By definition, one has

$$
\nabla u=d u^{j} \otimes e_{j}+u^{j} \nabla e_{j} .
$$

So ∇ is completely determined by ∇e_{j} for a local frame $\left\{e_{1}, \cdots, e_{r}\right\}$.

Next let's assume that U is a local coordinate patch and the corresponding coordinates near x are given by $\left\{x^{1}, \cdots, x^{n}\right\}$. Then we get a local frame

$$
d x^{i} \otimes e_{j}, \quad 1 \leq i \leq n, 1 \leq j \leq r
$$

of $T^{*} M \otimes E$. As a consequence, there exist functions $\Gamma_{i l}^{j}$ on U so that

$$
\nabla e_{l}=\Gamma_{i l}^{j} d x^{i} \otimes e_{j} .
$$

This implies that for any $u=u^{j} e_{j}$,

$$
\nabla u=d u^{j} \otimes e_{j}+\Gamma_{i l}^{j} u^{l} d x^{i} \otimes e_{j} .
$$

We let Γ be the following $r \times r$ matrix-valued 1-form (i.e. when paired with a vector, you will get a $r \times r$ matrix)

$$
\Gamma=\left(\Gamma_{i l}^{j} d x^{i}\right)_{1 \leq j, l \leq r} \in \Omega^{1}(U) \otimes \mathfrak{g l}(r, \mathbb{R})
$$

Then the previous equation can be abbreviated as

$$
\nabla u=d u+\Gamma u
$$

We will call Γ the connection 1-form associated to the given local frame $\left\{e_{1}, \cdots, e_{r}\right\}$.
Note that the connection 1 -form depends on the choice of local frame. Let $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{r}\right\}$ be another local frame defined on a coordinate patch U near x. Then we can write u in two ways

$$
u^{j} e_{j}=u=\tilde{u}^{j} \tilde{e}_{j}
$$

Let g be the invertible $r \times r$ matrix so that

$$
\left(\tilde{e}_{1}, \cdots, \tilde{e}_{r}\right)=\left(e_{1}, \cdots, e_{r}\right) g .
$$

Then we get

$$
\nabla \tilde{e}_{l}=\widetilde{\Gamma}_{i l}^{j} d x^{i} \otimes \tilde{e}_{j}=\widetilde{\Gamma}_{i l}^{j} d x^{i} \otimes e_{s} g_{j}^{s}=\left(g_{j}^{s} \widetilde{\Gamma}_{i l}^{j}\right) d x^{i} \otimes e_{s} .
$$

and

$$
\nabla \tilde{e}_{l}=\nabla\left(e_{j} g_{l}^{j}\right)=d g_{l}^{j} \otimes e_{j}+g_{l}^{j} \nabla e_{l}=d g_{l}^{s} \otimes e_{s}+g_{l}^{j} \Gamma_{i j}^{s} d x^{i} \otimes e_{s} .
$$

Compare the above two formulae we get $g \widetilde{\Gamma}=d g+\Gamma g$, i.e.

$$
\widetilde{\Gamma}=g^{-1} d g+g^{-1} \Gamma g
$$

This is the transition rule relating the connection 1-forms in different local frames.
Conversely, one can prove
Proposition 1.3. Let E be a rank r vector bundle over M and $\left(U_{\alpha}\right)$ an open cover of M consisting of local trivialization charts for E. Let $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(r, \mathbb{R})$ be transition maps of E. Then any collection of matrix-valued 1-forms $\Gamma_{\alpha} \in \Omega^{1}\left(U_{\alpha}\right) \otimes \mathfrak{g l}(r, \mathbb{R})$ satisfying

$$
\Gamma_{\beta}=g_{\alpha \beta}^{-1} d g_{\alpha \beta}+g_{\alpha \beta}^{-1} \Gamma_{\alpha} g_{\alpha \beta}
$$

uniquely defines a linear connection on E.
Proof. Exercise.

2. Curvatures of connections

Now let E be a vector bundle over M and $\nabla: \Omega^{0}(M ; E) \rightarrow \Omega^{1}(M ; E)$ a linear connection on E. One can extend ∇ to a family of operators

$$
\nabla: \Omega^{k}(M ; E) \rightarrow \Omega^{k+1}(M ; E)
$$

by (Compare: Theorem 2.2 in Lecture 21)
Definition 2.1. Given a linear connection ∇ on $E, \nabla: \Omega^{k}(M ; E) \rightarrow \Omega^{k+1}(M ; E)$ is given by the formula

$$
\begin{aligned}
\nabla(\omega \otimes s)\left(X_{0}, \cdots, X_{k}\right)=\sum_{i=0}^{k} & (-1)^{i} \nabla\left(\omega\left(X_{0}, \cdots, \widehat{X}_{i}, \cdots, X_{k}\right) s\right)\left(X_{i}\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \cdots, \widehat{X}_{i}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right) s
\end{aligned}
$$

One can check

$$
\nabla(\omega \otimes s)=d \omega \otimes s+(-1)^{k} \omega \wedge \nabla s, \quad \forall \omega \in \Omega^{k}(U), s \in \Gamma^{\infty}(E)
$$

and

$$
\nabla(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge \nabla \eta, \quad \forall \omega \in \Omega^{k}(M), \eta \in \Omega^{l}(M ; E)
$$

Example. Let $E=M \times \mathbb{R}^{r}$ be the trivial bundle and $\nabla=\nabla^{0}: \Omega^{0}(M ; E) \rightarrow \Omega^{1}(M ; E)$ be the trivial connection as stated above. Then any element of $\Omega^{k}(M ; E)$ is of the form $\eta=\left(\eta_{1}, \cdots, \eta_{r}\right)^{T}$ with $\eta_{i} \in \Omega^{k}(M)$, and the map $\nabla: \Omega^{k}(M ; E) \rightarrow \Omega^{k+1}(M ; E)$ is merely given by

$$
\nabla\left(\eta_{1}, \cdots, \eta_{r}\right)^{T}=\left(d \eta_{1}, \cdots, d \eta_{r}\right)^{T} \in \Omega^{k+1}(M ; E)
$$

More generally, if $\nabla=d+A$ for some $r \times r$-matrix valued 1-form A, then

$$
\nabla\left(\eta_{1}, \cdots, \eta_{r}\right)^{T}=\left(d \eta_{1}, \cdots, d \eta_{r}\right)^{T}+A \wedge\left(\eta_{1}, \cdots, \eta_{r}\right)^{T} \in \Omega^{k+1}(M ; E)
$$

We have explained that ∇ is not $C^{\infty}(M)$-linear. It turns out that the composition $\nabla^{2}=\nabla \circ \nabla: \Omega^{k}(M ; E) \rightarrow \Omega^{k+2}(M ; E)$ is $C^{\infty}(M)$-linear:
Lemma 2.2. For any $f \in C^{\infty}(M)$ and any $\omega \in \Omega^{k}(M ; E)$ one has

$$
\nabla^{2}(f \omega)=f\left(\nabla^{2} \omega\right)
$$

Proof. We have

$$
\nabla^{2}(f \omega)=\nabla(d f \wedge \omega+f \nabla \omega)=-d f \wedge \nabla \omega+d f \wedge \nabla \omega+f \nabla^{2} \omega=f \nabla^{2} \omega
$$

In particular, we see that

$$
\nabla^{2}: \Omega^{0}(M ; E)=\Gamma^{\infty}(E) \rightarrow \Omega^{2}(M ; E)=\Gamma^{\infty}\left(\wedge^{2} T^{*} M \otimes E\right)
$$

is a tensor, and in fact is an $r \times r$ matrix valued 2 -form:

$$
\nabla^{2} \in \Gamma^{\infty}\left(\wedge^{2} T^{*} M \otimes E \otimes E^{*}\right) \simeq \Omega^{2}\left(M ; E \otimes E^{*}\right) \simeq \Omega^{2}(M ; \operatorname{End}(E))
$$

Note that although the matrix-valued 1-form Γ is only locally defined, the matrix-valued 2 -form ∇^{2} is globally defined.
Definition 2.3. Given any connection ∇ on E, we will call

$$
R_{\nabla}:=\nabla^{2} \in \Omega^{2}(M ; \operatorname{End}(E))
$$

the curvature of ∇.
Example. Again consider the trivial bundle $E=M \times \mathbb{R}^{r}$. Let $\nabla=d+A$ be any linear connection on E, where A is any $r \times r$ matrix-valued 1-form on M. Then the curvature of ∇ is the two form such that for any $u=\left(f_{1}, \cdots, f_{r}\right)^{T}$,

$$
R_{\nabla} u=\nabla(d u+A u)=A \wedge d u+d(A u)+A \wedge A u=(d A+A \wedge A) u
$$

In other words,

$$
R_{\nabla}=d A+A \wedge A
$$

Note that in the above example, we have $R_{\nabla^{0}}=0$.
Definition 2.4. A connection ∇ on E is called flat if $R_{\nabla}=0$.
Let's do some local computation. Let Γ be the local matrix-valued connection 1-form. In other words, locally after choosing a frame, we have $\nabla=d+\Gamma$. Then by the example above,

$$
R_{\nabla}=d \Gamma+\Gamma \wedge \Gamma
$$

This is called the structure equation. This equation has two consequences:
(1) If we choose a different local frame, then we have seen $\widetilde{\Gamma}=g^{-1} d g+g^{-1} \Gamma g$, where g : $U \rightarrow \operatorname{gl}(r, \mathbb{R})$ is the matrix-valued function transforming the frame $\left(e_{1}, \cdots, e_{r}\right)$ to the new frame $\left(\tilde{e}_{1}, \cdots, \tilde{e}_{r}\right)$. Then using the fact $d g^{-1}=-g^{-1}(d g) g^{-1}\left(\right.$ since $\left.d\left(g g^{-1}\right)=0\right)$, we can get

$$
\widetilde{R}_{\nabla}=g^{-1} R_{\nabla} g
$$

(2) If we differentiate both sides of the structure equation, we get

$$
d R_{\nabla}=d \Gamma \wedge \Gamma-\Gamma \wedge d \Gamma=R_{\nabla} \wedge \Gamma-\Gamma \wedge R_{\nabla}
$$

This is known as the Bianchi identity. One can prove that if we write $\widetilde{\nabla}$ as the induced linear connection on $\Omega^{2}(M ; \operatorname{End}(E)$, then the Bianchi identity is induced to $\widetilde{\nabla} R_{\nabla}=0$.

