LECTURE 19: DIFFERENTIAL OPERATORS ON MANIFOLDS

1. Differential operators on manifolds

We are aiming at extending the definition of semiclassical pseudodifferential operators from \mathbb{R}^n to manifolds. Let's start by the simplest class of pseudodifferential operators: the differential operators. For simplicity we consider $\hbar = 1$ only. One can easily extend to the semiclassical setting.

¶ Differential operators under coordinate change.

Let's assume U, V are open sets in \mathbb{R}^n and let

$$f: U \subset \mathbb{R}^n_x \to V \subset \mathbb{R}^n_y$$

be a diffeomorphism. We can easily "transplant" a differential operator defined for x-functions to a differential operator defined for y-functions via f: If

(1)
$$P = \sum_{|\alpha| \le m} a_{\alpha}(x) D_x^{\alpha}$$

is a differential operator acting on $C^{\infty}(\mathbb{R}^n_x)$, then when restricted to U, P is also a differential operator $P|_U$ acting on $C^{\infty}(U)$, and $P|_U$ induces a differential operator \widetilde{P} acting on $C^{\infty}(V)$ as follows: for any $u \in C^{\infty}(V)$, we just define

$$\widetilde{P}u := (f^{-1})^* P|_U f^* u.$$

Let's calculate \widetilde{P} in coordinates: for any $u = u(y) \in C^{\infty}(V)$ we have

$$(f^*u)(x) = u(f(x))$$

and thus

$$[P|_U f^* u](x) = \sum_{|\alpha| \le m} a_{\alpha}(x) D_x^{\alpha} [u(f(x))].$$

Since

$$\partial_{x^i}[u(f(x))] = \frac{\partial y^j}{\partial x^i}(\partial_{y^j}u)(f(x)),$$

by induction it is easy to get

$$\partial_x^{\alpha}[u(f(x))] = \left[\left(\frac{\partial y}{\partial x}\right)^T \partial_y\right]^{\alpha} u(f(x)) + \text{l.o.t.},$$

where l.o.t. denotes terms that encounter less ∂_u -derivatives on u. It follows

(2)
$$\widetilde{P}u(y) = \sum_{|\alpha|=m} a_{\alpha}(f^{-1}(y)) \left[\left(\frac{\partial y}{\partial x} \right)^{T} \partial_{y} \right]^{\alpha} u(y) + \text{l.o.t.}$$

¶ Gluing differential operators on manifolds.

Now suppose M is a smooth manifold, $\{(\varphi_{\alpha}, U_{\alpha}, V_{\alpha}, x_{\alpha}^{1}, \cdots, x_{\alpha}^{n})\}$ is a coordinate chart. For simplicity we assume M is compact, and the coordinate chart is finite. Recall that a function u defined on M is smooth if for any α ,

$$u \circ \varphi_{\alpha}^{-1}$$

is smooth. This can be expressed in another way: if we have smooth functions $u_{\alpha} \in C^{\infty}(U_{\alpha})$, (or equivalently, smooth functions $u_{\alpha} \circ \varphi_{\alpha}^{-1} \in C^{\infty}(V_{\alpha})$, and if

$$u_{\alpha} \circ \varphi_{\alpha}^{-1} = (u_{\beta} \circ \varphi_{\beta}^{-1}) \circ (\varphi_{\beta} \circ \varphi_{\alpha}^{-1})$$
 on $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$,

then we can glue all these u_{α} s defined on U_{α} s, (or equivalently, glue all these $u_{\alpha} \circ \varphi_{\alpha}^{-1}$ defined on V_{α} s,) to *one* smooth function u defined on M: we just let

$$u(x) := u_{\alpha}(x)$$

for $x \in U_{\alpha}$. The above condition tells us that $u_{\alpha} = u_{\beta}$ on $U_{\alpha} \cap U_{\beta}$.

Now suppose $P_{\alpha}: C^{\infty}(V_{\alpha}) \to C^{\infty}(V_{\alpha})$ be differential operators defined on V_{α} s,

$$\varphi_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subset V_{\alpha} \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \subset V_{\beta}$$

be the coordinate transition diffeomorphism. Assume that

$$(\varphi_{\alpha\beta}^{-1})^* P_{\alpha}|_{\varphi_{\alpha}(U_{\alpha}\cap U_{\beta})} \varphi_{\alpha\beta}^* = P_{\beta}|_{\varphi_{\beta}(U_{\alpha}\cap U_{\beta})} \quad \text{on} \quad C^{\infty}(\varphi_{\beta}(U_{\alpha}\cap U_{\beta})).$$

Then we can "glue" P_{α} 's via $\varphi_{\alpha\beta}$'s to get a differential operator on M: for any $u \in C^{\infty}(M)$ and $x \in U_{\alpha} \subset M$, we just let

$$Pu(x) := \varphi_{\alpha}^* P_{\alpha}((\varphi_{\alpha}^{-1})^* u)(x).$$

We check this P is well-defined: if $x \in U_{\alpha} \cap U_{\beta}$, then

$$\varphi_{\beta}^* P_{\beta}((\varphi_{\beta}^{-1})^* u)(x) = \varphi_{\beta}^* P_{\beta}|_{\varphi_{\beta}(U_{\alpha} \cap U_{\beta})}((\varphi_{\beta}^{-1})^* u)(x)$$

$$= \varphi_{\beta}^* \left[(\varphi_{\alpha\beta}^{-1})^* P_{\alpha}|_{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} \varphi_{\alpha\beta}^* \right] ((\varphi_{\beta}^{-1})^* u)(x)$$

$$= \varphi_{\beta}^* \left[(\varphi_{\beta}^*)^{-1} \varphi_{\alpha}^* P_{\alpha}|_{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} (\varphi_{\alpha}^{-1})^* \varphi_{\beta}^* \right] ((\varphi_{\beta}^{-1})^* u)(x)$$

$$= \varphi_{\alpha}^* P_{\alpha}|_{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} (\varphi_{\alpha}^{-1})^* u(x).$$

In the above constructions, the most important property we used to glue local functions or local differential operators to global ones is the locality of functions or differential operators themselves: in the case of differential operators, it is crucial that we can restrict a differential operator P on an open subset U to a differential operator P_1 on its open subset U_1 ; moreover, this restriction is "universal" in the sense that if P_2 is the restriction of P_1 onto an open subset U_2 of U_1 , then P_2 is also the restriction of P onto the open subset U_2 of U.

¶ Differential operators on manifolds: an abstract definition.

Here is another way to express the locality of differential operators: for a differential operator P, the values of the function Pu on an open set U depends only on the values of u on U. Equivalently,

Definition 1.1. We say a linear operator $P: C^{\infty}(M) \to C^{\infty}(M)$ is *local* if for any $u \in C^{\infty}(M)$,

(3)
$$\operatorname{supp}(Pu) \subset \operatorname{supp}(u).$$

It is this "locality" that allows us to "glue" differential operators defined on local charts to a differential operator on the whole manifold: By definition it is easy to see that if P is a local operator on M, and if $U \subset M$ is an open subset, then the "restriction operation"

$$P|_{U}u := (Pu)|_{U}$$

defines a "restricted operator" $P|_U: C^{\infty}(U) \to C^{\infty}(U)$. Moreover, such restricted operators satisfies the property that for any open sets $U_1 \subset U$,

$$(P|_{U})|_{U_{1}} = P|_{U_{1}}.$$

Now we can give an abstract definition of a differential operator on a smooth manifold:

Definition 1.2. Let M be a smooth manifold. A differential operator on M of order at most m is a local linear operator $P: C^{\infty}(M) \to C^{\infty}(M)$ such that when restricted to each coordinate chart $\{\varphi_{\alpha}, U_{\alpha}, V_{\alpha}, x^{1}, \cdots, x^{n}\}$, the operator

$$P_{\alpha} := (\varphi_{\alpha}^{-1})^* \circ P|_{U_{\alpha}} \circ \varphi_{\alpha}^*$$

is a differential operator on V_{α} of order at most m (namely, is of the form (1)).

Example. Any smooth vector field V on M is a differential operator of order 1. Conversely one can prove (exercise): any differential operator of order 1 on M has the form $V + m_f$, where V is a vector field, and f is a smooth function and m_f is the operator "multiplication by f" (which is a differential operator of order 0).

Example. In general, if V_i 's are a finite collection of smooth vector fields, then

$$P = \sum_{0 \le k \le m} V_{j_1} \cdots V_{j_k}$$

is a differential operator on M of order at most m (where k=0 represents a multiplication operator).

Conversely, at least for compact manifold, we can write any differential operator in this form. To see this, we just use a partition of unity subordinate to a coordinate covering, so that in each coordinate chart P has the form (1).

¶ Distributions and Sobolev spaces on manifolds.

In what follows we assume (M,g) is a compact Riemannian manifold, so that there is a well-defined Riemannian volume form using which we can define $L^2(M)$. (We can also develop the theory without a Riemannian metric, in which case we can use the space of *half densities*). As in the Euclidean case, one can define, for each non-negative integer k, the Sobolev space $H^k(M)$ by (4)

 $H^k(M) = \{u \in L^2(M) \mid V_1 \cdots V_k u \in L^2(M) \text{ for all smooth vector fields } V_1, \cdots V_k\}.$ Since M is compact, one can choose a family of vector fields W_1, \cdots, W_N on M that span $T_x M$ at each point x. The Sobolev norm on $H^k(M)$ is defined to be

$$||u||_{H^k(M)} = \left(\sum_{l=0}^k \sum_{1 \le \alpha_j \le N} ||W_{\alpha_1} \cdots W_{\alpha_l} u||_{L^2(M)}^2\right)^{1/2}.$$

while the semi-classical Sobolev norm on $H^k(M)$ is defined to be

$$||u||_{H^k_{\hbar}(M)} = \left(\sum_{l=0}^k \sum_{1 \le \alpha_j \le N} \hbar^{2l} ||W_{\alpha_1} \cdots W_{\alpha_l} u||_{L^2(M)}^2\right)^{1/2}.$$

To define Sobolev spaces $H^k(M)$ for negative k, one has to extend the conception of distributions to manifolds. Again the idea is to quite simple: we pull-back everything to Euclidean space via coordinate charts. Suppose $(\varphi_{\alpha}, U_{\alpha}, V_{\alpha})$ is a coordinate chart. Then given any $u: C^{\infty}(M) \to \mathbb{C}$, we want to "transplant" u to be a linear functional \widetilde{u} on $\mathscr{S}(\mathbb{R}^n)$ via the chart map, so that we say u is a distribution if the induced linear map \widetilde{u} is an element in \mathscr{S}' :

Definition 1.3. Let M be a smooth compact manifold. We say a linear map $u: C^{\infty}(M) \to \mathbb{C}$ is a distribution on M if for every coordinate chart $(\varphi_{\alpha}, U_{\alpha}, V_{\alpha})$ and every $\chi \in C_0^{\infty}(V_{\alpha})$, the mapping defined for $\varphi \in \mathscr{S}(\mathbb{R}^n)$ by

(5)
$$\varphi \mapsto u(\gamma^*(\chi\varphi))$$

belongs to $\mathscr{S}'(\mathbb{R}^n)$. The space of distributions on M is denoted by $\mathscr{D}'(M)$.

Remark. In the case of noncompact manifolds, one can also define the space of distributions in a similar way. A more rigorous way: first define a topology on $C_0^{\infty}(M)$, then realize $\mathscr{D}'(M)$ as the dual space of $C_0^{\infty}(M)$. Here is how we define such a topology on $C_0^{\infty}(M)$: first we can always write $M = \bigcup_{n} \operatorname{int}(K_n)$, where each K_n is compact and $K_n \subset \operatorname{int}(K_{n+1})$ for any n. Since each K_n is compact, it is contained in finitely many coordinate charts. Using coordinate charts we can define a locally convex topology¹ on $C_0^{\infty}(\operatorname{int}(K_n))$ via local semi-norms (c.f. Lecture 4). Now we get a sequence of locally convex topological spaces $C_0^{\infty}(\operatorname{int}(K_n))$, so that

¹A topological vector space is called *locally convex* if the origin has a neighborhood basis consisting of convex sets.

each $C_0^{\infty}(\operatorname{int}(K_n))$ is a topological subspace of $C_0^{\infty}(\operatorname{int}(K_{n+1}))$. Finally we define a topology on $C_0^{\infty}(M) = \bigcup_n C_0^{\infty}(\operatorname{int}(K_n))$ to be the finest locally convex topology so that each inclusion $\iota_n : C_0^{\infty}(\operatorname{int}(K_n)) \hookrightarrow C_0^{\infty}(M)$ is continuous. Such a topology is known as the *strict inductive limit topology*, which turns $C_0^{\infty}(M)$ into an *LF space*. For details of this construction, c.f. Reed-Simon Vol 1, Section 5.4.

By locality, if P is a differential operator, then P maps $C_0^{\infty}(M)$ to $C_0^{\infty}(M)$. So by duality, P maps $\mathcal{D}'(M)$ to $\mathcal{D}'(M)$. Now one can define

(6)
$$H^{-k}(M) = \operatorname{span}\{u \in \mathscr{D}'(M) \mid u = V_1 \cdots V_l f \text{ for } f \in L^2(M), 0 \le l \le k\}$$
 with Sobolev norm

$$||u||_{H^{-k}(M)} = \inf\{\sum_{\alpha} ||f_{\alpha}||_{L^{2}(M)} \mid u = \sum_{\alpha} W_{\alpha_{1}} \cdots W_{\alpha_{l}} f_{\alpha}\}.$$

or semiclassical Sobolev norm

$$||u||_{H_{\hbar}^{-k}(M)} = \inf\{\sum_{\alpha} ||f_{\alpha}||_{L^{2}(M)} \mid u = \sum_{\alpha} \hbar^{l} W_{\alpha_{1}} \cdots W_{\alpha_{l}} f_{\alpha}\}.$$

Obviously if P is a differential operator of order m, then P maps $H^k(M)$ to $H^{k-m}(M)$.

2. Symbolic calculus of differential operators

¶ Differential operators on manifolds: principle symbols.

For differential operators on \mathbb{R}^n , say, the operator

$$P = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha},$$

we can define its full Kohn-Nirenberg symbol to be

$$\sigma_{KN}(P)(x,\xi) := \sum_{|\alpha| \le m} a_{\alpha}(x)\xi^{\alpha},$$

which is, of course, a function on $T^*\mathbb{R}^n = \mathbb{R}^n_x \times \mathbb{R}^n_\xi$. Similarly one can define the Weyl symbol of $P = \sum_{|\alpha| < m} a_{\alpha} D^{\alpha}$, which is given by (c.f. Lecture 9)

(7)
$$\sigma_W(P)(x,\xi) = e^{\frac{i}{2}\partial_x \cdot \partial_\xi} \left(\sum_{|\alpha| \le m} a_\alpha(x) \xi^\alpha \right) = \sum_{|\alpha| = m} a_\alpha(x) \xi^\alpha + \text{l.o.t.},$$

where l.o.t. represents a polynomial in ξ whose degree is at most m-1. So although $\sigma_{KN}(P)(x,\xi) \neq \sigma_W(P)(x,\xi)$, they are both polynomials in ξ of degree m, and their leading terms are the same. (Of course the same conclusion holds for any t-quantization.)

It is natural to ask: can we define the Kohn-Nirenberg or Weyl symbol for differential operators on manifolds? Unfortunately the answer is no, because the full symbol, as a function on T^*M , is not well-defined. Let me remind you that

the coordinate change on the cotangent space T^*M induced by a coordinate change $x \rightsquigarrow y = f(x)$ on the base manifold is given by

$$(x,\xi) \leadsto \left(y = f(x), \eta = (\left[\frac{\partial y}{\partial x}\right]^{-1})^T \xi \right).$$

So if a function σ is well-defined on T^*M , and it has the form $\sigma(x,\xi)$ in one chart (x,ξ) , then it should has the form

$$\sigma\left(f^{-1}(y), (\frac{\partial y}{\partial x})^T \eta\right)$$

in the other chart (y,η) . However, as we have seen, if $P = \sum a_{\alpha}(x)D_x^{\alpha}$ in one chart, then in the other chart, it has the form \widetilde{P} given by (2). Because of the complicated nature of l.o.t. (which also contains derivatives of the coordinate change diffeomorphism), we have

$$\sigma_{KN}(P)(x,\xi) \neq \sigma_{KN}(\widetilde{P})(f^{-1}(y),(\frac{\partial y}{\partial x})^T\eta)$$

However, if one stare at the formula (2), one can easily see that the terms with $|\alpha| = m$ do satisfy the correct "change of variable" formula! Thus we define

Definition 2.1. The *principal symbol* of a differential operator P of order m on a smooth manifold M is defined to be the smooth function $\sigma_m(P) \in C^{\infty}(T^*M)$ so that on a coordinate chart $(\varphi, U, x^1, \dots, x^n)$, if P has the form $P = \sum_{|\alpha| \leq m} a_{\alpha}(x) D_x^{\alpha}$, then

$$\sigma_m(P)(x,\xi) := \sum_{|\alpha|=m} a_{\alpha}(x)\xi^{\alpha}.$$

Remark. In view of (2), the principal symbol of a differential operator is a well-defined smooth function on T^*M . Moreover, we don't need to distinguish the principal symbol in different t-quantizations, since, as we just explained in (7), they are all the same at the "principal" level!

Example. Let V be a smooth vector field V, viewed as a differential operator of order 1. So if we write $V = \sum a_j D_j$ in a local chart, and recall $\xi = \sum \xi_j dx^j$, we get, then a local computation yields

$$\sigma_1(V)(x,\xi) = \sum a_j \xi_j = \sum a_j \xi(\partial_j) = \xi(\sum_j a_j \partial_j)$$

In other words, we get

$$\sigma_1(V)(x,\xi) = \xi(iV_x) = i\xi(V_x).$$

More generally, the principal symbol of $P = \sum V_{j_1} \cdots V_{j_k}$ on M is $\sum \sigma(V_{j_1}) \cdots \sigma(V_{j_k})$.

Example. The most important example is the Laplace-Beltrami operator Δ_g on a Riemannian manifold (M, g), which locally has the form

$$\Delta_g = -\frac{1}{\sqrt{|g|}} \sum \partial_i (g^{ij} \sqrt{|g|} \partial_j).$$

It is a second order differential operator on M with principle symbol

$$\sigma(\Delta_g)(x,\xi) = \sum_i g^{ij} \xi_i \xi_j = |\xi|_g^2.$$

¶ Symbolic calculus for differential operators.

Let's denote the set of differential operators on M of order no more than m by $\mathcal{D}^m(M)$. Then the principal symbol gives a map

$$\sigma_m: \mathcal{D}^m(M) \to C^\infty(T^*M).$$

Then by definition, we have

Proposition 2.2. If
$$P \in \mathcal{D}^m(M)$$
 and $\sigma_m(P) = 0$, then $P \in \mathcal{D}^{m-1}(M)$.

Since differential operators are special cases of pseudodifferential operators, according to the symbolic calculus for pseudodifferential operators, we have

Proposition 2.3. If
$$P \in \mathcal{D}^{m_1}(M)$$
, $Q \in \mathcal{D}^{m_2}(M)$, then

(1) $P \circ Q \in \mathcal{D}^{m_1}(M)$ and

$$\sigma_{m_1+m_2}(P \circ Q) = \sigma_{m_1}(P)\sigma_{m_2}(Q).$$

(2) $[P,Q] \in \mathcal{D}^{m_1+m_2-1}(M)$ and ²

$$\sigma_{m_1+m_2-1}([P,Q]) = {\sigma_{m_1}(P), \sigma_{m_2}(Q)}.$$

Remark. Although the full symbol of a differential operator is not well-defined on T^*M , there is a sub-principal symbol which is well-defined on T^*M . More precisely, suppose P is a differential operator on M which has the form $P = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ in local charts. As we have seen, the principal symbol $\sigma_m(P) = \sum_{|\alpha| = m} a_{\alpha}(x) \xi^{\alpha}$ is well defined on T^*M . The next term,

$$\sigma_{m-1}(P)(x,\xi) = \sum_{|\alpha|=m-1} a_{\alpha}(x)\xi^{\alpha}$$

is only locally defined and is not well defined on T^*M . However, one can check that the function (exercise)

$$\sigma_{\text{sub}}(P)(x,\xi) := \sigma_{m-1}(P) + \frac{i}{2} \sum_{j} \frac{\partial^2}{\partial x^j \partial \xi^j} \sigma_m(x,\xi)$$

is a well-defined function on T^*M . It is called the sub-principal symbol of P.

There, $\{\cdot,\cdot\}$ is the Poisson bracket on T^*M which locally has the form $\{f,g\} = \sum (\partial_{\xi_j} f \partial_{x_j} g - \partial_{x_j} f \partial_{\xi_j} g)$. One can check that it is a well-defined function on T^*M .