LECTURE 11: L^2-THEORY OF SEMICLASSICAL PsDOs: BOUNDEDNESS

In the previous several lectures, we have studied the definition and basic properties of semiclassical pseudodifferential operators, but mainly as an operator acting on $\mathcal{S}(\mathbb{R}^n)$. However, as we have seen, in quantum part (=the spectral part) of the story the natural space should be a Hilbert space: $\mathcal{S}(\mathbb{R}^n)$ is not. In the next several lectures we shall study properties of semiclassical pseudodifferential operators as linear operators acting on $L^2(\mathbb{R}^n)$, or in cases we need more regularity, acting on the Sobolev spaces $H^s(\mathbb{R}^n)$.

1. L^2-boundedness of $\text{Op}_a(t)$ for Schwartz symbols

Suppose $a = a(x, \xi) \in \mathcal{S}(\mathbb{R}^{2n})$ is a Schwartz function. Then as we have seen, the operator \hat{a}^W, or more generally, the operator $\text{Op}_a(t)$ for any $t \in [0,1]$, maps $\mathcal{S}'(\mathbb{R}^n)$ into $\mathcal{S}(\mathbb{R}^n)$. In particular, these operators are linear maps from $L^2(\mathbb{R}^n)$ into $L^2(\mathbb{R}^n)$. It turns out that for a Schwartz symbol, the operator $\text{Op}_a(t)$ is always a bounded linear operator (and as we will prove next time, is a compact operator) on $L^2(\mathbb{R}^n)$. In what follows we will provide two different proofs of this fact.

\[\text{Schur's test.} \]

To prove the L^2-boundedness of linear operators like $\text{Op}_a(t)$ which are defined by Schwartz kernels, a very useful criterion is the following Schur’s test:

Lemma 1.1 (Schur’s Test). Let $K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ be a continuous function satisfying

\[
C_1 = \sup_x \int_{\mathbb{R}^n} |K(x,y)|\,dy < +\infty \quad \text{and} \quad C_2 = \sup_y \int_{\mathbb{R}^n} |K(x,y)|\,dx < +\infty,
\]

and let A be the linear operator with Schwartz kernel K:

\[
Au(x) = \int_{\mathbb{R}^n} K(x,y)u(y)\,dy.
\]

Then A is a bounded linear operator from $L^2(\mathbb{R}^n)$ to $L^2(\mathbb{R}^n)$ with

\[
\|A\|_{L^2(\mathbb{R}^n)} \leq (C_1C_2)^{\frac{1}{2}}
\]

Proof. For any $u \in L^2(\mathbb{R}^n)$ the Cauchy-Schwartz inequality gives

\[
|Au(x)|^2 \leq \int_{\mathbb{R}^n} |K(x,y)|\,dy \cdot \int_{\mathbb{R}^n} |K(x,y)||u(y)|^2\,dy \leq C_1 \int_{\mathbb{R}^n} |K(x,y)||u(y)|^2\,dy.
\]
Integrating with respect to x, we get
\[\|Au\|_{L^2}^2 \leq \int_{\mathbb{R}^n} \left(C_1 \cdot \int_{\mathbb{R}^n} |K(x, y)||u(y)|^2 dy \right) dx \leq C_1 C_2 \|u\|_{L^2}^2. \]

\[\square \]

\[L^2 \)-boundedness for PsDOs with Schwartz symbols.\]

As an immediate consequence,

Theorem 1.2. If $a = a(x, \xi)$ is a Schwartz function, then for any $t \in [0, 1]$,
\[\text{Op}_t^a : L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n) \]
is a bounded linear operator with
\[\|\text{Op}_t^a\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \leq \sup_x \sup_{|\alpha| \leq n+1} \|\partial_\xi^\alpha a(x, \xi)\|_{L^1(\mathbb{R}_\xi^n)}. \]

Proof. Recall that the Schwartz kernel of the operator Op$_t^a$ is
\[k_t^a(x, y) = \frac{1}{(2\pi \hbar)^n} \int_{\mathbb{R}^n} e^{i(x-y)\cdot \xi} a(tx + (1-t)y, \xi) d\xi = \frac{1}{(2\pi \hbar)^n} b(tx + (1-t)y, \frac{y-x}{\hbar}), \]
where b is the “partial Fourier transform” of a given by
\[b(x, z) = \mathcal{F}_{\xi \rightarrow z}[a(x, \xi)] = \int_{\mathbb{R}^n} e^{-i\xi \cdot z} a(x, \xi) d\xi. \]
Since a is a Schwartz function, b is also a Schwartz function (Check this!). Thus
\[\int_{\mathbb{R}^n} |k_t^a(x, y)| dx = \frac{1}{(2\pi \hbar)^n} \int_{\mathbb{R}^n} |b(tx + (1-t)y, \frac{y-x}{\hbar})| dx \]
\[= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} |b(y - t\hbar z, z)| dz \]
\[\leq \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \langle z \rangle^{-n-1} dz \cdot \sup_{y, z \in \mathbb{R}^n} |\langle z \rangle^{n+1} b(y, z)| \]
\[\leq \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \langle z \rangle^{-n-1} dz \cdot \sup_y \sup_{|\alpha| \leq n+1} \|z^\alpha [\mathcal{F}_{\xi \rightarrow z}[a]](y, z)\|_{L^1(\mathbb{R}_\xi^n)} \]
\[\leq \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \langle z \rangle^{-n-1} dz \cdot \sup_y \sup_{|\alpha| \leq n+1} \|\mathcal{F}_{\xi \rightarrow z}(\partial_\xi^\alpha a)(y, z)\|_{L^1(\mathbb{R}_\xi^n)} \]
\[\leq C_1 := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \langle z \rangle^{-n-1} dz \cdot \sup_y \sup_{|\alpha| \leq n+1} \|\partial_\xi^\alpha a(y, \xi)\|_{L^1(\mathbb{R}_\xi^n)} \]
and similarly
\[\int_{\mathbb{R}^n} |k_t^a(x, y)| dy \leq C_2 := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \langle z \rangle^{-n-1} dz \cdot \sup_x \sup_{|\alpha| \leq n+1} \|\partial_\xi^\alpha a(x, \xi)\|_{L^1(\mathbb{R}_\xi^n)}. \]
Now the conclusion follows from Schur’s test. \[\square \]
Remark. One can also prove the L^2-boundedness of $\text{Op}_h^t(a)$ directly as follows: We start with Weyl’s decomposition (c.f. the formula (11) in Lecture 9, page 7)

$$(\text{Op}_h^t(a))(x) = \frac{1}{(2\pi \hbar)^{2n}} \int_{\mathbb{R}^{2n}} \left[\text{Op}_h^t(e^{\frac{i}{\hbar} (y \cdot x + \eta \cdot \xi)}) \right] [(\mathcal{F}_h(s,\xi) \rightarrow (y,\eta))a](y,\eta)dyd\eta.$$

Since the operator $\text{Op}_h^t(e^{\frac{i}{\hbar} (y \cdot x + \eta \cdot \xi)})$ is unitary on $L^2(\mathbb{R}^n)$, the triangle inequality implies

$$\|\text{Op}_h^t(a)\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \leq \frac{1}{(2\pi \hbar)^{2n}} \int_{\mathbb{R}^{2n}} \|[(\mathcal{F}_h(s,\xi) \rightarrow (y,\eta))a](y,\eta)\|dyd\eta = \frac{1}{(2\pi \hbar)^{2n}} \|\mathcal{F}(s,\xi)\rightarrow (y,\eta)\|_{L^1}.$$

It remains to estimate $\|\mathcal{F}(s,\xi)\rightarrow (y,\eta)\|_{L^1}$. Note that here we are using the usual Fourier transform, not the semiclassical one. So our estimate is uniform w.r.t. \hbar.

We state and prove a general result:

Lemma 1.3. There exists a constant $C = C_n$ such that for any $a \in \mathcal{S}(\mathbb{R}^n)$,

$$\|\mathcal{F}a\|_{L^1} \leq C_n \sup_{\|\alpha\| \leq n+1} \|\partial^\alpha a\|_{L^1}.$$

Proof. We have

$$\|\mathcal{F}a\|_{L^1} = \int_{\mathbb{R}^n} |\mathcal{F}a(\xi)| d\xi \leq \int_{\mathbb{R}^n} |\langle \xi \rangle^{-n-1} \cdot \langle \xi \rangle^{n+1} \mathcal{F}a(\xi)|_{L^\infty} d\xi \leq C_n \sup_{\|\alpha\| \leq n+1} \|\xi^\alpha \mathcal{F}a\|_{L^\infty} \leq C_n \sup_{\|\alpha\| \leq n+1} \|\partial^\alpha a\|_{L^1}.$$

As a consequence, we get:

Proposition 1.4. For any $a \in \mathcal{S}(\mathbb{R}^{2n})$, and any $t \in [0,1]$,

$$(2) \quad \|\text{Op}_h^t(a)\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \leq C_n \sup_{\|\alpha\| \leq 2n+1} \|\partial^\alpha_{x,\xi} a\|_{L^1}.$$

2. L^2 BOUNDEDNESS FOR MORE GENERAL SYMBOLS

¶ Boundedness of symbols v.s. L^2-boundedness of operators.

We would like to extend the L^2-boundedness result we proved above to semi-classical pseudo-differential operators with symbols in more general classes. This is not always possible. For example,

- Neither the operator
 $$Q_j = "\text{multiplication by } x_j"$$
nor the operator

\[P_j = \frac{\hbar}{i} \frac{\partial}{\partial x_j} \]

is bounded on \(L^2(\mathbb{R}^n) \) (check this statement by providing counterexamples!). This is reasonable since neither the function \(x_j \) (the classical counterpart of \(Q_j \)) nor the function \(\xi_j \) (the classical counterpart of \(P_j \)) are bounded functions.

- On the other hand, if \(a(x) \) is a bounded continuous function, namely \(|a(x)| \leq C\) for all \(x \in \mathbb{R}^n \), then obviously the operator

\[\text{Op}_\hbar(a) = M_{a(x)} = \text{“multiplication by } a(x)\text{”} \]

is a bounded operator on \(L^2 \) since

\[
\|M_{a(x)}u\|_{L^2} = \left[\int |a(x)u(x)|^2 dx \right]^{-1/2} \leq C\|u\|_{L^2}.
\]

- Similarly if \(a(\xi) \) is a bounded function, i.e. \(|a(\xi)| \leq C\), then

\[\text{Op}_\hbar'(a) = F^{-1}_\hbar \circ M_{a(\xi)} \circ F_\hbar \]

is a bounded operator on \(L^2 \), since the Plancherel's Theorem (c.f. Lecture 4, Prop. 1.7) implies

\[
\|\text{Op}_\hbar'(a)u\|_{L^2} = \frac{1}{(2\pi \hbar)^{n/2}} \|M_{a(\xi)}F_\hbar u\|_{L^2} \leq \frac{C}{(2\pi \hbar)^{n/2}} \|F_\hbar u\|_{L^2} = C\|u\|_{L^2}.
\]

\(\Box \) Calderon-Vaillancourt Theorem: Idea of proof.

So one may guess that for any bounded symbol \(a(x, \xi) \), the operator \(\text{Op}_\hbar'(a) \) is a bounded operator on \(L^2 \). Unfortunately this is not quite true in general. (I need an example here.) However, we will prove that if \(a \in S(1) \), namely if we assume the symbol \(a \) itself together with all its derivatives are bounded, then \(\text{Op}_\hbar'(a) \) is bounded on \(L^2(\mathbb{R}^n) \):

Theorem 2.1 (Calderon-Vaillancourt). If \(a \in S(1) \), then the operator

\[\text{Op}_\hbar'(a) : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n) \]

is a bounded linear operator on \(L^2(\mathbb{R}^n) \) with

\[
\|\text{Op}_\hbar'(a)\|_{L^2(\mathbb{R}^n)} \leq C \sum_{|\alpha| \leq M_n} h^{|\alpha|/2} \sup_{\mathbb{R}^n} |\partial^\alpha a| \tag{3}
\]

for some universal constant \(M \).\(^1\)

In the rest of this lecture, we prove Calderon-Vaillancourt’s theorem. The idea is the following:

\(^1\)We can take \(Mn \) to be \(10n + 6 \).
We first decompose a into countably many compactly-supported symbols $a = \sum_m a_m$. This can be done by choosing any partition of unity $1 = \sum_m \chi_m$ such that each χ_m is compactly supported, and letting $a_m = \chi_m a$. Then formally we have

$$\text{Op}^\dagger_\hbar(a) = \sum_m \text{Op}^\dagger_\hbar(a_m),$$

and by compactness of $\text{supp}(a_m)$, each $\text{Op}^\dagger_\hbar(a_m)$ is L^2-bounded.

In general, if $A = \sum A_m$, to conclude the boundedness of A from the boundedness of A_m's,

- a necessary condition we need is that

 the bound of A_m's is uniform for all m.

In view of (2), this “uniformly boundedness” can be fulfilled if we choose our partition of unity in a “uniform” way.

- The “uniformly boundedness” of components is still not enough, since there may be “interactions” between different A_m’s. Of course the best dream is that if we can choose these A_m’s so that there are “no interaction”, or in other words, if these A_m’s are “orthogonal” to each other, (namely if the decomposition $A = \sum A_m$ is an “orthogonal decomposition” $A = \bigoplus_m A_m$), then the “uniformly boundedness” of A_m’s does imply the boundedness of A. But that’s only a dream: we can’t choose our decomposition $\sum_m \text{Op}^\dagger_\hbar(a_m)$ to be orthogonal.

- However, the dream shed a light on the correct direction! The “orthogonality” or the “no-interaction condition” implies that $A_m \circ A_{m'} = 0$ for $m' \neq m$. This is too strong, since it is enough to assume “almost-orthogonality”, or in other words, it is enough if we have a nicely-controlled “interaction”.

- Back to our decomposition. Although we can’t make $\text{Op}^\dagger_\hbar(a_m) \circ \text{Op}^\dagger_\hbar(a_{m'}) = 0$ for all $m' \neq m$, we can make $\text{Op}^\dagger_\hbar(a_m) \circ \text{Op}^\dagger_\hbar(a_{m'}) = O(\hbar^\infty)$ for most $m' \neq m$. In fact, according to Corollary 1.4 in Lecture 9, we have

$$\text{Op}^\dagger_\hbar(a_m) \circ \text{Op}^\dagger_\hbar(a_{m'}) = O(\hbar^\infty)$$

if $\text{supp}(a_m) \cap \text{supp}(a_{m'}) = \emptyset$. In other words, we do have “almost-orthogonality” of $\text{Op}^\dagger_\hbar(a_m)$, if we start with “almost-disjoint” symbols a_m’s.[In other words, “almost-orthogonality” is the quantum analogue of the “almost disjointness” of functions].

In summary, here is how we prove the theorem:

A. We first carefully choose a partition of unity $1 = \sum_m \chi_m$, in a uniform way, so that the resulting decomposition $a = \sum (\chi_m a)$ decompose a into a summation of almost disjoint compactly-supported symbols $a_m = \chi_m a$.

B. We then control the interaction between different $\text{Op}^\dagger_\hbar(a_m)$’s.
Finally we add the “almost-orthogonal” $\text{Op}_1^\varepsilon(a_m)$s to get a bounded operator. Technically, this is done by applying the Cotlar-Stein lemma below (which tells us how to “add a sequence of almost-orthogonal bounded operators”):

Lemma 2.2 (Cotlar-Stein Lemma). Let H_1, H_2 be Hilbert spaces. For $j \in \mathbb{N}$ let $A_j \in \mathcal{L}(H_1, H_2)$ be bounded linear operators satisfying

$$\sup_j \sum_{k=1}^{\infty} \|A_j^* A_k\|^{1/2} < C \quad \text{and} \quad \sup_j \sum_{k=1}^{\infty} \|A_j A_k^*\|^{1/2} \leq C.$$

The the series $\sum_{j=1}^{\infty} A_j$ converges in the strong operator topology\(^2\) to $A \in \mathcal{L}(H_1, H_2)$ with $\|A\| \leq C$.

A proof will be given in next lecture.

Decomposition of symbol.

As we just explained, we first decompose a into a family of “almost disjoint” compactly supported symbols which are “uniformly controllable”. For this purpose, we will use integer points $\alpha \in \mathbb{R}^d$ as our labels (which are evenly distributed in \mathbb{R}^d), and we prove the following “periodic partition of unity”:

Lemma 2.3. There exists $\chi_0 \in C_0^\infty(\mathbb{R}^d)$ so that $0 \leq \chi_0 \leq 1$ on \mathbb{R}^d, $\text{supp}(\chi_0) \subset B(0, \sqrt{d})$\(^3\) and

$$\sum_{\alpha \in \mathbb{Z}^d} \chi_\alpha = 1 \quad \text{on} \quad \mathbb{R}^d,$$

where for any $\alpha \in \mathbb{Z}^d$, $\chi_\alpha(z) := \chi_0(z - \alpha)$.

Proof. First choose $\varphi \in C_0^\infty(\mathbb{R}^d)$ so that $\varphi \geq 0$ on \mathbb{R}^d, $\varphi \equiv 1$ on $B(0, \sqrt{d}/2)$ and $\varphi \equiv 0$ on $\mathbb{R}^d \setminus B(0, \sqrt{d})$. Let

$$\psi(z) = \sum_{\alpha \in \mathbb{Z}^d} \varphi(z - \alpha).$$

Then for z in any bounded set, the sum above is a finite sum. Thus ψ is well-defined and is a smooth function. Moreover, by construction,

- for each z one has $\psi(z) \geq 1$ (since for each z one can always find an $\alpha \in \mathbb{Z}^d$ so that $|z_i - \alpha_i| \leq \frac{1}{2}$ for all i, i.e. $z - \alpha \in B(0, \sqrt{d}/2)$.)
- for any $\alpha \in \mathbb{Z}^d$, $\psi(z + \alpha) = \psi(z)$.

\(^2\)Recall: the operator strong topology on $\mathcal{L}(H_1, H_2)$ is the topology so that

$$A_j \to A \iff A_j(x) \to A(x) \quad \text{for all} \quad x \in H_1.$$

Note that in Cotlar-Stein Lemma, the sum $\sum A_j$ does not converge in operator norm topology.

\(^3\)In Zworski, χ_0 is taken to be supported in $B(0, 2)$, which can’t be true since after translation, these balls can’t cover \mathbb{R}^{2n} for $n > 4$: you need a larger radius to cover points like $(1/2, \cdots, 1/2)$.

\[\]

\[\]
LECTURE 11: L^2-THEORY OF SEMICLASSICAL PSDOS: BOUNDEDNESS

It is easy to see that the function
$$\chi_0(z) = \varphi(z)/\psi(z)$$
is what we want. \hfill □

As a consequence, if we fix such a function $\chi = \chi_0 \in C_0^\infty(\mathbb{R}^n \times \mathbb{R}^n)$, and for any $a = a(x, \xi) \in S(1)$ if we denote
$$a_{\alpha}(x, \xi) = \chi_{\alpha}(x, \xi)a(x, \xi),$$
then we get
$$a(x, \xi) = \sum_{\alpha \in \mathbb{Z}^{2n}} a_{\alpha}(x, \xi).$$
Moreover, these $a_{\alpha}(x, \xi)$ form a countable family of “almost disjoint” compactly-supported symbols such that for any $\beta \in \mathbb{N}^{2n}$, there exists C_β (which comes from the bounds of finitely many derivatives of $a \in S(1)$ together with the bounds of finitely many derivatives of χ_0) such that
$$|\partial^\beta a_{\alpha}| \leq C_\beta, \quad \forall \alpha \in \mathbb{Z}^{2n}.$$
As a consequence, there exists C (which depends on a) such that for all $\alpha \in \mathbb{Z}^{2n}$,
$$\|\text{Op}_h^t(a_{\alpha})\|_{L(\mathbb{R}^n)} \leq C.$$

“Almost orthogonality”.

In view of the Cotlar-Stein lemma, we need to control the operator norm of $\text{Op}_h^t(a_{\alpha})^* \circ \text{Op}_h^t(a_{\beta})$ and $\text{Op}_h^t(a_{\alpha}) \circ \text{Op}_h^t(a_{\beta})^*$. For simplicity we only consider the case of $t = 1/2$, namely the case of Weyl quantization. The general case can be argued either by a similar proof, or by using the change of quantization formula.

For any $a = a(x, \xi) \in S(1)$, we denote $a_{\alpha} = \chi_{\alpha}a$ as above, and let
$$b_{\alpha\beta} = a_{\alpha} \star a_{\beta},$$
where \star is the Moyal star product. The crucial estimate we need is

Assume $h = 1$.

Lemma 2.4. Suppose $a \in S(1)$. Then for each N and each multi-index γ, there is a constant
$$C = C(\gamma, N, n) \sum_{|\alpha| \leq 2N+4n+1+|\gamma|} \sup_{\mathbb{R}^n} |\partial^\alpha a|,$$
such that for all $z = (x, \xi) \in \mathbb{R}^{2n}$,
$$|\partial^\gamma b_{\alpha\beta}(z)| \leq C(\alpha - \beta)^{-N} z^{\frac{\alpha+\beta}{2}} - N.$$ (5)

We will not prove this theorem now. Instead, we will prove a stronger version next time: instead of assume $a \in S(1)$, we will only assume $a \in S(m)$ (but the upper bound will also be m-dependent).
As a consequence, we get from (2) the following control of \(\| (\hat{b}_{\alpha \beta}^W)_{h=1} \|_{L(\mathbb{L}^2(\mathbb{R}^n))} \) (in which we take \(N = 2n + 1 \) so that \(\langle z - \alpha + \beta \rangle^N \) is in \(L^1 \), and use all \(\gamma \) with \(|\gamma| \leq 2n + 1 \) so that we can apply (2)):

Corollary 2.5. For any \(N \) there is a constant
\[
C = C(n) \sum_{|\alpha| \leq 8n+4} \sup_{\mathbb{R}^n} |\partial^\alpha a|
\]
so that
\[
(6) \quad \| (\hat{b}_{\alpha \beta}^W)_{h=1} \|_{L(\mathbb{L}^2(\mathbb{R}^n))} \leq C \langle \alpha - \beta \rangle^{-2n-1}.
\]

\[\blacksquare \text{ Proof of Calderon-Vaiilancourt Theorem.} \]

Finally we finish the proof of Calderon-Vaiilancourt Theorem.

Proof.

[Step 1] We first prove a special case: the bound for Weyl quantization with \(h = 1 \):

\[
(7) \quad \| (\hat{a}^W)_{h=1} \|_{L(\mathbb{L}^2(\mathbb{R}^n))} \leq C \sum_{|\alpha| \leq 8n+4} \sup_{\mathbb{R}^n} |\partial^\alpha a|
\]

Set \(A_\alpha = (\hat{a}^W)_{h=1} \), then \((\hat{b}^W_{\alpha \beta})_{h=1} = A_\alpha^* A_\beta \). By the previous corollary,
\[
\| \hat{b}^W_{\alpha \beta} \|_{L(\mathbb{L}^2)} \leq C \langle \alpha - \beta \rangle^{-2n-1}.
\]

It follows
\[
\sup_{\alpha} \sum_{\beta} \| A_\alpha A_\beta^* \|^{1/2} \leq C \sum_{\beta} \langle \alpha - \beta \rangle^{-(2n+1)/2} \leq C.
\]

By the same way one has
\[
\sup_{\alpha} \sum_{\beta} \| A_\alpha^* A_\beta \|^{1/2} \leq C.
\]

Since \((\hat{a}^W)_{h=1} = \sum_\alpha A_\alpha \), the conclusion follows from the Cotlar-Stein lemma.

[Step 2] We then prove the theorem for Weyl quantization with general \(h \), i.e.
\[
\| \hat{a}^W \|_{L(\mathbb{L}^2(\mathbb{R}^n))} \leq C \sum_{|\alpha| \leq 8n+4} h^{\frac{|\alpha|}{2}} \sup_{\mathbb{R}^n} |\partial^\alpha a|
\]

This can be done by a re-scaling technique. First we notice that (7) is uniform for all \(h \). In particular, it holds for \(h = 1 \).

Next we introduce the following re-scaling:
\[
\tilde{x} = h^{-1/2} x, \quad \tilde{y} = h^{-1/2} y, \quad \tilde{\xi} = h^{-1/2} \xi
\]
and define
\[
\tilde{u}(\tilde{x}) := u(x) = u(h^{1/2} \tilde{x}), \quad \tilde{\alpha}(\tilde{x}, \tilde{\xi}) := a(x, \xi) = a(h^{1/2} \tilde{x}, h^{1/2} \tilde{\xi}).
\]
One can check:
\[
\tilde{a}^W u = (\tilde{a})_{h=1} u.
\]
Since the change of variable will create an \(h^{-n/4} \)-factor for \(L^2 \)-norms, namely
\[
\| \tilde{a} \|_{L^2} = h^{-n/4} \| u \|_{L^2}, \quad \text{and} \quad \| \tilde{a}^W u \|_{L^2} = h^{-n/4} \| (\tilde{a})_{h=1} u \|_{L^2}
\]
the conclusion follows from step 1 and
\[
\sup_{\mathbb{R}^n} |\partial_{x,\xi} \tilde{a}| = h^{\lfloor \alpha \rfloor/2} \sup_{\mathbb{R}^n} |\partial^\alpha a|.
\]

[Step 3] Finally we prove the theorem for any \(t \)-quantization. We apply the change of quantization formula (Theorem 3.1 in Lecture 9). Namely, if we set \(b(x, \xi) = e^{i(t-s)hD_x-D_\xi} a(x, \xi) \), then we have \(\text{Op}_h^t(a) = \tilde{b}^W \). It follows
\[
\| \text{Op}_h^t(a) \|_{L^2(\mathbb{R}^n)} = \| \tilde{b}^W \|_{L^2(\mathbb{R}^n)} \leq C \sum_{|\alpha| \leq 8n+4} h^{\lfloor \alpha \rfloor/2} \sup_{\mathbb{R}^{2n}} |\partial^\alpha b|.
\]
We notice that by applying Proposition 1.1 in Lecture 7 to the matrix \(Q = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \), we will get
\[
b(x, \xi) = e^{i(t-s)hD_x-D_\xi} a(x, \xi) = \frac{1}{(2\pi h)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-i\frac{\pi}{2}(t-s) y \cdot \eta} a(x+y, \xi+\eta) dyd\eta.
\]
By inserting \(n+1 \) times before the term \(e^{-i\frac{\pi}{2}(t-s) y \cdot \eta} \) the operator
\[
L = 1 + \sum_j \frac{(D_{\eta_j})^2}{(\frac{1}{2}-t)^2} + \sum_j \frac{(D_{y_j})^2}{(\frac{1}{2}-t)^2}
\]
which satisfies
\[
\frac{1}{(y, \eta)^2} \frac{L}{(t-s)} L(e^{-i\frac{\pi}{2}(t-s) y \cdot \eta}) = e^{-i\frac{\pi}{2}(t-s) y \cdot \eta},
\]
we will get
\[
|\partial^\gamma b| \leq C \sup_{|\rho| \leq |\gamma|+2n+2} |\partial^\rho a|
\]
and thus we conclude
\[
\| \text{Op}_h^t(a) \|_{L^2(\mathbb{R}^n)} \leq C \sum_{|\alpha| \leq 10n+6} h^{\lfloor \alpha \rfloor/2} \sup_{\mathbb{R}^{2n}} |\partial^\alpha a|.
\]

Remark. More generally if \(a \in S_\delta(1) \) for some \(0 \leq \delta < \frac{1}{2} \), one has
\[
\| \text{Op}_h^t(a) \|_{L^2(\mathbb{R}^n)} \leq C \sum_{|\alpha| \leq M_n} h^{\lfloor \alpha \rfloor/2} \sup_{\mathbb{R}^n} |\partial^\alpha a|.
\]
In particular, for such \(a \) one has
\[
\| \text{Op}_h^t(a) \|_{L^2(\mathbb{R}^n)} \leq C \sup_{\mathbb{R}^{2n}} |a(x, \xi)| + O(h^{1/2-\delta}).
\]