(05/14) List of Projects uploaded.
(06/14) Recitation 3 uploaded.
(06/14) Lecture 28 uploaded.
(06/14) 答疑: 06/21, 19:00-21:00 at 5403.
授课老师: 王作勤 (wangzuoq at ustc dot edu dot cn)
上课时间: 星期一上午 9:45am – 12:10pm; 星期四上午 9:45am – 11:20am
上课地点: 五教 5403
办公室: 管研楼1601
助教: Yufeng Zhang (alienf at mail dot ustc dot edu dot cn),Mengxin Yu (ymx9856 at mail dot ustc dot edu dot cn)
答疑时间: 15:55-17:30, Sundays
答疑地点: 5403
小论文: List of Projects
课程安排可能会随着课程的进行而略有变动。
课程的讲义将在每堂课后上传。
作业在每周一课前交。
序号 | 日期 | 内容 | 讲义 | 作业 |
---|---|---|---|---|
  Lecture 1   |   02/26   |   Introduction: What is real analysis?   |   Lect 1   |   PSet 1, part 1   : Due March 5. |
  Lecture 2   |   03/01   |   Elementary measure, Jordan measure   |   Lect 2   |   PSet 1, part 2   : Due March 5. |
  Lecture 3   |   03/05   |   Lebesgue outer measure   |   Lect 3   |   PSet 2, part 1   : Due March 12. |
  Lecture 4   |   03/08   |   Lebesgue measure   |   Lect 4   |   PSet 2, part 2   : Due March 12. |
  Lecture 5   |   03/12   |   Lebesgue measure (continued)   |   Lect 5   |   PSet 3, part 1   : Due March 19. |
  Lecture 6   |   03/15   |   Measurable functions   |   Lect 6   |   PSet 3, part 2   : Due March 19. |
  Lecture 7   |   03/19   |   Convergences of measurable functions   |   Lect 7   |   PSet 4, part 1   : Due March 26. |
  Lecture 8   |   03/23   |   Approximation by simple and/or continuous functions   |   Lect 8   |   PSet 4, part 2   : Due March 26. |
  Lecture 9   |   03/26   |   Lebesgue integrals of nonnegative measurable functions   |   Lect 9   |   PSet 5, part 1   : Due April 02. |
  Lecture 10   |   03/29   |   Convergence of Lebesgue integrals:nonnegative measurable functions   |   Lect 10   |   PSet 5, part 2   : Due April 02. |
    |   04/02   |   习题课   |   Recitation 1   |   |
  Lecture 11   |   04/09   |   Lebesgue integrals of general measurable functions   |   Lect 11   |   PSet 6, part 1   : Due April 16. |
  Lecture 12   |   04/12   |   Convergence of Lebesgue integrals:absolutely integrable functions   |   Lect 12   |   PSet 6, part 2   : Due April 16. |
  Lecture 13   |   04/16   |   Lebesgue integrals v.s. Riemann integrals, Fubini's theorem   |   Lect 13   |   PSet 7, part 1   : Due April 23. |
  Lecture 14   |   04/19   |   More on Lebesgue integrals: Tonelli's theorem, Convolution   |   Lect 14   |   PSet 7, part 2   : Due April 23. |
  Lecture 15   |   04/23   |   Abstract measures   |   Lect 15   |   PSet 8, part 1   : Due May 3. |
  Lecture 16   |   04/26   |   Integrations on abstract measure spaces   |   Lect 16   |   PSet 8, part 2   : Due May 3. |
  Lecture 17   |   04/28   |   From outer measures to measures |   Lect 17   |   PSet 9, part 1   : Due May 7. |
    |   04/28   |   MIDTERM: Cover Lecture 1- Lecture 14   | ||
  Lecture 18   |   05/03   |   Metric v.s. measure   |   Lect 18   |   PSet 9, part 2   : Due May 7. |
  Lecture 19   |   05/07   |   The Riesz representation theorem   |   Lect 19   |   PSet 10, part 1   : Due May 14. |
  Lecture 20   |   05/10   |   Lp spaces   |   Lect 20   |   PSet 10, part 2   : Due May 14. |
  Lecture 21   |   05/14   |   Lp spaces as metric spaces   |   Lect 21   |   PSet 11, part 1   : Due May 21. |
  Lecture 22   |   05/17   |   L2 spaces as inner product spaces   |   Lect 22   |   PSet 11, part 2   : Due May 21. |
    |   05/21   |   习题课   |   Recitation 2   |   |
  Lecture 23   |   05/24   |   Riesz representation theorem for Lp spaces   |   Lect 23   |   PSet 12, part 1   : Due May 28. |
  Lecture 24   |   05/28   |   Signed measure, the Lebesgue-Radon-Nikodym theorem   |   Lect 24   |   PSet 13, part 1   : Due June 04. |
  Lecture 25   |   05/31   |   The Lebesgue differentiation theorem   |   Lect 25   |   PSet 13, part 2   : Due June 04. |
  Lecture 26   |   06/04   |   The fundamental theorem of calculus   |   Lect 26   |   PSet 14, part 1   : Due June 11. |
  Lecture 27   |   06/07   |   The Rademacher differentiation theorem   |   Lect 27   |   PSet 14, part 2   : Due June 11. |
    |   06/11   |   习题课   |   Recitation 3   |   |
  Lecture 28   |   06/14   |   Review   |   Lect 28   |   |
[top]