
LECTURE 7 — 10/14/2020
WEYL QUANTIZATION: EXAMPLES

1. Weyl quantization of polynomial-type functions

Today we focus on the Weyl quantization

baW (ϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(

x+ y

2
, ξ)ϕ(y)dydξ.

We shall compute the operator baW for some simple classes of functions. A formula
that we will use several times is the Fourier inversion formula,

f(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ f(y)dydξ,

or more precisely, its variation

f(x, x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ f(x, y)dydξ,

which can be obtained from the following identity by setting u = x:.

f(u, x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ f(u, y)dydξ.

¶ Weyl quantization of a(x).

We start with the case a = a(x) :

baW (ϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(

x+ y

2
)ϕ(y)dydξ = a(x)ϕ(x).

So, as one can expect (which holds for all t-quantizations)

Õa(x)
W

= “multiplication by a(x)”.

¶ Weyl quantization of a(ξ).

Next let’s consider the case a = a(ξ) :

baW (ϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ a(ξ)ϕ(y)dydξ

= (F−1
~ )ξ→x [a(ξ)(F~ϕ)(ξ)] (x).

So we get (again the same formula holds (trivially) for all t-quantizations):Ôa(ξ)
W

= F−1
~ ◦ a(ξ) ◦ F~.
1
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Such operators are known as Fourier multipliers. Note that in particular we getcξαW = Pα, and thus Û(|ξ|2/2 + V (x))
W

= −~2∆/2 + V .

As an application, we calculate the Weyl quantization of the quadratic expo-

nential a(ξ) = e
i
2~ ξ

TQξ , where Q is a non-singular symmetric n×n matrix. Denote

pQ(ξ) = ξTQξ.

Proposition 1.1. For a(ξ) = e
i
2~ ξ

TQξ we have

(1) baWϕ(x) =
| detQ|−1/2

(2π~)n/2
ei
π
4

sgnQ
Z
Rn
e−

i
2~y

TQ−1yϕ(x+ y)dy.

Proof. In Lecture 4 we showed

F(e
i
2
xTQx) =

(2π)n/2ei
π
4

sgn(Q)

| detQ| 12
e−

i
2
ξTQ−1ξ.

It follows

1

(2π~)n

Z
Rn
e
i
~x·ξe

i
2~ ξ

TQξdξ = F−1
~ (e

i
2~pQ(ξ))(x) =

| detQ|−1/2

(2π~)n/2
ei
π
4

sgnQe−
i
2~pQ−1 (x).

Thus baWϕ(x) =
1

(2π~)n

Z
Rn

Z
Rn
e
i
~ (x−y)·ξe

i
2~ ξ

TQξϕ(y)dydξ

=
| detQ|−1/2

(2π~)n/2
ei
π
4

sgnQ
Z
Rn
e−

i
2~pQ−1 (x−y)ϕ(y)dy

=
| detQ|−1/2

(2π~)n/2
ei
π
4

sgnQ
Z
Rn
e−

i
2~pQ−1 (y)ϕ(x+ y)dy.

�

The formula (1) will be used next time to compute the symbol of the composition
of two Weyl operators.

¶ Weyl quantization of polynomials in both x and ξ.

By linearity, to compute the Weyl quantization of a polynomial in both x and

ξ, it is enough to compute the Weyl quantization of monomials a(x, ξ) = xαξβ :

baW (ϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ (

x+ y

2
)αξβϕ(y)dydξ

=
X
γ≤α

1

2|α|

 
α

γ

!
xγØxα−γξβanti−KN(ϕ)(x)

=
X
γ≤α

1

2|α|

 
α

γ

!
xγ(~Dx)

β(xα−γϕ(x)).
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In other words, we get the following McCoy’s formula:

ÕxαξβW =
X
γ≤α

1

2|α|

 
α

γ

!
QγP βQα−γ,

where γ ≤ α means γj ≤ αj for all j, and 
α

γ

!
:=

α!

γ!(α− γ)!
=

 
α1

γ1

!
· · ·

 
αn
γn

!
.

¶ Weyl quantization of polynomials in ξ.

Next let’s compute the Weyl quantization of a(x, ξ) =
P
|α|≤k aα(x)ξα . Using

the fact

(−~Dy)
αei

(x−y)·ξ
~ = ξαei

(x−y)·ξ
~

and the Fourier inversion formula we get

baW (ϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~

X
|α|≤k

aα(
x+ y

2
)ξαϕ(y)dydξ

=
X
|α|≤k

1

(2π~)n

Z
Rn

Z
Rn

�
(−~Dy)

αei
(x−y)·ξ

~

�
aα(

x+ y

2
)ϕ(y)dydξ

=
X
|α|≤k

1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~ (~Dy)

α
�
aα(

x+ y

2
)ϕ(y)

�
dydξ

=
X
|α|≤k

(~Dy)
α
�
aα(

x+ y

2
)ϕ(y)

�
y=x

=
X
|α|≤k

X
γ≤α

2−|γ|
 
α

γ

!
[(~D)γaα(x)] · (~D)α−γϕ(x).

So we get

baW =
X
|α|≤k

X
γ≤α

2−|γ|
 
α

γ

!
[(~D)γaα(x)] · (~D)α−γ.

As a consequence

Corollary 1.2. If a(x, ξ) =
P
|α|≤k aα(x)ξα is a polynomial of degree k in ξ, thenbaW is a semiclassical differential operator of order k of the form

baW =
X
|α|=k

aα(x)(~D)α + “terms of order ≤ k − 1”.

Note that the same result holds for the Kohn-Nirenberg quantization and the
anti-Kohn-Nirenberg quantization, and in fact for all semiclassical t-quantizations.
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2. Symplectic invariance and applications

¶ Symplectic invariance of Weyl quantization.

According to the computations above, it seems that Weyl quantization is much
more complicated than the Kohn-Nirenberg or the anti-Kohn-Nirenberg quantiza-
tions. A natural question is: what is the advantage of the Weyl quantization? We
have seen the first big advantage: Weyl quantization will quantize real-valued func-
tions to formally self-adjoint operators. Here we explain the second big advantage:
the (unitary) invariance under linear symplectomorphisms 1(this conception will be
explained later).

Theorem 2.1 (Symplectic invariance of Weyl quantization). Given any “linear
symplectomorphism” Φ : T ∗Rn → T ∗Rn, there is a metaplectic operator UΦ (which
is an isomorphism on S ′(Rn) and on S (Rn), and is unitary on L2(Rn)) such that

(2) Öa ◦ Φ
W

= U−1
Φ ◦ baW ◦ UΦ.

Remark. Moreover, it can be shown that such “symplectic invariance” characterize
the Weyl quantization: If there is a “quantization process” Q : S ′(Rn × Rn) →
L(S (Rn),S ′(Rn)) which is sequentially continuous, quantizes any bounded func-
tion a(x) to the operator “multiplication by a(x)” and satisfies the symplectic in-
variance property above, then it is the Weyl quantization!

Here are three special cases of this theorem for which we can easily check (2) by
direct computations:

(A) The linear symplectomorphism is the map

Φ : Rn × Rn → Rn × Rn, (x, ξ) 7→ (ξ,−x)

which “intertwines” x and ξ with a twisting. In this case UΦ = F~. (So F~
can be regarded as the quantization of J !)

(B) The linear symplectomorphism is the map

Φ : Rn × Rn → Rn × Rn, (x, ξ) 7→ (x, ξ + Cx),

where C is a symmetric n× n matrix. In this case UΦ is the map “multipli-
cation by the function eix

TCx/2~ ”.
(C) The linear symplectomorphism is the map

Φ : Rn × Rn → Rn × Rn, (x, ξ) 7→ (Ax, (AT )−1ξ),

where A is an invertible matrix. In this case UΦ is the map UΦ is given by
(UΦϕ)(x) = ϕ(Ax).

1From the classical-quantum correspondence point of view, a nice quantization should preserve
symplectic properties, two symplectically equivalent classical objects should corresponds to unitar-
ily equivalent quantum objects. In Lecture 1 we have mentioned the Egorov theorem, which can
be explained as the unitary invariance under general symplectomorphisms (which only hold in the
semiclassical limit). Here, for linear symplectomorphisms, the invariance is an exact relation.
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Remark. In fact, one can prove that any linear symplectomorphism can be written
as a composition of the three classes of linear symplectomorphisms above. As a
result, the general theorem is proven as long as we can check the three cases (A),
(B) and (C). We will not prove the full theorem here 2. Instead, in what follows we
will prove case (A) and a special case of (B), and give two applications. We will
leave the proof of the general cases of (B) and (C) as an exercise.

¶ Case (A): Conjugation by Fourier transform.

We prove case (A) by direct computation:

Theorem 2.2 (Conjugation by Fourier transform). Let b(x, ξ) = a(ξ,−x), then

(3) F−1
~ ◦ baW ◦ F~ = bbW .

Proof. We compute�
(F−1

~ )η→x(baW )y→η(F~)z→yϕ
�
(x)

=(F−1
~ )η→x(baW )y→η

�Z
Rn
e−

i
~ z·yϕ(z)dz

�
=(F−1

~ )η→x

�
1

(2π~)n

Z
Rn

Z
Rn

Z
Rn
e
i
~ (η−y)·ξa(

η + y

2
, ξ)e−

i
~ z·yϕ(z)dzdydξ

�
=

1

(2π~)n
1

(2π~)n

Z
Rn

Z
Rn

Z
Rn

Z
Rn
e
i
~x·ηe

i
~ (η−y)·ξa(

η + y

2
, ξ)e−

i
~ z·yϕ(z)dzdydξdη

=
1

(2π~)n

Z
Rn

�
1

(2π~)n

Z
Rn

Z
Rn

Z
Rn
e
i
~ [x·η+(η−z)·ξ−y·z]a(

η + z

2
, ξ)dzdξdη

�
ϕ(y)dy

=
1

(2π~)n

Z
Rn

�
2n

(2π~)n

Z
Rn

Z
Rn

Z
Rn
e
i
~ [x·η+2(η−ζ)·ξ−y·(2ζ−η)]a(ζ, ξ)dζdξdη

�
ϕ(y)dy

=
1

(2π~)n

Z
Rn

�
2n

(2π~)n

Z
Rn

Z
Rn

Z
Rn
e
i
~ (x+y+2ξ)·ηe

i
~ (−2ξ−2y)·ζa(ζ, ξ)dζdξdη

�
ϕ(y)dy

=
1

(2π~)n

Z
Rn

�Z
Rn

�
1

(2π~)n

Z
Rn

Z
Rn
e
i
~ τ ·ηe

i
~ (x−y−τ)·ζa(ζ,

τ − x− y
2

)dτdη

�
dζ

�
ϕ(y)dy

Using the Fourier inversion formula

f(0) = [F~F−1
~ f ](0) =

1

(2π~)n

Z
Rn

Z
Rn
e
i
~x·ξf(x)dxdξ,

the expression in (· · · ) above can be simplified to

e
i
~ (x−y)·ζa(ζ,

−x− y
2

) = e
i
~ (x−y)·ζb(

x+ y

2
, ζ)

and the conclusion follows. �

2For a proof, c.f. Folland, Harmonic analysis in phase space, Chapter 4.
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¶ Application: A second formula for the Weyl quantization of polynomi-
als in ξ.

As an application, to compute the Weyl quantization of a(x, ξ) =
P
|α|≤k aαξ

α,

we can intertwine x and ξ first, so that instead of handling the function a(x+y
2

), we

only need to handle the polynomial (x+y
2

)α by using the binomial theorem:

Proposition 2.3. The Weyl quantization of a(x, ξ) =
P
|α|≤k aαξ

α is

(4) baW =
X
|α|≤k

X
γ≤α

2−|α|
 
α

γ

!
(~D)γ ◦ aα(x) ◦ (~D)α−γ

Proof. We will apply the previous theorem to “intertwine x and ξ”. For this purpose
we let b(x, ξ) =

P
aα(−ξ)xα, then a(x, ξ) = b(ξ,−x) and thus we have

baW = F−1
~ ◦ bbW ◦ F~.

Note that by definition and the binomial theorem,

(bbWϕ)(x) =
1

(2π~)n

Z
Rn

Z
Rn
e
i
~ (x−y)·ξ X

|α|≤k
aα(−ξ)

�x+ y

2

�α
ϕ(y)dydξ

=
X
|α|≤k

X
γ≤α

2−|α|
 
α

γ

!
xγ

(2π~)n

Z
Rn

Z
Rn
e
i
~ (x−y)·ξaα(−ξ)yα−γϕ(y)dydξ.

So to prove (4), it remains to check�
F~ ◦ (~D)γ ◦ aα(x) ◦ (~D)α−γ ◦ F−1

~ ϕ
�
(x) =

xγ

(2π~)n

Z
Rn

Z
Rn
e
i
~ (x−y)·ξaα(−ξ)yα−γϕ(y)dydξ.

This follows from direct computations: The left hand side of the above expression
should be interpreted as

(F~)ξ→x ◦ (~D)γξ ◦ aα(ξ) ◦ (~D)α−γξ ◦ (F−1
~ )y→ξϕ(y),

which, by using the property (F~)ξ→x ◦ (~D)γξ = xγ(F~)ξ→x, equals

xγ ◦ (F~)ξ→x ◦ aα(ξ) ◦ (F−1
~ )y→ξ(y

α−γϕ(y)),

which equals
xγ

(2π~)n

Z
Rn

Z
Rn
e
i
~ (y−x)·ξaα(ξ)yα−γϕ(y)dydξ

=
xγ

(2π~)n

Z
Rn

Z
Rn
e
i
~ (x−y)·ξaα(−ξ)yα−γϕ(y)dydξ.

This completes the proof. �

Remark. You may have noticed that if we apply (4) to monomial xαξβ, we will get

ÕxαξβW =
X
γ≤β

2−|β|
 
β

γ

!
P γQαP β−γ
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which is different from the McCoy’s formula on page 3. In particular, for example,

we will get two different formula for Ôxξ2
W

:

Ôxξ2
W

=
1

2
(QP 2 + P 2Q) and Ôxξ2

W
=

1

4
(QP 2 + 2PQP + P 2Q).

There is no mistake: in view of the canonical commutative relation

[Q,P ] = i~ · Id,
we have

QP 2 + P 2Q = PQP + i~P + PQP − i~P = 2PQP,

and thus the two formulae for Ôxξ2
W

coincide. We can also write down an expression

for Ôxξ2
W

which looks even more symmetric:

Ôxξ2
W

=
1

3
(QP 2 + PQP + P 2Q).

In what follows we will prove that such symmetric formula holds for the Weyl quan-
tization of any monomial.

¶ Case (B) with C = Id: Adding x to ξ.

To prove the special case of (B) where C = Id, we need to check:

Theorem 2.4. We have

e−i
|x|2
2~ cξαW ei |x|22~ = Ù(x+ ξ)α

W

.

Proof. Let’s compute

e−i
|x|2
2~ cξαW ei |x|22~ ϕ =

1

(2π~)n

Z
Rn

Z
Rn
e−i

|x|2
2~ ei

(x−y)·ξ
~ ξαei

|y|2
2~ ϕ(y)dydξ

=
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·(ξ−x+y2 )

~ ξαϕ(y)dydξ

=
1

(2π~)n

Z
Rn

Z
Rn
ei

(x−y)·ξ
~

�
ξ +

x+ y

2

�α
ϕ(y)dydξ

= Ù(x+ ξ)α
W

ϕ.

�

¶ Application: Symmetry in Weyl quantization.

Since we know cξα = Pα, Theorem 2.4 allows us to compute the Weyl quantiza-
tion of (x+ ξ)α directly, and the result is neat:

Corollary 2.5. We have

Ù(x+ ξ)α
W

= (Q+ P )α.
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Proof. We have seen that cξαW = Pα. So we only need to check

e−i
|x|2
2~ Pαei

|x|2
2~ ϕ = (Q+ P )αϕ,

which follows easily from the fact

e−i
|x|2
2~ Pei

|x|2
2~ ϕ = (Q+ P )ϕ

and the fact

e−i
|x|2
2~ PiPje

i
|x|2
2~ ϕ = e−i

|x|2
2~ Pie

i
|x|2
2~ e−i

|x|2
2~ Pje

i
|x|2
2~ ϕ.

�

Remark. Note that other t-quantizations like the Kohn-Nirenberg quantization does
not satisfy this property. For example,Ù(x+ ξ)2

KN

= Q2 + 2QP + P 2 6= (Q+ P )2.

More generally, one by proving case (B) for general C and then taking C to be
diagonal matrices, one can easily prove: for any a, b ∈ Rn,

Û(ax+ bξ)α
W

= (aQ+ bP )α,

where we used the abbreviation

(ax+ bξ)α = (a1x1 + b1ξ1)α1 · · · (anxn + bnξn)αn

and
(aQ+ bP )α = (a1Q1 + b1P1)α1 ◦ · · · ◦ (anQn + bnPn)αn .

The proof will be left as a simple exercise. This has a further interesting application,
namely the Weyl quantization is the most symmetric way to quantize monomials:

Corollary 2.6.

ÕxαξβW =
α!β!

|α + β|!
X

Y1,··· ,Y|α|+|β|

Y1Y2 · · ·Y|α|+|β|,

where Y1, Y2, · · ·Y|α|+|β| range over all tuples which contains α1 copies of Q1, α2

copies of Q2, · · · , and βn copies of Pn.

Proof. Comparing the coefficients of aαbβ of both sides of

Û(ax+ bξ)α+β
W

= (aQ+ bP )α+β,

we get ÕxαξβW =
α!β!

(α + β)!

X
Y1,··· ,Y|α|+|β|

Y1Y2 · · ·Y|α|+|β|,

where Y1, Y2, · · ·Yα1+β1 range over all tuples which contains α1 copies of Q1, β1

copies of P1, Yα1+β1+1, · · ·Yα2+β2 range over all tuples which contains α2 copies of
Q2, β2 copies of P2 and so on. The conclusion follows from the fact “Pi, Qi commutes
with Pj, Qj for j 6= i” and an elementary combinatorics argument. �


