## LECTURE 16: GENERALIZED SOBOLEV SPACES

#### 1. Generalized Sobolev spaces

For most of the previous five lectures, we are studying  $\widehat{a}^W$  for  $a \in S(1)$ , since in this case  $\widehat{a}^W$  is a bounded linear operator on  $L^2(\mathbb{R}^n)$ . A natural question is: for more general m, what can be said for  $\widehat{a}^W$  with  $a \in S(m)$ ? In particular for those m which diverges to  $+\infty$  as  $z \to \infty$ , what can we say about  $\widehat{a}^W$  with  $a \in S(m)$ ?

# ¶ The Sobolev space.

Let's start with an example. Consider

$$a(x,\xi) = |\xi|^2.$$

Then we have

$$\widehat{a}^W = -\hbar^2 \Delta,$$

which is of course one of the most important operators in geometry and analysis. We may take

$$m(x,\xi) = \langle \xi \rangle^2.$$

Then it is easy to see  $a \in S(m)$ . Since  $a \notin S(1)$ , the operator  $\Delta$  is unbounded (and thus is only densely defined) on  $L^2(\mathbb{R}^n)$ . However, it is a standard fact form PDE that  $\Delta$  admits a natural domain: the Sobolev space

$$H^2(\mathbb{R}^n) = \{ u \in L^2(\mathbb{R}^n) \mid \Delta u \in L^2(\mathbb{R}^n) \},$$

which is a Hilbert space with the Sobolev norm

$$||u||_{H^2(\mathbb{R}^n)} = \sum_{|\alpha| \le 2} ||D^{\alpha}u||_{L^2(\mathbb{R}^n)}.$$

Here is another way to think of the Sobolev space  $H^2(\mathbb{R}^n)$ :

$$(I - \hbar^2 \Delta) H^2(\mathbb{R}^n) = L^2(\mathbb{R}^n)$$

By definition we have  $(I - \hbar^2 \Delta) H^2(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$ . To prove the reverse inclusion, for any  $f \in L^2(\mathbb{R}^n)$  we need to solve the PDE

$$-\hbar^2 \Delta u + u = f.$$

We have solved such equations via Fourier transform at the beginning of Lecture 14:

$$u(x) = \mathcal{F}_{\hbar}^{-1}(\frac{1}{1+|\xi|^2}\mathcal{F}_{\hbar}(f)).$$

It remains to check  $u \in L^2(\mathbb{R}^n)$  and  $\Delta u \in L^2(\mathbb{R}^n)$ , both of which are consequences of the fact  $\mathcal{F}_{\hbar}$  is an isomorphism on  $L^2(\mathbb{R}^n)$ .

Note that  $I - \hbar^2 \Delta$  is invertible since its symbol  $1 + |\xi|^2$  is elliptic in S(m), where  $m(x, \xi) = \langle \xi \rangle^2$ . So we may rewrite the above equation as

$$H^2(\mathbb{R}^n) = (I - \hbar^2 \Delta)^{-1} L^2(\mathbb{R}^n).$$

Recall: although  $I - \hbar^2 \Delta$  is only densely defined, the inverse  $(I - \hbar^2 \Delta)^{-1}$  is a globally defined compact operator on  $L^2(\mathbb{R}^n)$ .

The Sobolev norm can also be defined via the operator  $\Delta$ . More precisely, one can prove that the Sobolev norm alluded to above is equivalent to the Sobolev norm

$$||u||_{H^2_{\hbar}(\mathbb{R}^n)} := ||(I - \hbar^2 \Delta)u||_{L^2(\mathbb{R}^n)}.$$

In other words, the Sobolev space is not only a space defined  $\underline{for}$  the Laplace operator  $\Delta$ , but also a space defined  $\underline{via}$  the operator  $\Delta$ .

# ¶ The generalized Sobolev spaces.

Observe that the most important thing in the above discussion is that the symbol  $1 + \|\xi\|^2$  is elliptic in S(m), where  $m(x,\xi) = \langle \xi \rangle^2 \geq 1$ . Inspired by this observation, we may define, for any order function  $m \geq 1$  and any elliptic symbol  $g \in S(m)$ , the following generalized Sobolev norm

$$||u||_{H_{\hbar}(m,g)} := ||\widehat{g}^W u||_{L^2}.$$

We know that this is well-defined at least for all  $u \in \mathcal{S}$ . Let's first investigate the dependence of this norm with the elliptic symbol g. It turns out that the norm is "almost" independent of g and thus is essentially an intrinsic property of the order function m:

**Lemma 1.1.** Suppose  $m \ge 1$  and g, g' are two elliptic symbols in S(m). Then the generalized Sobolev norms defined via g and g' are equivalent: there exists  $\hbar_0 > 0$  and C > 0 such that for all  $\hbar \in (0, \hbar_0)$ ,

$$\frac{1}{C} \|u\|_{H_{\hbar}(m,g)} \leq \|u\|_{H_{\hbar}(m,g')} \leq C \|u\|_{H_{\hbar}(m,g)}, \quad \forall u \in \mathscr{S}.$$

*Proof.* Since g is elliptic in S(m) and  $m \ge 1$ , there exists  $\hbar_0 > 0$  and  $h \in S(1/m)$  such that  $(\widehat{g}^W)^{-1} = \widehat{h}^W$  for all  $\hbar \in (0, \hbar_0)$ . It follows that  $g' \star h \in S(1)$  and thus there exists C > 0 such that

$$\|\widehat{g'}^W \circ \widehat{h}^W\|_{\mathcal{L}(L^2(\mathbb{R}^n))} \le C$$

(uniform for all  $\hbar \in (0, \hbar_0)$ ). It follows

$$||u||_{H_{\hbar}(m,g')} = ||\widehat{g'}^W \circ \widehat{h}^W \circ \widehat{g}^W u||_{L^2(\mathbb{R}^n)} \le C||u||_{H_{\hbar}(m,g)}.$$

The other half can be proved by exchanging q and q' above.

As a consequence, in the definition of the generalized Sobolev norm, we may erase g and simply denote it by  $\|\cdot\|_{H_{\hbar}(m)}$ :

**Definition 1.2.** We will define the generalized Sobolev norm associated to m to be

$$||u||_{H_{\hbar}(m)} := ||\widehat{g}^W u||_{L^2}.$$

We will denote the completion of  $\mathscr{S}$  under the norm  $\|\cdot\|_{H_{\hbar}(m)}$  by  $H_{\hbar}(m)$ , and call it the *generalized Sobolev space* associated to m.

Note that in the proof of the inequality  $||u||_{H_{\hbar}(m,g')} \leq C||u||_{H_{\hbar}(m,g)}$  above, we only used the fact that  $g' \star h$  is a bounded symbol. In particular, we conclude: if g is elliptic in S(m), g' is elliptic in S(m'), and if  $m' \leq m$ , then there exists C > 0 such that  $||u||_{H_{\hbar}(m')} \leq C||u||_{H_{\hbar}(m)}$ . In other words, we have:

Corollary 1.3. If  $m' \leq m$ , then  $H_{\hbar}(m) \subset H_{\hbar}(m')$ .

## ¶ DETOUR: Choice of order function.

One may ask: is there any canonical way to choose an elliptic symbol g in S(m)? For example, in the standard Sobolev space case, we used the elliptic symbol  $1+|\xi|^2$ , which is in fact the same as  $m=\langle \xi \rangle^2$ . Note that by definition, if  $m \in S(m)$ , then m is automatically elliptic in S(m). Recall that

- a continuous function m on  $\mathbb{R}^d$  is an order function if  $m(z) \leq C \langle z-w \rangle^N m(w)$ .
- S(m) contains those smooth functions all of whose derivatives are bounded by the function m.

So in general it is not always true that  $m \in S(m)$ : m could be non-smooth, or smooth but quite "oscillating" so that its derivatives are not nicely bounded. However, our experience from analysis tells us that there is a big chance that these bad behaviors could be eliminated by using convolution:

**Lemma 1.4.** For any order function m, there exists an order function  $\widetilde{m}$  such that

- $(1) S(\widetilde{m}) = S(m).$
- (2)  $\widetilde{m} \in S(\widetilde{m})$

*Proof.* Take a cut-off function  $\eta \in C_0^{\infty}(\mathbb{R}^d)$  with  $\eta \geq 0$  and  $\int \eta dz = 1$ . Let

$$\widetilde{m}(z) = m * \eta(z) = \int m(z - w)\eta(w)dw$$

be the convolution of m and  $\eta$ . According to the definition of an order function,

$$C^{-1}\langle w \rangle^{-N} \le \frac{m(z-w)}{m(z)} \le C\langle w \rangle^{N}.$$

It follows

$$C^{-1}m \le \widetilde{m} \le Cm,$$

which implies  $S(m) = S(\widetilde{m})$ .

Moreover, for any multi-index  $\alpha$ , by commutativity of convolution we have

$$|\partial^{\alpha}\widetilde{m}| = |m * \partial^{\alpha}\eta| \le C_{\alpha}m,$$

so 
$$\widetilde{m} \in S(m) = S(\widetilde{m})$$
.

In what follows we will always assume  $m \in S(m)$ , so that in the definition of  $H_{\hbar}(m)$ , we can simply take g = m.

We remark that as a direct consequence of  $m \in S(m)$  and the formula for  $\partial^{\alpha} \frac{1}{a}$  that we used a couple times, we have  $m^{-1} \in S(m^{-1})$ . More generally  $m^t \in S(m^t)$  for any  $t \in \mathbb{R}$ . (Reason: Let  $|\alpha| \geq 1$ . Without loss of generality, we may assume  $\alpha_1 \geq 1$  and denote  $\tilde{\alpha} = (\alpha_1 - 1, \alpha_2, \dots, \alpha_d)$ . Then

(1) 
$$\partial^{\alpha} \log a = \partial^{\tilde{\alpha}}(a^{-1}\partial_{1}a) = \sum_{\beta+\gamma=\tilde{\alpha}} {\tilde{\alpha} \choose \beta} \partial^{\beta}(a^{-1}) \partial^{\gamma}(\partial_{1}a).$$

So if  $m \in S(m)$ , then  $\partial^{\alpha} \log m$  is bounded for any  $|\alpha| \geq 1$ . Since  $m^t = e^{t \log m}$ , we immediately get  $m^t \in S(m^t)$ .) As a consequence, we see  $\langle \xi \rangle^t \in S(\langle \xi \rangle^t)$  for any t.

# ¶ The generalized Sobolev spaces: examples.

Example. If m=1, then  $H_{\hbar}(m)=L^{2}(\mathbb{R}^{n})$ .

Example. More generally let m = m(x) be a smooth function that depends only on x and suppose  $m \in S(m)$ . Then  $\widehat{m}^W$  is the "multiplication by m(x)" operator. So  $H_{\hbar}(m) = L^2(\mathbb{R}^n, m^2(x)dx)$ . The Sobolev norm is

$$||u||_{H_{\hbar}(m)} = ||u||_{L^{2}(\mathbb{R}^{n}_{x}, m^{2}(x)dx)}.$$

Example. On the other hand, suppose  $m = m(\xi)$  depends only on  $\xi$  and  $m \in S(m)$ . Then we have  $\widehat{m}^W u = \mathcal{F}_{\hbar}^{-1}[m(\xi)\mathcal{F}_{\hbar}u(\xi)]$ . So

$$\widehat{m}^W u \in L^2(\mathbb{R}^n) \iff m(\xi)\mathcal{F}_{\hbar}u \in L^2(\mathbb{R}^n).$$

Moreover, the Sobolev norm is given by

$$||u||_{H_{\hbar}(m)}^2 = (2\pi\hbar)^{-n} ||\mathcal{F}_{\hbar}u||_{L^2(\mathbb{R}^n_{\xi}, m^2(\xi)d\xi)}^2.$$

Example. In particular if  $m(x,\xi) = \langle \xi \rangle^s$ . Then

$$H_{\hbar}^{s} := H_{\hbar}(\langle \xi \rangle^{s}) = \left\{ u \in \mathscr{S}' \mid \int_{\mathbb{R}^{n}} \langle \xi \rangle^{2s} |\mathcal{F}_{\hbar} u(\xi)|^{2} d\xi < +\infty \right\}$$

and the Sobolev norm is explicitly given by

$$||u||_s^2 = \int_{\mathbb{R}^n} \langle \xi \rangle^{2s} |\mathcal{F}_{\hbar} u(\xi)|^2 d\xi.$$

Note that in the case s = k is an nonnegative integer,  $H^k$  is the usual Sobolev space that we are familiar with:

(2) 
$$H^{k} = \{ u \in \mathscr{S}' \mid ||u||_{k}^{2} := \sum_{|\alpha| \le k} ||D^{\alpha}u||_{L^{2}}^{2} < +\infty \}.$$

### 2. Semiclassical PsDO acting on the generalized Sobolev spaces

# ¶ Semiclassical PsDO acting on the generalized Sobolev spaces.

Just as in the previous example,  $\Delta$  can be defined on  $H^2(\mathbb{R}^n)$ , we can prove

**Proposition 2.1.** Suppose  $m \geq 1$ . For any  $a \in S(m)$ , there exists  $h_0 > 0$  such that for any  $\hbar \in (0, \hbar_0)$ , the map  $\widehat{a}^W : \mathscr{S} \to \mathscr{S}$  can be extended to a bounded linear operator  $\widehat{a}^W : H_{\hbar}(m) \to L^2(\mathbb{R}^n)$ .

*Proof.* The proof is almost the same as above: We take g = m. by definition,

$$u \in H_{\hbar}(m) \iff \widehat{m}^W u \in L^2(\mathbb{R}^n).$$

As before,  $\widehat{a}^W \circ (\widehat{m}^W)^{-1}$  is semiclassical pseudodifferential operator with symbol in S(1) and thus is a bounded linear operator on  $L^2(\mathbb{R}^n)$ . It follows

$$\|\widehat{a}^{W}u\|_{L^{2}} = \|\widehat{a}^{W} \circ (\widehat{m}^{W})^{-1} \circ \widehat{m}^{W}u\|_{L_{2}} \le C\|u\|_{H_{\hbar}(m)}.$$

As a consequence,

Corollary 2.2. Assume  $m \ge 1$ ,  $a \in S(m)$  is real-valued. If a+i is elliptic in S(m), then  $\widehat{a}^W : H_{\hbar}(m) \subset L^2 \to L^2$  is self-adjoint.

*Proof.* Since a is real-valued,  $\widehat{a}^W$  is symmetric. By ellipticity of a+i, the operator  $\widehat{a}^W \pm i : H_{\hbar}(m) \to L^2$  has an inverse (which is a bounded linear operator on  $L^2(\mathbb{R}^n)$ ) and thus is bijective. The conclusion follows.

Another very important consequence is

Corollary 2.3. Suppose  $m \leq 1$  and suppose  $a \in S(m)$  is elliptic. Then

$$\widehat{a}^W: L^2(\mathbb{R}^n) \to H_{\hbar}(1/m),$$

and there exists  $b \in S(1/m)$  so that  $\widehat{b}^W : H_{\hbar}(1/m) \to L^2(\mathbb{R}^n)$  is the inverse of  $\widehat{a}^W$ .

*Proof.* The conclusion Image( $\widehat{a}^W$ )  $\subset H_{\hbar}(1/m)$  follows from the fact that  $\widehat{(1/m)}^W \circ \widehat{a}^W$  has bounded symbol and thus is a bounded linear operator on  $L^2$ , so that

$$u\in L^2(\mathbb{R}^n) \Longrightarrow \widehat{(1/m)}^W \circ \widehat{a}^W u \in L^2(\mathbb{R}^n) \Longrightarrow \widehat{a}^W u \in H_{\hbar}(1/m).$$

By Lecture 14,  $\widehat{a}^W$  admits a left inverse and a right inverse, namely, there exists  $b, c \in S(1/m)$  so that at least on  $\mathscr{S}$ , we have

$$\widehat{a}^W \circ \widehat{b}^W = \mathrm{Id}, \quad \widehat{c}^W \circ \widehat{a}^W = \mathrm{Id}.$$

Since each operator maps  $\mathscr{S}$  to  $\mathscr{S}$ , we get  $\widehat{b}^W = \widehat{c}^W$  on  $\mathscr{S}$ . Since  $m \leq 1$ , we have  $1/m \geq 1$ . So both  $\widehat{b}^W$  and  $\widehat{c}^W$  can be extended to continuous linear operators from  $H_{\hbar}(1/m)$  to  $L^2(\mathbb{R}^n)$ . Since  $\mathscr{S}$  is dense in  $H_{\hbar}(1/m)$ , we conclude  $\widehat{b}^W = \widehat{c}^W$ . So  $\widehat{b}^W$  is the inverse of  $\widehat{a}^W$ . This also implies  $\widehat{a}$  is bijective onto  $H_{\hbar}(1/m)$ .

¶ The generalized Sobolev spaces  $H_{\hbar}(m)$  for any m (with  $m \in S(m)$ ).

For an order function m with  $m \in S(m)$ , we define

**Definition 2.4.** The generalized Sobolev space associated with m is

(3) 
$$H_{\hbar}(m) := \{ u \in \mathscr{S}' \mid \widehat{m}^W u \in L^2(\mathbb{R}^n) \}$$

with the Sobolev norm

(4) 
$$||u||_{H_h(m)} = ||\widehat{m}^W u||_{L^2(\mathbb{R}^n)}.$$

Note that this coincides with our earlier definition. Also note that for any m and any  $a \in S(m)$ , we have  $\widehat{a}^W : \mathscr{S}' \to \mathscr{S}'$ . So all the following expressions make sense as tempered distributions.

By definition, if  $m \geq 1$ , one may think of  $H_{\hbar}(m)$  as a function space whose elements have more regularity than those in  $H_{\hbar}(1) = L^2$ , while if  $m \leq 1$ , one may think of  $H_{\hbar}(m)$  as a "function space" whose elements have less regularity than those in  $H_{\hbar}(1) = L^2$ . We have just seeing how an operator of the form  $\hat{a}^W$  with  $a \in S(m)$  will increase or decrease the regularity according to whether  $m \geq 1$  or  $m \leq 1$ . It turns our that this is true for any two order functions:

**Proposition 2.5.** Suppose m and m' are order functions on  $\mathbb{R}^{2n}$ . For any  $a \in S(m)$ , we have

$$\widehat{a}^W \in \mathcal{L}(H_{\hbar}(m'), H_{\hbar}(m'/m)),$$

with the operator norm bound uniform in  $\hbar$ .

*Proof.* Since m' is elliptic in S(m'), we can find  $b \in S(1/m')$  such that

$$\widehat{b}^W \circ \widehat{m'}^W = \text{Id} \quad \text{on} \quad \mathscr{S}.$$

Since  $(m'/m) \star a \star b \in S(1)$ , we conclude that for any  $u \in \mathcal{S}$ ,

$$\|\widehat{a}^W u\|_{H_{\hbar}(m'/m)} = \|\widehat{m'/m}^W \circ \widehat{a}^W \circ \widehat{b}^W \circ \widehat{m'}^W u\|_{L^2} \le C\|u\|_{H_{\hbar}(m')},$$

where the constant  $C = \|\widehat{m'/m}^W \circ \widehat{a}^W \circ \widehat{b}^W\|_{\mathcal{L}(L^2)}$  is uniform in  $\hbar$ . Since  $\mathscr{S}$  is dense in each  $H_{\hbar}(m)$  (prove this!),  $\widehat{a}^W$  extends to a bounded linear operator from  $H_{\hbar}(m'/m)$  to  $H_{\hbar}(m'$  with operator norm bounded by the same constant C.

As a consequence, we see

Corollary 2.6. If  $a \in S(m)$  is elliptic, then there exists  $b \in S(1/m)$  such that for any m',

$$\widehat{b}^W = (\widehat{a}^W)^{-1} \in \mathcal{L}(H_{\hbar}(m'/m), H_{\hbar}(m')).$$

*Proof.* We have see that there exist  $b, c \in S(1/m)$  such that

$$\widehat{b}^W \circ \widehat{a}^W = \operatorname{Id} = \widehat{a}^W \circ \widehat{c}^W$$
 on  $\mathscr{S}$ .

It follows  $\hat{b}^W = \hat{c}^W$  on  $\mathscr{S}$ . But  $\hat{b}^W, \hat{c}^W \in \mathcal{L}(H_{\hbar}(m'/m), H_{\hbar}(m'))$ , so they must coincide on  $\mathcal{L}(H_{\hbar}(m'/m) \text{ since } \mathscr{S} \text{ is dense.}$ 

With the "well-defined inverse" on suitable space, many earlier computations extends to all m. For example, Corollary 1.3 now holds for any m, m'. Also we can say

$$H_{\hbar}(m) = (\widehat{m}^W)^{-1} L^2(\mathbb{R}^n),$$

generalizing the similar formula at the top of page 2 for the ordinary Sobolev space  $H^2(\mathbb{R}^n)$ .

We list several other results, and leave the proofs as an happy exercise:

- The  $L^2$  dual of  $H_{\hbar}(m)$  is  $H_{\hbar}(1/m)$ .
- $\mathscr{S} = \cap_m H_{\hbar}(m)$  and  $\mathscr{S}' = \cup_m H_{\hbar}(m)$ .

# $\P$ Compactness of $\widehat{a}^W$ for $a \in S(m)$ .

We have the following result which generalize our earlier results for  $L^2(\mathbb{R}^n)$ :

**Proposition 2.7.** Suppose m and m' are order functions on  $\mathbb{R}^{2n}$ . If

$$\lim_{z \to \infty} m(z) = 0,$$

then for any  $a \in S(m)$ , the operator

$$\widehat{a}^W: H_{\hbar}(m') \to H_{\hbar}(m')$$

is compact.

*Proof.* The condition implies  $m'/m \geq Cm'$  and thus

$$\widehat{a}^W: H_{\hbar}(m') \to H_{\hbar}(m'/m) \subset H_{\hbar}(m').$$

The conclusion is equivalent to the fact that the map

$$\widehat{m'}^W \circ a^W \circ (\widehat{m'}^W)^{-1} : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$$

is compact, which is true because  $m' \star a \star b \in S(m)$ .

Finally we remark that there exists Sobolev space version of Beals's theorem and Sharp Garding inequality, for "classical symbols", a subset of  $S(\langle \xi \rangle^k)$  that consists of symbols  $a = a(x, \xi)$  in  $S(\langle \xi \rangle^k)$  so that for all multi-indices  $\alpha$  and  $\beta$ , there exists a constant  $C_{\alpha,\beta}$  such that

(5) 
$$|\partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi)| \le C_{\alpha,\beta} \langle \xi \rangle^{m-|\beta|}.$$

Such symbols has the nice property that they are invariant under coordinate change and thus can be defined on manifolds.