
LECTURE 30: CHERN-WEIL THEORY

1. Invariant Polynomials

We start with some necessary backgrounds on invariant polynomials. Let V be a vector space.
Recall that a k-tensor T ∈ ⊗kV ∗ is called symmetric if

T (vσ(1), · · · , vσ(k)) = T (v1, · · · , vk), ∀σ ∈ Sk.
We will denote the space of all symmetric k-tensors on V by SkV ∗. Like the wedge product, we
can define a symmetric product ◦ : SkV ∗ × SlV ∗ → Sk+lV ∗ via

T1 ◦ T2(v1, · · · , vk+l) =
1

(k + l)!

∑
σ∈Sk+l

T1(vσ(1), · · · , vσ(k))T2(vσ(k+1), · · · , vσ(k+l)).

As usual we write S0V ∗ = R.

Let T ∈ SkV ∗ be any symmetric k-tensor on V . Then T induces a map PT : V → R by

PT (v) := T (v, · · · , v).

The map PT is called a “degree k homogeneous polynomial on V ” since it satisfies

PT (tv) = tkPT (v), ∀t ∈ R.
Conversely, given any degree k homogeneous polynomial PT on V , one can recover T ∈ SkV ∗ by
the standard polarization formula

T (v1, · · · , vk) :=
1

k!

∂k

∂t1 · · · ∂tk
PT (t1v1 + · · ·+ tkvk).

(Note: PT (t1v1 + · · ·+ tkvk) is a degree k homogeneous polynomial in t1, · · · , tk.)
Exercise

(1) Check that the correspondence T ! PT is bijective.
(2) Prove: For any symmetric tensors T1, T2 on V , one has PT1◦T2 = PT1PT2 .

In applications we will take V = g be the Lie algebra of a Lie group G. For simplicity we
assume G ⊂ GL(r,R) be a linear Lie group. Then the adjoint action of G on g induces a G-action
on Sk(g∗) by

(g · T )(X1, · · · , Xk) = T (gX1g
−1, · · · , gXkg

−1), ∀g ∈ G,Xi ∈ g.

Definition 1.1. A symmetric k-tensor T ∈ Sk(g∗) is called G-invariant if

g · T = T, ∀g ∈ G.
The set of all G-invariant elements in Sk(g∗) is denoted by Ik(G).

By definition it is easy to see T ∈ Sk(g∗) is G-invariant if and only if PT is G-invariant.
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Example. Consider G = GL(r,R). For any positive integer k, we let pk denote the degree k
homogeneous polynomial in the expansion

det

(
λI − 1

2π
A

)
=

r∑
k=0

pk(A)λr−k, ∀A ∈ gl(r,R).

More explicitly,

p0(A) = 1, p1(A) = −TrA

2π
, p2(A) =

(TrA)2 − Tr(A2)

2(2π)2
, · · · , pr(A) = (−1)r

detA

(2π)r
.

Obviously each pk is G-invariant. So by the correspondence above, we get Tpk ∈ Ik(GL(r,R)).
They are called Pontrjagin polynomials.

Example. Consider G = SO(r), where r = 2p is even. For any A = (aij) ∈ so(r) we let

Pf(A) =
1

(4π)r/2(r/2)!

∑
σ∈Sr

(−1)σa
σ(1)
σ(2)a

σ(3)
σ(4) · · · a

σ(r−1)
σ(r) .

It is homogeneous of degree r/2. One can check that for any A = (aij) ∈ so(r),

[Pf(A)]2 =
detA

(2π)r
.

In particular, Pf is an SO(r)-invariant. It is called the Pfaff polynomial.

Here is another description of the Pfaffian: Given any skew-symmetric matrix A ∈ so(r),
where r = 2p, one can construct a linear 2-form ω =

∑
i<j aije

i ∧ ej, where e1, e2, · · · , e2p is the

standard basis of (R2p)∗. Then Pf(A) is the number such that

1

p!

ωp

(2π)p
=
ω ∧ · · · ∧ ω
p!(2π)p

= Pf(A)e1 ∧ e2 ∧ · · · ∧ e2p.

G-invariant symmetric tensors admits the following nice property:

Proposition 1.2. For any T ∈ Ik(G) and any X,X1, · · · , Xk ∈ g, we have

T ([X,X1], X2, · · · , Xk) + · · ·+ T (X1, · · · , Xk−1, [X,Xk]) = 0.

Proof. By definition, T is a k-tensor, i.e. it is multi-linear. So the conclusion follows from

0 =
d

dt

∣∣∣∣
t=0

T (etXX1e
−tX , · · · , etXXke

−tX)

= T (
d

dt

∣∣∣∣
t=0

etXX1e
−tX , X2, · · · , Xk) + · · ·+ T (X1, · · · , Xk−1,

d

dt

∣∣∣∣
t=0

etXXke
−tX)

= T ([X,X1], X2, · · · , Xk) + · · ·+ T (X1, · · · , Xk−1, [X,Xk]).

�
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Now suppose T ∈ Ik(G) is a symmetric k-tensor on g. For g-valued differential forms
η1, · · · , ηk ∈ Ω∗(U)⊗ g one can define T (η1, · · · , ηk) ∈ Ω∗(U) by extending linearly the relation

T (ω1 ⊗X1, · · · , ωk ⊗Xk) := (ω1 ∧ · · · ∧ ωk)T (X1, · · · , Xk).

Note that if ω is a 2-form on M , or more generally is any even-form on M , then for any differential
form ω̃ on M , one has ω ∧ ω̃ = ω̃ ∧ ω. As a consequence we see

Corollary 1.3. If η1, · · · , ηk ∈ Ωeven(U)⊗ g, then for any T ∈ Ik(G) and η ∈ Ω∗(U)⊗ g one has

T ([η, η1], η2, · · · , ηk) + · · ·+ T (η1, · · · , ηk−1, [η, ηk]) = 0.

We remark that in the above expression,

[η1, η2] := η1 ∧ eta2 − (−1)k1k2η2 ∧ η1, ∀ηi ∈ Ωki(U)⊗ g,

where the wedge product ∧ between two g-valued differential forms were defined last time:

(ω1 ⊗X1) ∧ (ω2 ⊗X2) := (ω1 ∧ ω2)⊗ (X1X2).

(As a consequence, if ωi ∈ Ωki(U) and Ai ∈ g, then

[ω1 ⊗X1, ω2 ⊗X2] = (ω1 ∧ ω2)⊗ [X1, X2].

This can be viewed as an alternative definition.)

2. Chern-Weil Theory

Let E be a rank r vector bundle over M , and ∇ a connection on M . Let

R∇ ∈ Ω2(M ; End(E))

be the curvature 2-form of ∇. As we have seen last time, locally after choosing a local frame of
E, one can represent ∇ by the matrix of connection 1-form

Γ ∈ Ω1(U)⊗ gl(r,R),

and
R∇ = dΓ + Γ ∧ Γ ∈ Ω2(U)⊗ gl(r,R).

The Bianchi identity reads

dR∇ = R∇ ∧ Γ− Γ ∧R∇ = [R∇,Γ].

Now suppose T ∈ Ik(G), where G = GL(r,R). We can define

PT (R∇) := T (R∇, · · · , R∇) ∈ Ω2k(U).

Since T is G-invariant and since R̃∇ = g−1R∇g in different local frame (where g ∈ GL(r,R) is the
“transferring matrix”), we see that PT (R∇) in different trivialization charts can be glued together
to a globally-defined 2k-form

PT (R∇) ∈ Ω2k(M).

(Note R∇ is not an element in Ω2(M): it sits in Ω2(M ; End(E).)

Now we state the main theorem in Chern-Weil theory:
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Theorem 2.1 (Chern-Weil). Let E be a vector bundle over M . Then

(1) For any T ∈ Ik(G) and any linear connection ∇ on E, PT (R∇) is a closed 2k-form.
(2) The de Rham cohomology class [PT (R∇)] ∈ H2k

dR(M) is independent of the choices of ∇.
(3) The Chern-Weil map

CW : (I∗(G), ◦)→ (H∗dR(M),∧), T 7→ [PT (R∇)]

is a ring homomorphism.

Proof. (1) According to the Bianchi identity dR∇ = [R∇,Γ] and Corollary 1.3,

dPT (R∇) = dT (R∇, · · · , R∇) = T (dR∇, · · · , R∇) + · · ·+ T (R∇, · · · , dR∇) = 0.

So PT (R∇) is closed. (The second equality follows from the fact that T is multi-linear.)

(2) The idea to prove that the de Rham cohomology class [PT (R∇)] is independent of the choices
of the linear connection ∇ is to construct a chain homotopy, as we did in Lecture 24. We let
∇0 and ∇1 be two connections and let Γ0,Γ1 be the (local) matrices of connection 1-forms. By
definition it is easy to check that the collection of matrices of 1-forms

Γ̃ = (1− s)Γ0 + sΓ1 ∈ Ω1(U × R)⊗ gl(r,R)

defines a connection ∇̃ on a new vector bundle E × R over M × R in the obvious way. (The

connection ∇̃ can be constructed globally as follows: Consider the canonical projection map
π : M × R → M . Then the pull-back π∗E is a rank r vector bundle over M × R. Moreover, the

pull-backs π∗∇0 and π∗∇1 are two connections on π∗E. It follows that ∇̃ = (1− s)∇0 + s∇1 is a
linear connection on π∗E.) We need

Lemma 2.2. Let ι0, ι1 : M →M × R be the inclusions

ι0(x) = (x, 0), ι1(x) = (x, 1).

Then there exists a collection of linear operators Q : Ωk(M × R)→ Ωk−1(M) so that

ι∗0ω − ι∗1ω = dQ(ω)−Q(dω), ∀ω ∈ Ωk(M × R).

Proof. According to Lemma 2.7 in Lecture 24 (see line −9 in page 6 there), there exists

a linear map Q̃ : Ωk(M × R)→ Ωk−1(M × R) so that

ω − φ∗1ω = dQ̃ω + Q̃dω,

where φ1 : M × R→M × R is the map φ1(p, a) = (p, a+ 1). It follows that

ι∗0ω − ι∗1ω = ι∗0ω − ι∗0φ∗1ω = ι∗0dQ̃ω + ι∗0Q̃dω = d(ι∗0Q̃)ω + (ι∗0Q̃)dω.

So the conclusion holds for Q = ι∗0Q̃ : Ωk(M × R)→ Ωk−1(M). �
Back to the proof of the main theorem. By definition

ι∗0Γ̃ = Γ0 and ι∗1Γ̃ = Γ1.

As a result, we see

ι∗0R∇̃ = R∇0 and ι∗1R∇̃ = R∇1 .
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So according to the above lemma,

PT (R∇0)− PT (R∇1) = ι∗0PT (R∇̃)− ι∗1PT (R∇̃) = dQ(PT (R∇̃)) +Qd(PT (R∇̃)).

But we just proved that PT (R∇̃) is closed. So [PT (R∇0)] = [PT (R∇1)].

(3) It is straightforward to show that for T ∈ Ik(G) and S ∈ I l(G),

PT◦S(R∇) = PT (R∇) ∧ PS(R∇).

Details left as an exercise. (Note: the wedge products between 2-forms commute!) �

As a consequence, for any T ∈ Ik(G) (where G = GL(r,R)) and any rank r vector bundle E
over M , one gets a de Rham cohomology class

T (E) := [PT (R∇)] ∈ Ω2k(M).

We have

Proposition 2.3. Let ϕ : N →M be any smooth map, and let E be any vector bundle of rank r
over M . Then for any T ∈ I∗(G), one has

ϕ∗T (E) = T (ϕ∗E).

The proof is straightforward (you have to play with the conceptions of pull-back line bundles,
pull-back connections etc) and is left as an exercise.

Definition 2.4. For any T ∈ I∗(G), the cohomology class [PT (R∇)]] is called the characteristic
class of the vector bundle E corresponding to T .

Obviously one has

• If two vector bundles E1 and E2 over M are isomorphic, then the characteristic classes
T (E1) = T (E2).
• If E is the trivial bundle, then T (E) = [PT (0)]. (since one can take the trivial connection,

so that R∇ = 0.)

Example. Let E be any vector bundle over M . Let pk be the Pontrjagin polynomial that we
alluded to above. Then

Pk(E) := [p2k(R∇)] ∈ H4k
dR(M)

is called the kth Pontrjagin characteristic class of E. The Pontrjagin class Pk(M) of M is defined
to be the Pontrjagin class of TM . They are important topological invariants to study manifolds.
For example, using the Pontrjagin classes one can compute (via the Hirzebruch signature theorem)

the signature of a manifold. They are also used to compute the Â-genus of a manifold which can
be used to study the existence of positive scalar curvature metric.

(By choosing a Riemannian metric on E, one can always reduce the structural group of E
from GL(r,R) to O(r) by taking orthonormal frames only. Using the new structure group, one
can prove that [podd(R∇)] are all zero. See the computation below for Chern classes.)
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Example. Now suppose E is an oriented vector bundle over M of rank r. Then the structural
group of E can be reduced to SO(r). Thus we get a characteristic class

χ(E) := [Pf(R∇)] ∈ Hr
dR(M).

This is nothing else but the Euler characteristic class of E that we mentioned in Lecture 28. As
we have seen in Lecture 28, the Euler class of E is closely related to the problem “whether E
admits a non-vanishing global section”.

Example. All discussions above are over R, but they can be generalized to objects over C. For
example, one can talk about complex vector bundle E over smooth manifold M : They are vector
bundles over M whose fibers are Cr and whose structural groups are GL(r,C). For any A ∈ gl(r,C)
(= the set of all r × r complex matrices), one can define ck to be such that

det

(
λIr −

1

2πi
A

)
=
∑

ck(A)λn−k.

Again ck is a homogeneous polynomial of degree k and is GL(r,C)-invariant. As a result, for any
complex vector bundle E of complex rank r, one gets a complex-valued de Rham cohomology class

ck(E) := ck(R∇) ∈ H2k
dR(M ;C)

which is called the kth Chern class of E. If one fix an Hermitian metric on E (i.e. fix a Hermitian
inner product on each fiber of E which vary smoothly with respect to base points – this is always
possible by using partition of unity), then one can reduce the structural group to U(n). But for

A ∈ u(n) (= the set of all r × r complex matrices with A+ A
T

= 0), one has

det

(
λIr −

1

2πi
A

)
= det

(
λ̄Ir −

1

2πi
A

)
,

i.e. ∑
ck(A)λn−k =

∑
ck(A)λn−k.

It follows that each ck is a real-valued polynomial and thus each ck(E) ∈ H2k
dR(M), i.e. ck(E)

is a (real-valued) de Rham cohomology class. They are of fundamental importance in algebraic
topology, differential geometry, algebraic geometry and mathematical physics. For example, they
appear in the famous Atiyah-Singer index theorem.

Remark. More generally, one can define characteristic classes for principle bundles.

Remark. Historically, characteristic classes first appeared in algebraic topology. In general, char-
acteristic classes are very hard to compute. The Chern-weil theory gives a differential geometry
description of various characteristic classes so that they are explicitly computable.

However, there are still many characteristic classes that don’t have Chern-Weil type descrip-
tion. The first characteristic classes people found are the the Stiefel-Whitney classes wk(E) ∈
Hk(M ;Z2). These classes are very useful in topology. For example, wk(TM) can be used to
characterize whether a smooth n-dimensional manifold (without boundary) M can be realized as
the boundary of a smooth (n+ 1)-dimensional manifold. One can also Stiefel-Whitney classes wk
to justify whether a smooth n-dimensional manifold M can be embedded into Rn+k.
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Remark. Finally we mention another important family of characteristic classes: the Wu classes.
The Wu classes are different from the previously mentioned characteristic classes: they are not
characteristic classes associated to vector bundles, but associated to manifolds M themselves.
Using Wu classes one can

• Prove the Stiefel-Whitney class of a manifold (i.e. of the tangent bundle) is a homotopy
invariant.
• Compute the Stiefel-Whitney classes of M via the Steenrod square operation. (The Wu

formula)

There was another Wu class in USTC: the 1960-1965 class in mathematics. This class is the
main origin of geometry and topology in USTC.

Dedicated to WU Wen-tsun (1919-2017)!
We are all “descendants” of Wu’s class.

—The End—


