
LECTURE 16: GENERALIZED SOBOLEV SPACES

1. Generalized Sobolev spaces

For most of the previous five lectures, we are studying âW for a ∈ S(1), since
in this case âW is a bounded linear operator on L2(Rn). A natural question is: for
more general m, what can be said for âW with a ∈ S(m)? In particular for those m
which diverges to +∞ as z →∞, what can we say about âW with a ∈ S(m)?

¶ The Sobolev space.

Let’s start with an example. Consider

a(x, ξ) = |ξ|2.
Then we have

âW = −~2∆,
which is of course one of the most important operators in geometry and analysis.
We may take

m(x, ξ) = 〈ξ〉2.
Then it is easy to see a ∈ S(m). Since a 6∈ S(1), the operator ∆ is unbounded (and
thus is only densely defined) on L2(Rn). However, it is a standard fact form PDE
that ∆ admits a natural domain: the Sobolev space

H2(Rn) = {u ∈ L2(Rn) | ∆u ∈ L2(Rn)},
which is a Hilbert space with the Sobolev norm

‖u‖H2(Rn) =
∑
|α|≤2

‖Dαu‖L2(Rn).

Here is another way to think of the Sobolev space H2(Rn):

(I − ~2∆)H2(Rn) = L2(Rn)

By definition we have (I − ~2∆)H2(Rn) ⊂ L2(Rn). To prove the reverse inclusion,
for any f ∈ L2(Rn) we need to solve the PDE

−~2∆u+ u = f.

We have solved such equations via Fourier transform at the beginning of Lecture 14:

u(x) = F−1~ (
1

1 + |ξ|2
F~(f)).

It remains to check u ∈ L2(Rn) and ∆u ∈ L2(Rn), both of which are consequences
of the fact F~ is an isomorphism on L2(Rn).

1



2 LECTURE 16: GENERALIZED SOBOLEV SPACES

Note that I−~2∆ is invertible since its symbol 1+ |ξ|2 is elliptic in S(m), where
m(x, ξ) = 〈ξ〉2. So we may rewrite the above equation as

H2(Rn) = (I − ~2∆)−1L2(Rn).

Recall: although I−~2∆ is only densely defined, the inverse (I−~2∆)−1 is a globally
defined compact operator on L2(Rn).

The Sobolev norm can also be defined via the operator ∆. More precisely, one
can prove that the Sobolev norm alluded to above is equivalent to the Sobolev norm

‖u‖H2
~(Rn) := ‖(I − ~2∆)u‖L2(Rn).

In other words, the Sobolev space is not only a space defined for the Laplace operator
∆, but also a space defined via the operator ∆.

¶ The generalized Sobolev spaces.

Observe that the most important thing in the above discussion is that the symbol
1 + ‖ξ‖2 is elliptic in S(m), where m(x, ξ) = 〈ξ〉2 ≥ 1. Inspired by this observation,
we may define, for any order function m ≥ 1 and any elliptic symbol g ∈ S(m), the
following generalized Sobolev norm

‖u‖H~(m,g) := ‖ĝWu‖L2 .

We know that this is well-defined at least for all u ∈ S . Let’s first investigate the
dependence of this norm with the elliptic symbol g. It turns out that the norm is
“almost” independent of g and thus is essentially an intrinsic property of the order
function m:

Lemma 1.1. Suppose m ≥ 1 and g, g′ are two elliptic symbols in S(m). Then the
generalized Sobolev norms defined via g and g′ are equivalent: there exists ~0 > 0
and C > 0 such that for all ~ ∈ (0, ~0),

1

C
‖u‖H~(m,g) ≤ ‖u‖H~(m,g′) ≤ C‖u‖H~(m,g), ∀u ∈ S .

Proof. Since g is elliptic in S(m) and m ≥ 1, there exists ~0 > 0 and h ∈ S(1/m)

such that (ĝW )−1 = ĥW for all ~ ∈ (0, ~0). It follows that g′ ? h ∈ S(1) and thus
there exists C > 0 such that

‖ĝ′
W
◦ ĥW‖L(L2(Rn)) ≤ C

(uniform for all ~ ∈ (0, ~0)). It follows

‖u‖H~(m,g′) = ‖ĝ′
W
◦ ĥW ◦ ĝWu‖L2(Rn) ≤ C‖u‖H~(m,g).

The other half can be proved by exchanging g and g′ above. �

As a consequence, in the definition of the generalized Sobolev norm, we may
erase g and simply denote it by ‖ · ‖H~(m):
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Definition 1.2. We will define the generalized Sobolev norm associated to m to be

‖u‖H~(m) := ‖ĝWu‖L2 .

We will denote the completion of S under the norm ‖ · ‖H~(m) by H~(m), and call
it the generalized Sobolev space associated to m.

Note that in the proof of the inequality ‖u‖H~(m,g′) ≤ C‖u‖H~(m,g) above, we
only used the fact that g′ ? h is a bounded symbol. In particular, we conclude: if g
is elliptic in S(m), g′ is elliptic in S(m′), and if m′ ≤ m, then there exists C > 0
such that ‖u‖H~(m′) ≤ C‖u‖H~(m). In other words, we have:

Corollary 1.3. If m′ ≤ m, then H~(m) ⊂ H~(m
′).

¶ DETOUR: Choice of order function.

One may ask: is there any canonical way to choose an elliptic symbol g in S(m)?
For example, in the standard Sobolev space case, we used the elliptic symbol 1+|ξ|2,
which is in fact the same as m = 〈ξ〉2. Note that by definition, if m ∈ S(m), then
m is automatically elliptic in S(m). Recall that

• a continuous functionm on Rd is an order function ifm(z) ≤ C〈z−w〉Nm(w).
• S(m) contains those smooth functions all of whose derivatives are bounded

by the function m.

So in general it is not always true thatm ∈ S(m): m could be non-smooth, or smooth
but quite “oscillating” so that its derivatives are not nicely bounded. However, our
experience from analysis tells us that there is a big chance that these bad behaviors
could be eliminated by using convolution:

Lemma 1.4. For any order function m, there exists an order function m̃ such that

(1) S(m̃) = S(m).
(2) m̃ ∈ S(m̃)

Proof. Take a cut-off function η ∈ C∞0 (Rd) with η ≥ 0 and
∫
ηdz = 1. Let

m̃(z) = m ∗ η(z) =

∫
m(z − w)η(w)dw

be the convolution of m and η. According to the definition of an order function,

C−1〈w〉−N ≤ m(z − w)

m(z)
≤ C〈w〉N .

It follows
C−1m ≤ m̃ ≤ Cm,

which implies S(m) = S(m̃).

Moreover, for any multi-index α, by commutativity of convolution we have

|∂αm̃| = |m ∗ ∂αη| ≤ Cαm,

so m̃ ∈ S(m) = S(m̃). �
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In what follows we will always assume m ∈ S(m), so that in the definition of
H~(m), we can simply take g = m.

We remark that as a direct consequence of m ∈ S(m) and the formula for ∂α 1
a

that we used a couple times, we have m−1 ∈ S(m−1). More generally mt ∈ S(mt)
for any t ∈ R. (Reason: Let |α| ≥ 1. Without loss of generality, we may assume
α1 ≥ 1 and denote α̃ = (α1 − 1, α2, · · · , αd). Then

(1) ∂α log a = ∂α̃(a−1∂1a) =
∑

β+γ=α̃

(
α̃

β

)
∂β(a−1)∂γ(∂1a).

So if m ∈ S(m), then ∂α logm is bounded for any |α| ≥ 1. Since mt = et logm, we
immediately get mt ∈ S(mt).) As a consequence, we see 〈ξ〉t ∈ S(〈ξ〉t) for any t.

¶ The generalized Sobolev spaces: examples.

Example. If m = 1, then H~(m) = L2(Rn).

Example. More generally let m = m(x) be a smooth function that depends only on
x and suppose m ∈ S(m). Then m̂W is the “multiplication by m(x)” operator. So
H~(m) = L2(Rn,m2(x)dx). The Sobolev norm is

‖u‖H~(m) = ‖u‖L2(Rnx ,m2(x)dx).

Example. On the other hand, suppose m = m(ξ) depends only on ξ and m ∈ S(m).
Then we have m̂Wu = F−1~ [m(ξ)F~u(ξ)]. So

m̂Wu ∈ L2(Rn)⇐⇒ m(ξ)F~u ∈ L2(Rn).

Moreover, the Sobolev norm is given by

‖u‖2H~(m) = (2π~)−n‖F~u‖2L2(Rnξ ,m2(ξ)dξ).

Example. In particular if m(x, ξ) = 〈ξ〉s. Then

Hs
~ := H~(〈ξ〉s) =

{
u ∈ S ′ |

∫
Rn
〈ξ〉2s|F~u(ξ)|2dξ < +∞

}
and the Sobolev norm is explicitly given by

‖u‖2s =

∫
Rn
〈ξ〉2s|F~u(ξ)|2dξ.

Note that in the case s = k is an nonnegative integer, Hk is the usual Sobolev space
that we are familiar with:

(2) Hk = {u ∈ S ′ | ‖u‖2k :=
∑
|α|≤k

‖Dαu‖2L2 < +∞}.
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2. Semiclassical PsDO acting on the generalized Sobolev spaces

¶ Semiclassical PsDO acting on the generalized Sobolev spaces.

Just as in the previous example, ∆ can be defined on H2(Rn), we can prove

Proposition 2.1. Suppose m ≥ 1. For any a ∈ S(m), there exists h0 > 0 such
that for any ~ ∈ (0, ~0), the map âW : S → S can be extended to a bounded linear
operator âW : H~(m)→ L2(Rn).

Proof. The proof is almost the same as above: We take g = m. by definition,

u ∈ H~(m)⇐⇒ m̂Wu ∈ L2(Rn).

As before, âW ◦ (m̂W )−1 is semiclassical pseudodifferential operator with symbol in
S(1) and thus is a bounded linear operator on L2(Rn). It follows

‖âWu‖L2 = ‖âW ◦ (m̂W )−1 ◦ m̂Wu‖L2 ≤ C‖u‖H~(m).

�

As a consequence,

Corollary 2.2. Assume m ≥ 1, a ∈ S(m) is real-valued. If a+ i is elliptic in S(m),
then âW : H~(m) ⊂ L2 → L2 is self-adjoint.

Proof. Since a is real-valued, âW is symmetric. By ellipticity of a + i, the operator
âW ± i : H~(m)→ L2 has an inverse (which is a bounded linear operator on L2(Rn))
and thus is bijective. The conclusion follows. �

Another very important consequence is

Corollary 2.3. Suppose m ≤ 1 and suppose a ∈ S(m) is elliptic. Then

âW : L2(Rn)→ H~(1/m),

and there exists b ∈ S(1/m) so that b̂W : H~(1/m)→ L2(Rn) is the inverse of âW .

Proof. The conclusion Image(âW ) ⊂ H~(1/m) follows from the fact that (̂1/m)
W

◦âW
has bounded symbol and thus is a bounded linear operator on L2, so that

u ∈ L2(Rn) =⇒ (̂1/m)
W

◦ âWu ∈ L2(Rn) =⇒ âWu ∈ H~(1/m).

By Lecture 14, âW admits a left inverse and a right inverse, namely, there exists
b, c ∈ S(1/m) so that at least on S , we have

âW ◦ b̂W = Id, ĉW ◦ âW = Id.

Since each operator maps S to S , we get b̂W = ĉW on S . Since m ≤ 1, we have

1/m ≥ 1. So both b̂W and ĉW can be extended to continuous linear operators from

H~(1/m) to L2(Rn). Since S is dense in H~(1/m), we conclude b̂W = ĉW . So b̂W is
the inverse of âW . This also implies â is bijective onto H~(1/m). �
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¶ The generalized Sobolev spaces H~(m) for any m (with m ∈ S(m)).

For an order function m with m ∈ S(m), we define

Definition 2.4. The generalized Sobolev space associated with m is

(3) H~(m) := {u ∈ S ′ | m̂Wu ∈ L2(Rn)}
with the Sobolev norm

(4) ‖u‖H~(m) = ‖m̂Wu‖L2(Rn).

Note that this coincides with our earlier definition. Also note that for any m
and any a ∈ S(m), we have âW : S ′ → S ′. So all the following expressions make
sense as tempered distributions.

By definition, if m ≥ 1, one may think of H~(m) as a function space whose
elements have more regularity than those in H~(1) = L2, while if m ≤ 1, one may
think of H~(m) as a “function space” whose elements have less regularity than those
in H~(1) = L2. We have just seeing how an operator of the form âW with a ∈ S(m)
will increase or decrease the regularity according to whether m ≥ 1 or m ≤ 1. It
turns our that this is true for any two order functions:

Proposition 2.5. Suppose m and m′ are order functions on R2n. For any a ∈ S(m),
we have

âW ∈ L(H~(m
′), H~(m

′/m)),

with the operator norm bound uniform in ~.

Proof. Since m′ is elliptic in S(m′), we can find b ∈ S(1/m′) such that

b̂W ◦ m̂′
W

= Id on S .

Since (m′/m) ? a ? b ∈ S(1), we conclude that for any u ∈ S ,

‖âWu‖H~(m′/m) = ‖m̂′/m
W

◦ âW ◦ b̂W ◦ m̂′
W
u‖L2 ≤ C‖u‖H~(m′),

where the constant C = ‖m̂′/m
W

◦ âW ◦ b̂W‖L(L2) is uniform in ~. Since S is dense in
each H~(m) (prove this!), âW extends to a bounded linear operator from H~(m

′/m)
to H~(m

′ with operator norm bounded by the same constant C. �

As a consequence, we see

Corollary 2.6. If a ∈ S(m) is elliptic, then there exists b ∈ S(1/m) such that for
any m′,

b̂W = (âW )−1 ∈ L(H~(m
′/m), H~(m

′)).

Proof. We have see that there exist b, c ∈ S(1/m) such that

b̂W ◦ âW = Id = âW ◦ ĉW on S .

It follows b̂W = ĉW on S . But b̂W , ĉW ∈ L(H~(m
′/m), H~(m

′)), so they must
coincide on L(H~(m

′/m) since S is dense. �
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With the “well-defined inverse” on suitable space, many earlier computations
extends to all m. For example, Corollary 1.3 now holds for any m,m′. Also we can
say

H~(m) = (m̂W )−1L2(Rn),

generalizing the similar formula at the top of page 2 for the ordinary Sobolev space
H2(Rn).

We list several other results, and leave the proofs as an happy exercise:

• The L2 dual of H~(m) is H~(1/m).
• S = ∩mH~(m) and S ′ = ∪mH~(m).

¶ Compactness of âW for a ∈ S(m).

We have the following result which generalize our earlier results for L2(Rn):

Proposition 2.7. Suppose m and m′ are order functions on R2n. If

lim
z→∞

m(z) = 0,

then for any a ∈ S(m), the operator

âW : H~(m
′)→ H~(m

′)

is compact.

Proof. The condition implies m′/m ≥ Cm′ and thus

âW : H~(m
′)→ H~(m

′/m) ⊂ H~(m
′).

The conclusion is equivalent to the fact that the map

m̂′
W
◦ aW ◦ (m̂′

W
)−1 : L2(Rn)→ L2(Rn)

is compact, which is true because m′ ? a ? b ∈ S(m). �

Finally we remark that there exists Sobolev space version of Beals’s theorem and
Sharp Garding inequality, for “classical symbols”, a subset of S(〈ξ〉k) that consists
of symbols a = a(x, ξ) in S(〈ξ〉k) so that for all multi-indices α and β, there exists
a constant Cα,β such that

(5) |∂αx∂
β
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β|.

Such symbols has the nice property that they are invariant under coordinate change
and thus can be defined on manifolds.


