Semiclassical Microlocal Analysis(2020 Fall)


中国科学技术大学数学科学学院


[课程公告] [课程信息] [课程安排,讲义以及习题]


课程公告

o (12/11) Lecture 21 uploaded.

o (12/14) PSet 4 uploaded. Due: Dec. 28.

o (12/18) Lecture 22-23 uploaded.

o (12/23) Lecture 24-25 uploaded.

o (12/23) Topics for course essay posted.Due: Jan. 22.

o (12/30) Lecture 26, Lecture 27 uploaded.

o (01/04) Lecture 28 uploaded.

o (01/06) Lecture 29-30 uploaded.


课程信息

o 授课老师:   王作勤 (wangzuoq at ustc dot edu dot cn)

o 上课时间:   星期一下午 15:55 – 17:30; 星期三晚上 19:30 - 21:05  

o 上课地点:   5304

o 办公室:   管研楼1601

o 参考教材   M. Zworkski,Semiclassical Analysis

o 参考教材   V. Guillemin and S. Sternberg, Semi-Classical Analysis

o 参考书籍   M. Dimassi and J. Sj\"ostrand, Spectral Asymptotics in the Semi-Classical Limit

o 参考书籍   A. Martinez, An Introduction to Semi-classical and Microlocal Analysis

o 参考书籍   G. Folland, Harmonic Analysis in Phase Space

o 参考书籍   B. Hall, Quantum Theory for Mathematicians

o 参考书籍   L. H\"ormander, The Analysis of Linear Partial Differential Operators III and IV

[top]


课程安排

o 课程安排可能会随着课程的进行而略有变动。

o 课程的讲义将在每堂课后上传。

o 作业将随课程进度不定时上传。

序号 日期 内容 讲义 习题
  Lecture 1     09/21     Introduction;   Lect 1   PSet 1: Due Oct. 19
  Lecture 2     09/23     Classical v.s. quantum     Lect 2  
  Lecture 3     09/27     Quantization and semiclassical limits     Lect 3  
  Lecture 4     09/28     The Fourier transform     Lect 4  
  Lecture 5     09/30     The method of stationary phase     Lect 5  
  Lecture 6     10/12     PsDO I: Semiclassical quantization     Lect 6   PSet 2: Due Nov. 16
  Lecture 7     10/14     PsDO I: Weyl quantization     Lect 7  
  Lecture 8     10/19     PsDO I: Weyl quantization via linear exponentials     Lect 8  
  Lecture 9     10/21     PsDO I: The composition formula and quantization condition     Lect 9  
  Lecture 10     10/26     PsDO I: Quantizating general symbols     Lect 10  
      10/28     Cancelled      
  Lecture 11     11/02     PsDO II: L^2 boundedness     Lect 11   PSet 3: Due Dec. 07
  Lecture 12     11/04     PsDO II: compactness     Lect 12  
  Lecture 13     11/09     PsDO II: Hilbert-Schmidt and Trace class     Lect 13  
  Lecture 14     11/11     PsDO II: Invertibility     Lect 14  
  Lecture 15     11/16     PsDO II: Positivity     Lect 15  
  Lecture 16     11/18     PsDO III: generealized Sobolev Spaces     Lect 16   PSet 4: Due Dec. 28
  Lecture 17     11/23     PsDO III: Egorov theorem     Lect 17  
  Lecture 18     11/25     PsDO III: h-PsDO with classical symbols     Lect 18  
  Lecture 19     11/30     PsDO III: Differential operators on manifolds     Lect 19  
  Lecture 20     12/02     PsDO III: h-Pseudodifferential operators on manifolds     Lect 20  
  Lecture 21     12/07     Applications: The Eigenvalues/Eigenfunctions of h-Pseudodifferential operators     Lect 21   Course Essay Topics: Due Jan. 22
  Lecture 22     12/09     Applications: Weyl's Law     Lect 22-23  
  Lecture 23     12/14  
  Lecture 24     12/16     Applications: Quntum Ergodicity     Lect 24-25  
  Lecture 25     12/21  
  Lecture 26     12/23     FIO: Symplectic geometry backgrounds     Lect 26  
  Lecture 27     12/28     FIO: Symplectic category     Lect 27  
  Lecture 28     12/30     FIO: Enhanced symplectic category     Lect 28  
  Lecture 29     01/04     FIO: Semiclassical Fourier integral operators     Lect 29-30  
  Lecture 30     01/06      
      01/09     Online Minicourse:
  JIN Long (Tsinghua University)
  Quantum Chaos and Fractal Uncertanty Principle  
  Abstract   Slides     14:00-16:00【202801247】【普朗克常数】  
      01/11     16:00-18:00【930556440】【2\pi \hbar】  
      01/13     19:00-21:00【760787847】【662607】  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[top]