LECTURE 30: CHERN-WEIL THEORY

1. INVARIANT POLYNOMIALS

We start with some necessary backgrounds on invariant polynomials. Let V' be a vector space.
Recall that a k-tensor T' € ®*V* is called symmetric if
T(Ua(l),“' 7U0'(k)) :T<U1,'-- ,Uk>, Vo € Sk
We will denote the space of all symmetric k-tensors on V by S¥V*. Like the wedge product, we
can define a symmetric product o : SEV* x S'V* — SV via
1
Ty oTo(vy, -+ Vpgt) = m Z Tl(%(l),'" ;Ua(k))T2<UU(/€+l)v"' aUa(k-i-l))'

0ESkt1
As usual we write S°V* = R.
Let T € S*V* be any symmetric k-tensor on V. Then T induces a map Pr: V — R by
Pr(v) :=T(v, -+ ,v).
The map Pr is called a “degree k homogeneous polynomial on V7 since it satisfies
Pr(tv) =t*Pp(v),  VteR.

Conversely, given any degree k homogeneous polynomial Pr on V, one can recover T' € SFV* by
the standard polarization formula

1 ok
T(vy, -+ ,03) i = ————
(01 R T TH
(Note: Pr(tivy + - -+ + tyvg) is a degree k homogeneous polynomial in ty,-- -, tx.)

Exercise

(1) Check that the correspondence T" «~ Pr is bijective.
(2) Prove: For any symmetric tensors 71,75 on V', one has Pror, = Pr, Pr,.

Pr(tyvy + -+ + tpog).

In applications we will take V' = g be the Lie algebra of a Lie group G. For simplicity we
assume G C GL(r,R) be a linear Lie group. Then the adjoint action of G on g induces a G-action
on S*(g*) by

(9-T) (X1, -+, X)) =T(9Xag™", -+, 9Xug ™), VgeG,X; €g.
Definition 1.1. A symmetric k-tensor T € S*(g*) is called G-invariant if
g-T=T, Vg € G.
The set of all G-invariant elements in S¥(g*) is denoted by I*(G).

By definition it is easy to see T € S*(g*) is G-invariant if and only if Pr is G-invariant.
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Ezample. Consider G = GL(r,R). For any positive integer k, we let py denote the degree k
homogeneous polynomial in the expansion

det ( M — —A) Zpk N, VA € gl(r,R).

More explicitly,

() =1 pi(4) = oo p2<A>=(TrA)z<z_w>T2r(A)’ pr(A)Z(—l)r((i;;;é'

Obviously each py is G-invariant. So by the correspondence above, we get T, € I*(GL(r,R)).
They are called Pontrjagin polynomials.

Ezample. Consider G = SO(r), where r = 2p is even. For any A = (a}) € so(r) we let

0’ 0(3) o(r—1)
PHA) =5 r/z (r/2)! Z U2 To(1) " Do(r) -
It is homogeneous of degree 7/2. One can check that for any A = (a}) € so(r),
det A
Pf(A)]? = .
PHAY = G

In particular, Pf is an SO(r)-invariant. It is called the Pfaff polynomial.

Here is another description of the Pfaffian: Given any skew-symmetric matrix A € so(r),
where r = 2p, one can construct a linear 2-form w = ZI</ a;;e' N e, where e',e?,--- e is the
standard basis of (R*)*. Then Pf(A) is the number such that

1 wP WA ANw

A 2 2
N = . =Pf(A)e' Ne* A NP,
p! (2m)P pl(2m)P

G-invariant symmetric tensors admits the following nice property:
Proposition 1.2. For any T € I*(G) and any X, X;,--- , Xy € g, we have
T([X7X1]7X27 T an) +oot T(Xb T an—la [Xan]) =0.

Proof. By definition, T' is a k-tensor, i.e. it is multi-linear. So the conclusion follows from

d

0= pr T(e™ Xe ™, - X Xpe™)
=0
d Xy —tX d oX X, o tX
:T(E e X1€ ,Xz,---,Xk)+"'+T(X1, Xk 1, =5 dt Xk,e )
=0

=T(X, X3, Xo, -+, Xp)+ -+ T(Xq, -+, Xp1, [X, Xi]).
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Now suppose T € I*(G) is a symmetric k-tensor on g. For g-valued differential forms
m, -, € Q(U) ® g one can define T'(ny,--- ,m,) € Q*(U) by extending linearly the relation
T(w1 ®X1,' s, WE ®Xk) = (w1 VAN /\wk)T(Xl,- .o ,Xk)

Note that if w is a 2-form on M, or more generally is any even-form on M, then for any differential
form @ on M, one has w A @ = © A w. As a consequence we see

Corollary 1.3. Ifny, -+ ,m, € Q(U)® g, then for any T € I*(G) and n € Q*(U) @ g one has
T([nmlnz - me) + -+ T, -+ k=1, [7,m0]) = 0.
We remark that in the above expression,
[ 1e] := 1 A etag — (=120, Ay, Vi € Q5(U) @ g,
where the wedge product A between two g-valued differential forms were defined last time:
(w1 @ X1) A (w2 ® Xa) := (w1 Aws) @ (X1 X5).
(As a consequence, if w; € Q% (U) and A; € g, then
(w1 ® X1, wa ® Xo] = (w1 Aws) ® [ X7, Xo].

This can be viewed as an alternative definition.)

2. CHERN-WEIL THEORY

Let E be a rank r vector bundle over M, and V a connection on M. Let
Ry € Q*(M;End(E))

be the curvature 2-form of V. As we have seen last time, locally after choosing a local frame of
E one can represent V by the matrix of connection 1-form

reQ'(U)®gl(r,R),
and
Ry =dl +T AT € Q*(U) ® gl(r,R).
The Bianchi identity reads
dRy = Ry AT —T A Ry = [Ry, T.
Now suppose T € I*(G), where G = GL(r,R). We can define
Pr(Ry) :=T(Ry,--,Ry) € Q**(U).

Since T is G-invariant and since EV = ¢~ 'Ryg in different local frame (where g € GL(r,R) is the
“transferring matrix”), we see that Pr(Ry) in different trivialization charts can be glued together
to a globally-defined 2k-form
Pr(Ry) € Q*(M).
(Note Ry is not an element in Q%(M): it sits in Q?(M; End(FE).)
Now we state the main theorem in Chern-Weil theory:
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Theorem 2.1 (Chern-Weil). Let E be a vector bundle over M. Then

(1) For any T € I*(G) and any linear connection V on E, Pr(Ry) is a closed 2k-form.
(2) The de Rham cohomology class [Pr(Ry)] € H2x(M) is independent of the choices of V.
(3) The Chern-Weil map

CW: (I'(G),0) = (Har(M), N), T = [Pr(Rv)]

18 a ring homomorphism.

Proof. (1) According to the Bianchi identity dRy = [Ry, '] and Corollary 1.3,
dPr(Ry) =dT'(Ry, - ,Ry) =T(dRy,--- ,Ry)+---+T(Rvy,--- ,dRy) = 0.
So Pr(Ry) is closed. (The second equality follows from the fact that 7" is multi-linear.)

(2) The idea to prove that the de Rham cohomology class [Pr(Ry)] is independent of the choices
of the linear connection V is to construct a chain homotopy, as we did in Lecture 24. We let
V% and V! be two connections and let I'°, T be the (local) matrices of connection 1-forms. By
definition it is easy to check that the collection of matrices of 1-forms

I'=(1-sI°+s e QU xR) @ gl(r,R)

defines a connection V on a new vector bundle F x R over M x R in the obvious way. (The
connection V can be constructed globally as follows: Consider the canonical projection map

m: M xR — M. Then the pull-back 7*E is a rank r vector bundle over M x R. Moreover, the
pull-backs 7*V? and 7*V?! are two connections on 7*E. It follows that V = (1 — s)V? + sV! is a
linear connection on 7*E.) We need
Lemma 2.2. Let 1,11 : M — M x R be the inclusions
LO(I) = ($70)7 Ll(x) = <I7 1)
Then there exists a collection of linear operators Q : Q*(M x R) — QFY(M) so that
Lyw — tjw = dQ(w) — Q(dw), Vw € QF(M x R).
Proof. According to Lemma 2.7 in Lecture 24 (see line —9 in page 6 there), there exists
a linear map Q : QF(M x R) — Q*}(M x R) so that
w— pjw = d@w + @dw,
where ¢; : M x R — M X R is the map ¢1(p,a) = (p,a + 1). It follows that
Viw — Viw = 1w — tidtw = 15dQu + 1Qdw = d(13Q)w + (15Q)dw.
So the conclusion holds for Q) = LE‘)QV L QF(M x R) — QFY(M). O
Back to the proof of the main theorem. By definition
L[’Sf =T° and JD=T".
As a result, we see
toRs = Ryo and t1Rg = Ry1.
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So according to the above lemma,
Pr(Ryo) — Pr(Rv1) = ,yPr(Rg) — 11 Pr(Rg) = dQ(Pr(Rg)) + Qd(Pr(Rg))-

But we just proved that Pr(Rg) is closed. So [Pr(Ryo)| = [Pr(Ry1)].
(3) Tt is straightforward to show that for T' € I*(G) and S € I'(G),

Pros(Ry) = Pr(Ry) A Ps(Ry).

Details left as an exercise. (Note: the wedge products between 2-forms commute!) 0J

As a consequence, for any T' € I*(G) (where G = GL(r,R)) and any rank r vector bundle £
over M, one gets a de Rham cohomology class

T(E) := [Pr(Ry)] € Q*(M).
We have

Proposition 2.3. Let o : N — M be any smooth map, and let E be any vector bundle of rank r
over M. Then for any T € I*(G), one has

' T(E) =T(¢"E).

The proof is straightforward (you have to play with the conceptions of pull-back line bundles,
pull-back connections etc) and is left as an exercise.

Definition 2.4. For any 7' € I*(G), the cohomology class [Pr(Ry)]] is called the characteristic
class of the vector bundle E corresponding to T'.

Obviously one has

e If two vector bundles F; and Ey over M are isomorphic, then the characteristic classes
e If F is the trivial bundle, then T(E) = [Pr(0)]. (since one can take the trivial connection,
so that Ry =0.)

Ezxample. Let E be any vector bundle over M. Let p, be the Pontrjagin polynomial that we
alluded to above. Then
Py(E) = [pa(Rv)] € Hyp(M)

is called the kth Pontrjagin characteristic class of E. The Pontrjagin class P,(M) of M is defined
to be the Pontrjagin class of T'M. They are important topological invariants to study manifolds.
For example, using the Pontrjagin classes one can compute (via the Hirzebruch signature theorem)
the signature of a manifold. They are also used to compute the A\-genus of a manifold which can
be used to study the existence of positive scalar curvature metric.

(By choosing a Riemannian metric on F, one can always reduce the structural group of E
from GL(r,R) to O(r) by taking orthonormal frames only. Using the new structure group, one
can prove that [p,qq( Ry )] are all zero. See the computation below for Chern classes.)
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Ezxample. Now suppose F is an oriented vector bundle over M of rank r. Then the structural
group of E can be reduced to SO(r). Thus we get a characteristic class

X(E) := [PI(Ry)] € Hyp(M).

This is nothing else but the Fuler characteristic class of E' that we mentioned in Lecture 28. As
we have seen in Lecture 28, the Euler class of E is closely related to the problem “whether E
admits a non-vanishing global section”.

Ezample. All discussions above are over R, but they can be generalized to objects over C. For
example, one can talk about compler vector bundle E over smooth manifold M: They are vector
bundles over M whose fibers are C" and whose structural groups are GL(r, C). For any A € gl(r,C)
(= the set of all  x r complex matrices), one can define ¢ to be such that

1 n—k
det ()\IT - %A) = cr(AAE,

Again ¢, is a homogeneous polynomial of degree k and is GL(r, C)-invariant. As a result, for any
complex vector bundle E of complex rank r, one gets a complex-valued de Rham cohomology class
cr(E) := cp(Ry) € H2%(M;C)

which is called the k™ Chern class of E. If one fix an Hermitian metric on E (i.e. fix a Hermitian
inner product on each fiber of E which vary smoothly with respect to base points — this is always
possible by using partition of unity), then one can reduce the structural group to U(n). But for

A € u(n) (= the set of all r x r complex matrices with A + A= 0), one has

det [ A\, — LA =det [ A, — L,A ,
211 271

D (ANTE =Y e (A,

It follows that each ¢ is a real-valued polynomial and thus each cx(E) € H¥%(M), i.e. ci(E)
is a (real-valued) de Rham cohomology class. They are of fundamental importance in algebraic
topology, differential geometry, algebraic geometry and mathematical physics. For example, they
appear in the famous Atiyah-Singer index theorem.

i.e.

Remark. More generally, one can define characteristic classes for principle bundles.

Remark. Historically, characteristic classes first appeared in algebraic topology. In general, char-
acteristic classes are very hard to compute. The Chern-weil theory gives a differential geometry
description of various characteristic classes so that they are explicitly computable.

However, there are still many characteristic classes that don’t have Chern-Weil type descrip-
tion. The first characteristic classes people found are the the Stiefel-Whitney classes wg(E) €
HY(M;7Zs,). These classes are very useful in topology. For example, wy(TM) can be used to
characterize whether a smooth n-dimensional manifold (without boundary) M can be realized as
the boundary of a smooth (n + 1)-dimensional manifold. One can also Stiefel-Whitney classes wy,
to justify whether a smooth n-dimensional manifold M can be embedded into R***.
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Remark. Finally we mention another important family of characteristic classes: the Wu classes.
The Wu classes are different from the previously mentioned characteristic classes: they are not
characteristic classes associated to vector bundles, but associated to manifolds M themselves.
Using Wu classes one can

e Prove the Stiefel-Whitney class of a manifold (i.e. of the tangent bundle) is a homotopy
invariant.

e Compute the Stiefel-Whitney classes of M via the Steenrod square operation. (The Wu
formula)

There was another Wu class in USTC: the 1960-1965 class in mathematics. This class is the
main origin of geometry and topology in USTC.

Dedicated to WU Wen-tsun (1919-2017)!

We are all “descendants” of Wu's class.

—The End—



