
LECTURE 6 — 10/12/2020
SEMICLASSICAL QUANTIZATION

1. The Kohn-Nirenberg quantization

¶ The semiclassical Fourier transform.

In semiclassical analysis, instead of the usual Fourier transform, we shall use the
semiclassical Fourier transform (also known as the ~-Fourier transform) F~. By
definition it is a dilation of the usual Fourier transform,

(1) F~ϕ(ξ) := (Fϕ)(
ξ

~
) =

Z
Rn
e−

ix·ξ
~ ϕ(x)dx.

In PSet1-6 you are supposed to translate known properties of the usual Fourier
transform to the semiclassical Fourier transform. For example, the inverse of F~ is

(2) F−1
~ ψ(x) =

1

(2π~)n

Z
Rn
e
ix·ξ
~ ψ(ξ)dξ.

It follows

ψ(0) = [F~F−1
~ ψ](0) =

1

(2π~)n

Z
Rn

Z
Rn
e
i
~x·ξψ(x)dxdξ,

which can be interpreted as a strange-looking distributional identity

1

(2π~)n

Z
Rn
e
i
~x·ξdξ = δ0.

It is also easy to check

F~((~Dx)
αϕ) = ξαF~ϕ and F~(x

αϕ) = (−1)|α|(~Dξ)
αF~ϕ.

¶ The Kohn-Nirenberg quantization.

We have mentioned that a reasonable way to quantize the position and momen-
tum functions is

xj  Qj = multiplication by xj

and

ξj  Pj =
~√
−1

∂

∂xj
= ~Dj.

We want to extend the “same” rule to more general functions. Note that the operator
Pj and the function ξj are related by the semiclassical Fourier transform, namely

Pjϕ = ~Djϕ = F−1
~ (F~(~Dj)ϕ) = F−1

~ (ξjF~ϕ).
1
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Similarly we have 1

Qjϕ = xϕ = F−1
~ (xF~ϕ).

More generally, we may replace Qj by any function V (x) of x to get

V (x)ϕ = F−1
~ (V (x)F~ϕ),

that is, the operator “multiplication by V (x)” and the function V (x) are related by
the same formula. Similarly we can relate the polynomial

p(ξ) =
X
|α|≤k

pαξ
α

with the the constant coefficient semiclassical differential operator p(~D) defined by

p(~D) =
X
|α|≤k

pα(~Dx)
α

via exactly the same rule:

p(~D)ϕ = F−1
~ (F~(p(~D)ϕ)) = F−1

~ (p(ξ)F~ϕ).

Bingo! In particular, by using ~-Fourier transform we get an explanation of

H(x, ξ) =
|ξ|2

2
+ V (x)  Ĥ = −~2

2
∆ + V (x),

since the Hamiltonian function H and the Schrödinger operator Ĥ are related by

Ĥϕ = F−1
~ (H(x, ξ)F~ϕ).

We can go further. Still suppose p is a polynomial in ξ, but now with coefficients
depending on x, namely

p(x, ξ) =
X
|α|≤k

pα(x)ξα.

Then we can do the same computation

F−1
~ (

X
|α|≤k

pα(x)ξαF~ϕ) =
X
|α|≤k

pα(x)F−1
~ F~((~D)αϕ) =

X
|α|≤k

pα(x)(~Dx)
α

and thus we arrive at the semiclassical differential operator of the form

p(x, ~D) =
X

pα(x)(~Dx)
α.

We can apply the same construction to many other classes of functions. For
simplicity, let’s first suppose a(x, ξ) ∈ S(R2n) is a Schwartz function (which is the
best class of functions), we may quantize a to the operator âKN given by

ϕ 7→ âKN(ϕ) := F−1
~ (a(x, ξ)F~ϕ) = (F−1

~ )ξ→x(a(x, ξ)(F~)y→ξ(ϕ(y))).

1Here and in what follows, we can “move” a function depending only on x out of F−1
~ because

the inverse Fourier transform F−1
~ is an integral with respect to ξ. Warning: although we have

both xϕ = F−1
~ (xF~ϕ) and xϕ = F−1

~ (F~(xϕ)), we can’t conclude xF~ϕ = F~(xϕ), since xF~ϕ is
a function depending on both x and ξ, while F~(xϕ) is a function only depending on ξ.
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The quantization process
a âKN

is called the Kohn-Nirenberg quantization (also known as the standard quantization).
By using the definition of the semiclassical Fourier and inverse Fourier transforms,
we can easily write down an explicit formula for âKN :

âKN(ϕ) = F−1
~ (a(x, ξ)F~ϕ)

= F−1
~

�
a(x, ξ)

Z
Rn
e−i

y·ξ
~ ϕ(y)dy

�
=

1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(x, ξ)ϕ(y)dydξ.

¶ DETOUR: Schwartz kernel of an integral operator.

Note that if we denote

kKNa (x, y) :=
1

(2π~)n

Z
Rn
ei

(x−y)·ξ
~ a(x, ξ)dξ,

then the expression of âKN can be simplified to

âKN(ϕ)(x) =
Z
Rn
kKNa (x, y)ϕ(y)dy.

In general, given any reasonable (e.g. smooth or measurable, bounded or integrable
etc.)kernel function k(x, y), where x ∈ Rm and y ∈ Rn, we can define a linear
operator K which maps a function on Rn to a function on Rm via the integral

(3) K(ϕ)(x) =
Z
Rn
k(x, y)ϕ(y)dy.

Of course the domain of the integral operator K depends on the function k(x, y):
nicer kernel function usually admits larger domain. Here we discuss two extremal
cases:

• Case 1: The best kernels, namely k ∈ S (Rm × Rn).
In this case, for the integral (3) to make sense, you may take ϕ to be bounded
continuous functions, or if you want, Lp functions. In fact, you can go further:

Fact: We may take ϕ to be a tempered distribution!

Of course in this case one has to interpret the integral (3) as a pairing between
tempered distributions and Schwartz functions: for each x fixed, the function
k(x, ·) is a Schwartz function, and we define

(4) K(ϕ)(x) := 〈ϕ, k(x, ·)〉.
A natural question to ask is: what do we get? Is K(ϕ) a nice function or
a bad function? Or maybe only a (very bad) tempered distribution? The
answer is:

Fact: K maps a tempered distribution to a Schwartz function!

To see this, we use the following remarkable theorem in distribution theory:
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Theorem 1.1 (Schwartz representation theorem). For any u ∈ S ′(Rn),
there exists a finite collection uα,β : Rn → C of bounded continuous functions,
with |α|+ |β| ≤ k, such that

u =
X

|α|+|β|≤k
xαDβ

xuα,β.

Note that both sides of the equation above are understood as distributions:
In Lecture 4 we have seen how to realize any bounded continuous function as
a tempered distribution, and how to realize xαDβu as a distribution when u
is a distribution. As a consequence, for a tempered distribution ϕ ∈ S ′(Rn),
the “paring formula” (4) of K(ϕ) still has an integral representation

K(ϕ)(x) =

° X
|α|+|β|≤k

yαDβ
yϕα,β(y), k(x, y)

º
=

X
|α|+|β|≤k

¬
ϕα,β(y), Dβ

y y
αk(x, y)

¶
=

X
|α|+|β|≤k

Z
Rn
ϕα,β(y)Dβ

y (yαk(x, y)) dy

and thus by using the fact k ∈ S (Rm×Rn), one can check K(ϕ) ∈ S (Rm).
Moreover, it can be shown that the operator K : S ′(Rn) → S (Rm) is
continuous (with respect to the weak-∗ topology on S ′(Rn) and the metric
topology on S (Rm)). In summary, we have

If the kernel function k ∈ S (Rm×Rn) is a Schwartz function,
then the integral operator K with kernel k can be defined as
a continuous linear operator mapping S ′(Rn) to S (Rm).

• Case 2: The worst kernels, namely k ∈ S ′(Rm × Rn).
To give an exact meaning of the operator K with a distributional kernel k,
we first introduce a notation: Given any ϕ ∈ C∞(Rn) and ψ ∈ C∞(Rm), we
define ϕ� ψ ∈ C∞(Rn × Rm) to be the function given by

ϕ� ψ(x, y) := ϕ(x)ψ(y).

Obviously if ϕ ∈ S (Rn) and ψ ∈ S (Rm), then ϕ� ψ ∈ S (Rn × Rm).
Now suppose k ∈ S ′(Rm × Rn) is a tempered distribution. We can still

define an operator K : S (Rn)→ S ′(Rm) via the formula2

K(ϕ)(ψ) := 〈k, ϕ� ψ〉.

and one can show that K is a continuous linear map. In fact, it turns out
that any continuous linear map S (Rn)→ S ′(Rm) arises in this way:

2In view of the Schwartz representation theorem, the operator K is really an integral operator.
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Theorem 1.2 (Schwartz kernel theorem). There is a one-to-one correspon-
dence between continuous linear operators K : S (Rn) → S ′(Rm) and their
kernels k ∈ S ′(Rm × Rn).

So usually we will call the kernel function k the Schwartz kernel of the
integral operator K.

Remark. As we have mentioned, in this course the main objects are pseudodifferen-
tial operator sand Fourier integral operators. They are all integral operators defined
via Schwartz kernels. In what follows, when we write down such an integral expres-
sion in which there could be some convergence issue, we will explain the expression
in the sense of distribution.

Remark. Integral operators with Schwartz functions as Schwartz kernels are very nice
(we will prove many other nice properties of such operators later), but they are too
restrictive: for example, the Schwartz kernel of semiclassical differential operators
are polynomials in ξ which are not Schwartz functions. On the other hand, integral
operators with distributional kernel contains all possible integral operators, but
usually they don’t have nice properties: for example, in general we can’t composite
two such operators.

Back to the Kohn-Nirenberg quantization. Now we can say: not only we can
quantize Schwartz functions or polynomials, but also we can quantize tempered
distributions a ∈ S ′(Rn × Rn), in which case the operator âKN is the integral
operator whose Schwartz kernel is the tempered distribution

1

(2π~)n

Z
Rn
ei

(x−y)·ξ
~ a(x, ξ)dξ = (F−1

~ )ξ→x−y(a(x, ξ)).

We will introduce many other classes of functions (called symbol classes) so that the
resulting classes of integral operators are large enough AND nice enough.

2. Other semiclassical quantizations

¶ The anti-Kohn-Nirenberg quantization.

Back to semiclassical quantization. By our construction, the Kohn-Nirenberg
quantization quantize the function a(x, ξ) = x1ξ1 to the operator âKN = Q1P1.
However, in Lecture 1 we have already mentioned that since

x1ξ1 = ξ1x1 = (x1ξ1 + ξ1x1)/2,

instead of quantize x1ξ1 to Q1P1 one could also quantize it to P1Q1 or even (Q1P1 +
P1Q1)/2. It turns out that there do exist very similar theories, again using the
semiclassical Fourier transform, which quantize x1ξ1 to P1Q1 to (Q1P1 + P1Q1)/2.

To see how to get the operator P1Q1 out of the function x1ξ1, let’s do the same
computation as before:

P1Q1ϕ = ~Dx1(x1ϕ) = F−1
~ F~(~Dx1(x1ϕ)) = F−1

~ (ξ1F~(x1ϕ)) = F−1
~ (F~(ξ1x1ϕ)).



6 LECTURE 6 — 10/12/2020 SEMICLASSICAL QUANTIZATION

We emphasis again that in the last expression, we can’t eliminate F−1
~ with F~

since the Fourier transform is acting on a function that depends on both ξ and x.
Since we usually write the resulting function as a function in x, To avoid possible
misunderstanding, let’s rewrite the expression above as

(P1Q1ϕ)(x) = (F−1
~ )ξ→x(F~)y→ξ(y1ξ1ϕ(y)).

In general, given more complicated functions a(x, ξ), we may quantize it to the
integral operator âanti−KN given by

(âanti−KNϕ)(x) := (F−1
~ )ξ→x(F~)y→ξ(a(y, ξ)ϕ(y))

Such a quantization is called the anti-Kohn-Nirenberg quantization. For example,
if we take a(x, ξ) to be the polynomial

p(x, ξ) =
X
|α|≤k

pα(x)ξα,

then a simple computation will yield (do this computation by yourself)

p̂anti−KNϕ(x) =
X
|α|≤k

Dα(pα(x)ϕ(x)).

So again we quantize polynomials to semiclassical differential operators. However,
unlike the Kohn-Nirenberg quantization in which we get differential operators with
x’s before D’s, now we get differential operators with D’s before x’s.

Remark. Some authors prefer to call the Kohn-Nirenberg quantization “left quanti-
zation” and the anti-Kohn-Nirenberg quantization “right quantization”, while some
other authors prefer to use the opposite, namely, call the Kohn-Nirenberg quantiza-
tion “right quantization” and the anti-Kohn-Nirenberg quantization “left quantiza-
tion”.

It is not hard to write down an explicit formula for the anti-Kohn-Nirenberg
quantization:

(âanti−KNϕ)(x) = (F−1
~ )ξ→x(F~)y→ξ(a(y, ξ)ϕ(y))

= (F−1
~ )ξ→x

�Z
Rn
e−i

y·ξ
~ a(y, ξ)ϕ(y)dy

�
=

1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(y, ξ)ϕ(y)dydξ.

As in the Kohn-Nirenberg case, the anti-Kohn-Nirenberg quantization of a is an
integral operator with Schwart kernel

kanti−KNa (x, y) =
1

(2π~)n

Z
Rn
ei

(x−y)·ξ
~ a(y, ξ)dξ = (F−1

~ )ξ→x−y(a(y, ξ))

which makes sense even if a is only a tempered distribution.
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¶ The Weyl quantization.

As we have seen, the Kohn-Nirenberg quantization “prefer” to put D after x
while the anti-Kohn-Nirenberg quantization “prefer” to put D before x. But why
should we choose such an order when we do quantization? At least from the classical
mechanics point of view, the position function and the momentum function should
behave equally. There is a more natural way to quantize, the Weyl quantization3, in
which we quantize x1ξ1 to the more “balanced” operator (Q1P1+P1Q1)/2. As we will
see, when compared with the Kohn-Nirenberg or anti-Kohn-Nirenberg quantizations,
the Weyl quantization has many nice properties (but in some situations the later
are easier to do computations).

To write down an explicit formula for the Weyl quantization, let’s compute:

Q1P1 + P1Q1

2
ϕ =

Õx1ξ1

KN
+Õx1ξ1

anti−KN

2
ϕ

=
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~

x1 + y1

2
ξ1ϕ(y)dydξ.

Note that for a(x, ξ) = x1ξ1, we have a(x+y
2
, ξ) = x1+y1

2
ξ1. So in general we define

the Weyl quantization of a(x, ξ) to be the linear operator âW given by

(âWϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(

x+ y

2
, ξ)ϕ(y)dydξ.

Again this is an integral operator with Schwartz kernel

kWa (x, y) =
1

(2π~)n

Z
Rn
ei

(x−y)·ξ
~ a(

x+ y

2
, ξ)dξ = (F−1

~ )ξ→x−y(a(
x+ y

2
, ξ))

which makes sense even if a is only a tempered distribution.

¶ Semiclassical t-quantizations.

It is possible to unite the Kohn-Nirenberg quantization, the anti-Kohn-Nirenberg
quantization and the Weyl quantization in one formula:

Definition 2.1. For any 0 ≤ t ≤ 1 we define the semiclassical t-quantization (also
known as the Shubin t-quantization) of a to be the operator Opt~(a) given by

(5) Opt~(a)(ϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(tx+ (1− t)y, ξ)ϕ(y)dydξ.

Any operator of the form (5) is called a semiclassical pseudo-differential operator,
or a ~-pseudo-differential operator. The function a is called the t-symbol of Opt~(a).

Obviously the cases t = 1, 0, 1
2

are exactly the Kohn-Nirenberg quantization, the
anti-Kohn-Nirenberg quantization and the Weyl quantization that we just studied.

3Historically, the Weyl quantization appears much earlier than the Kohn-Nirenberg or the anti-
Kohn-Nirenberg quantizations.
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Remark. It is easy to see that for any 0 ≤ t ≤ 1,

• the operator Opt~(a) is an integral operator with Schwartz kernel

kta(x, y) =
1

(2π~)n

Z
Rn
ei

(x−y)·ξ
~ a(tx+ (1− t)y, ξ)dξ.

• if a is a polynomial in ξ, then Opt~(a) is a semiclassical differential operator.
• if a ∈ S (Rn × Rn), then the operator Opt~(a) maps S ′(Rn) continuously

into S (Rn).
• if a ∈ S ′(Rn × Rn), then the operator Opt~(a) maps S (Rn) continuously

into S ′(Rn).

Remark. More generally, one can study integral operators of the same form but with
a general amplitude a(x, y, ξ). We will also allow the amplitude a to be ~-dependent.
However, it turns out that the class of operators defined via such general amplitudes
coincide with the class of operators defined via t-quantization (with ~-dependent
symbol) for any fixed t.

¶ Formal adjoint.

By definition, the complex conjugate of kta(x, y) is

kta(y, x) = k1−t
ā (x, y).

It follows

Lemma 2.2. The operator Op1−t
~ (ā) is the formal adjoint of Opt~(a).

Proof. By definition, for ϕ, ψ ∈ S (Rn),

〈Opt~(a)ϕ, ψ〉 =
Z
Rn

(Opt~(a)ϕ)(x)ψ(x)dx

=
Z
Rn

Z
Rn
kta(x, y)ϕ(y)ψ(x)dydx

=
Z
Rn

Z
Rn
ϕ(x)kta(y, x)ψ(y)dxdy

=
Z
Rn
ϕ(x)

Z
Rn
kta(y, x)ψ(y)dydx

= 〈ϕ,Op1−t
~ (ā)ϕ〉.

�

As we have explained in Lecture 2, we would like to quantize a real-valued
function to a self-adjoint operator (whose spectrum are real numbers). This is the
second evidence that the Weyl quantization is more natural:

Corollary 2.3. If a is real-valued, then the Weyl quantization âW is formally self-
adjoint.

We will see that âW is bounded on L2 for a very large class of symbols, in which
case aW is self-adjoint if a is real.


