LECTURE 16: GENERALIZED SOBOLEV SPACES

1. GENERALIZED SOBOLEV SPACES

For most of the previous five lectures, we are studying a" for a € S(1), since
in this case @' is a bounded linear operator on L?*(R™). A natural question is: for
more general m, what can be said for @ with a € S(m)? In particular for those m
which diverges to 400 as z — 0o, what can we say about @ with a € S(m)?

€[ The Sobolev space.
Let’s start with an example. Consider

a(z, &) = ¢
Then we have

a" = —n’A,
which is of course one of the most important operators in geometry and analysis.
We may take

m(z,€) = (§)*.
Then it is easy to see a € S(m). Since a € S(1), the operator A is unbounded (and
thus is only densely defined) on L?*(R™). However, it is a standard fact form PDE
that A admits a natural domain: the Sobolev space

H*(R™) = {u € L*(R") | Au € L*(R™)},
which is a Hilbert space with the Sobolev norm
||U||H2(Rn) = Z ||D°‘u||L2(Rn).
la]<2
Here is another way to think of the Sobolev space H?(R"):
(I — R*AYH*(R") = L*(R")
By definition we have (I — h*A)H?*(R™) C L*(R™). To prove the reverse inclusion,
for any f € L*(R™) we need to solve the PDE

—R*Au+u=f.
We have solved such equations via Fourier transform at the beginning of Lecture 14:
1
1 .
ulx) = F,  (———=F; .

It remains to check u € L*(R™) and Au € L*(R™), both of which are consequences
of the fact Fj is an isomorphism on L?*(R").
1
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Note that I —h*A is invertible since its symbol 1+ |£|? is elliptic in S(m), where
m(x, &) = (£)2. So we may rewrite the above equation as

H*(R™) = (I — B*A)"'L*(R").

Recall: although I—h%A is only densely defined, the inverse (I —hA*A)~
defined compact operator on L?(R").

Lis a globally

The Sobolev norm can also be defined via the operator A. More precisely, one
can prove that the Sobolev norm alluded to above is equivalent to the Sobolev norm

HUHHg(Rn) = [|(I - h2A)uHL2(Rn)-

In other words, the Sobolev space is not only a space defined for the Laplace operator
A, but also a space defined via the operator A.

[ The generalized Sobolev spaces.

Observe that the most important thing in the above discussion is that the symbol
1+ [[€]|* is elliptic in S(m), where m(z, &) = (£)* > 1. Inspired by this observation,
we may define, for any order function m > 1 and any elliptic symbol g € S(m), the
following generalized Sobolev norm

el o omg) = 118" wll 2.

We know that this is well-defined at least for all u € .. Let’s first investigate the
dependence of this norm with the elliptic symbol g. It turns out that the norm is
“almost” independent of g and thus is essentially an intrinsic property of the order
function m:

Lemma 1.1. Suppose m > 1 and g,¢g" are two elliptic symbols in S(m). Then the
generalized Sobolev norms defined via g and ¢ are equivalent: there exists hy > 0
and C' > 0 such that for all h € (0, hy),

1
cltllmg < llulmemg) < Clullaymg,  Vue€ 7.

Proof. Since g is elliptic in S(m) and m > 1, there exists hy > 0 and h € S(1/m)
such that (g")=! = A" for all h € (0, k). It follows that ¢’ x h € S(1) and thus
there exists C' > 0 such that

~W o~
lg" o bVl 2@y < C

(uniform for all A € (0, hy)). It follows

~W ~ PR
[ulltnmgy = 19 " 0 GV ullp2n) < Cllull,m.g)-
The other half can be proved by exchanging ¢ and ¢’ above. O

As a consequence, in the definition of the generalized Sobolev norm, we may
erase g and simply denote it by || - || &, (m):
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Definition 1.2. We will define the generalized Sobolev norm associated to m to be

lell oy = 113" e 2
We will denote the completion of . under the norm || - ||, (m) by Hp(m), and call
it the generalized Sobolev space associated to m.

Note that in the proof of the inequality ||u|m,m.g) < C|lu|lm,m,g) above, we
only used the fact that ¢’ x h is a bounded symbol. In particular, we conclude: if g
is elliptic in S(m), ¢’ is elliptic in S(m'), and if m’ < m, then there exists C' > 0
such that ||u||m,m) < Cllul|m,m)- In other words, we have:

Corollary 1.3. If m' < m, then Hy(m) C Hy(m').
q DETOUR: Choice of order function.

One may ask: is there any canonical way to choose an elliptic symbol g in S(m)?

For example, in the standard Sobolev space case, we used the elliptic symbol 1+ |£]?,

which is in fact the same as m = (£)2. Note that by definition, if m € S(m), then
m is automatically elliptic in S(m). Recall that

e a continuous function m on R? is an order function if m(z) < C{z—w)¥m(w).

e S(m) contains those smooth functions all of whose derivatives are bounded

by the function m.

So in general it is not always true that m € S(m): m could be non-smooth, or smooth
but quite “oscillating” so that its derivatives are not nicely bounded. However, our
experience from analysis tells us that there is a big chance that these bad behaviors
could be eliminated by using convolution:

Lemma 1.4. For any order function m, there exists an order function m such that

(1) S() = S(m).
(2) i € ()

Proof. Take a cut-off function n € C§°(R?) with n > 0 and [ ndz = 1. Let

m(z) =mx*n(z / m(z — (w)dw
be the convolution of m and 7. According to the definition of an order function,

m(z —w

C—1<w>—N S ) SC<U)>N

m(z)
It follows
C'm<m<Cm,
which implies S(m) = S(m).
Moreover, for any multi-index «, by commutativity of convolution we have
|0°m| = |m * 0°n| < Cym,
som € S(m) = S(m). O
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In what follows we will always assume m € S(m), so that in the definition of
Hjy(m), we can simply take g = m.

We remark that as a direct consequence of m € S(m) and the formula for 92
that we used a couple times, we have m™ € S(m™'). More generally m' € S(m')
for any ¢t € R. (Reason: Let |a| > 1. Without loss of generality, we may assume
a; > 1 and denote & = (a1 — 1, a, -+, g). Then

, G AN A3, 1o
(1) 0%loga = 0%(a"01a) = Z (i) 9% (a0 (0ra).
BH+vy=a&
So if m € S(m), then 9*logm is bounded for any || > 1. Since m! = etls™,
immediately get m' € S(m').) As a consequence, we see (£)* € S((¢)") for any t.

we

€[ The generalized Sobolev spaces: examples.
Ezample. If m = 1, then Hy(m) = L*(R").

Ezample. More generally let m = m(z) be a smooth function that depends only on
x and suppose m € S(m). Then m" is the “multiplication by m(z)” operator. So
Hp(m) = L*(R™, m*(z)dz). The Sobolev norm is

[lull 2, m) = HUHLQ(Rg,m?(x)dx)-

Ezample. On the other hand, suppose m = m(§) depends only on £ and m € S(m).
Then we have m"u = F, ' [m(€) Fru(€)]. So

mVu € L*(R™) <= m(&)Fpu € L*(R™).
Moreover, the Sobolev norm is given by
HUHJ%{;(m) = (2771)7”‘|fhu||%2(Rg,m2(g)dg)-

Ezample. In particular if m(z,§) = (£)*. Then

Hy = (&) = {ue 7| [ (0¥ Fu@Ps < oo}

and the Sobolev norm is explicitly given by

Juli? = [ (€ 1Tl P

Note that in the case s = k is an nonnegative integer, H* is the usual Sobolev space
that we are familiar with:

(2) H*={ue " | Julf =) D3 < +oo}.

o] <k
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2. SEMICLASSICAL PsSDO ACTING ON THE GENERALIZED SOBOLEV SPACES

€[ Semiclassical PsDO acting on the generalized Sobolev spaces.
Just as in the previous example, A can be defined on H?(R"), we can prove

Proposition 2.1. Suppose m > 1. For any a € S(m), there exists hg > 0 such
that for any h € (0, k), the map a" :  — . can be extended to a bounded linear
operator @V : Hy(m) — L?(R").

Proof. The proof is almost the same as above: We take g = m. by definition,
u € Hy(m) <= m"u € L*(R").

As before, @ o (m")~! is semiclassical pseudodifferential operator with symbol in
S(1) and thus is a bounded linear operator on L*(R™). It follows

@ ullzz = [la" o (™)™ oM ullz, < Cllulla,m).

As a consequence,

Corollary 2.2. Assumem > 1, a € S(m) is real-valued. If a+1 is elliptic in S(m),
then @V : Hp(m) C L* — L? is self-adjoint.

Proof. Since a is real-valued, @" is symmetric. By ellipticity of a + i, the operator
a"V i : Hy(m) — L? has an inverse (which is a bounded linear operator on L?*(R™))
and thus is bijective. The conclusion follows. 0

Another very important consequence is
Corollary 2.3. Suppose m < 1 and suppose a € S(m) is elliptic. Then
a2V L2 (R™) — Hy(1/m),
and there exists b € S(1/m) so that b : Hy(1/m) — L2*(R") is the inverse of a" .

Proof. The conclusion Image(a") C Hy(1/m) follows from the fact that (1/ m)Wan
has bounded symbol and thus is a bounded linear operator on L?, so that
—W
u € L*(R") = (1/m) oa"u e L*(R") = a"u € Hy(1/m).
By Lecture 14, @V admits a left inverse and a right inverse, namely, there exists
b,c € S(1/m) so that at least on ., we have

VoW = Id, &¥oad" =1Id.

Since each operator maps .¥ to ., we get W =" on . Since m < 1, we have

1/m > 1. So both W and @V can be extended to continuous linear operators from
Hy(1/m) to L*(R™). Since . is dense in Hy(1/m), we conclude b =", So b is
the inverse of @". This also implies @ is bijective onto Hy(1/m). O
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9 The generalized Sobolev spaces Hj(m) for any m (with m € S(m)).

For an order function m with m € S(m), we define
Definition 2.4. The generalized Sobolev space associated with m is
(3) Hy(m) :={ue . | m"Vue L*(R")}
with the Sobolev norm
(4) lull 1 my = 172" vl L2y

Note that this coincides with our earlier definition. Also note that for any m
and any a € S(m), we have @ : " — . So all the following expressions make
sense as tempered distributions.

By definition, if m > 1, one may think of Hj(m) as a function space whose
elements have more regularity than those in Hy(1) = L?, while if m < 1, one may
think of Hy(m) as a “function space” whose elements have less regularity than those
in Hy(1) = L?. We have just seeing how an operator of the form a" with a € S(m)
will increase or decrease the regularity according to whether m > 1 orm < 1. It
turns our that this is true for any two order functions:

Proposition 2.5. Suppose m and m’ are order functions on R*". For anya € S(m),
we have

aV e L(Hy(m'), Hy(m'/m)),

with the operator norm bound uniform in h.
Proof. Since m/' is elliptic in S(m'), we can find b € S(1/m’) such that

Wom' =1d on .
Since (m//m)*axb € S(1), we conclude that for any u € .7,

—

w w
0@ o om’ ull 1z < Cllull ),

—_—
18" ull gy gt jmy = Il /1

—W ~

where the constant C' = ||m//m  0@" ob" || z(z2) is uniform in k. Since . is dense in
each Hy,(m) (prove this!), @ extends to a bounded linear operator from Hy(m’/m)
to Hp(m' with operator norm bounded by the same constant C'. 0J

As a consequence, we see

Corollary 2.6. If a € S(m) is elliptic, then there exists b € S(1/m) such that for
any m/,
W = (@V)' e L(Hy(m'/m), Hy(m')).
Proof. We have see that there exist b, ¢ € S(1/m) such that
MWodV =1d=a" o on ..

It follows b = & on .. But bW, &V € L(Hp(m'/m), Hy(m')), so they must
coincide on L(Hp(m'/m) since . is dense. O
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With the “well-defined inverse” on suitable space, many earlier computations
extends to all m. For example, Corollary 1.3 now holds for any m,m’. Also we can
say

Hy(m) = (m" ) L*(R"),
generalizing the similar formula at the top of page 2 for the ordinary Sobolev space
H?(R").
We list several other results, and leave the proofs as an happy exercise:

e The L? dual of Hy(m) is Hp(1/m).
o . =N, Hy(m) and " = U, Hy(m).

9 Compactness of a" for a € S(m).
We have the following result which generalize our earlier results for L?(R™):
Proposition 2.7. Suppose m and m' are order functions on R®". If

Zlggo m(z) =0,

then for any a € S(m), the operator
a"V . Hy(m') — Hy(m')
18 compact.
Proof. The condition implies m’/m > C'm’ and thus
a"V . Hy(m') = Hy(m//m) C Hy(m/).
The conclusion is equivalent to the fact that the map
" od” o (n/fpw)_l . L2(R™) — L*(R™)

is compact, which is true because m’ x a x b € S(m). O

Finally we remark that there exists Sobolev space version of Beals’s theorem and
Sharp Garding inequality, for “classical symbols”, a subset of S((£)*) that consists

of symbols a = a(x, ) in S({£)*¥) so that for all multi-indices o and (3, there exists
a constant C, g such that

(5) 050 a(z, €)] < Capl€)™ .

Such symbols has the nice property that they are invariant under coordinate change
and thus can be defined on manifolds.



