
LECTURE 22-23: WEYL’S LAW

1. Functional calculus of pseudodifferential operators

In sections 1 and 2 we will always assume

• m ≥ 1 is an order function,
• p ∈ S(m) is a real-valued symbol,
• p+ i is elliptic in S(m).

Under these assumptions we know that

P = p̂W : H~(m) ⊂ L2(Rn)→ L2(Rn)

is a (densely-defined) self-adjoint operator, and moreover, P ± i · Id is invertible for
~ ∈ (0, ~0) and the inverse is a pseudodifferential operator with symbol in S(1/m) .

¶Helffer-Sjöstrand formula.

In Lecture 8 we mentioned that for a self-adjoint operator P on a Hilbert space
H and a Borel measurable function f on R, one can define a new self-adjoint linear
operator f(P ) on H using the spectral theorem as follows: By spectral theorem
(multiplication form) there is a measurable space (X,µ), a measurable real-valued
function h on X and a unitary isomorphism V : H → L2(X,µ) so that

V ◦ P ◦ V ∗ = Mh

on L2(X,µ). Then the operator f(P ) is defined to be

f(P ) = V ∗ ◦Mf(h(x)) ◦ V.
We notice that by definition,

(1) If |f | ≤ C, then ‖f(P )‖L ≤ C.

We want to answer the following natural question:

Question: Is f(P ) a semiclassical pseudodifferential operator if P is
a semiclassical pseudodifferential operator and f is a (nice) function?

Unfortunately the construction of f(P ) above is a bit too abstract to work with.
However, if f ∈ S is a Schwartz function, then by using the so-called almost analytic
extension f̃ of f , Helffer-Sjöstrand gave a more concrete formula for f(P ), namely

(2) f(P ) = − 1

π

∫
C
∂̄zf̃(z)(z − P )−1L(dz)

using which we will prove that f(P ) is a semiclassical pseudodifferential operator,

and calculate its symbol expansion. Recall that an almost analytic extension f̃ ∈
1
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C∞(C) of a Schwartz function f ∈ S (R) is by definition a smooth function on C
such that

f̃ |R = f, suppf̃ ⊂ {z : |Im(z)| ≤ 1}
and such that as |Im(z)| → 0,

∂̄zf̃(z) = O(|Im(z)|∞),

where as usual, ∂̄z = (∂x + i∂y)/2 for z = x + iy, and L(dz) denotes the Lebesgue
measure on C (we don’t use dxdy since x has different meaning below.) To prove

formula (2) it is enough to notice the following relation between f and f̃ (c.f. PSet
1):

f(t) = − 1

π

∫
C
∂̄zf̃(z)(z − t)−1L(dz)

and use the spectral theorem (multiplication form) for both (z − P )−1 and f(P ).

In literature there are at least two different ways to construct an almost analytic
extension: the first construction is due to Hörmander (who proposed the conception
of almost analytic extension in 1968) who adapted the construction in Borel’s Lemma
by putting

f̃(x+ iy) =
∑
k

f (k)(x)

k!
(iy)kχ(λky),

where λk is a sequence of real numbers that is chosen so that they tends to +∞
sufficiently fast, and χ is a cut-off function. The other way is due to Mather who
make use of the Fourier transform (PSet 1):

f̃(x+ iy) :=
1

2π
χ(y)

∫
R
χ(yξ)f̂(ξ)eiξ(x+iy)dξ.

Of course the almost analytic extension is not unique in general. Also note that
if f is compactly supported on R, then we can take f̃ to be compactly-supported
in C [For the first construction this is obvious, for the second construction we may
multiply the formula by a cut-off function which is identically one on supp(f)].

¶Symbol of the resolvent (z − P )−1.

We want to prove that f(P ) is a pseudodifferential operator if f is Schwartz
function on R and P is a semiclassical pseudodifferential operator, and calculate its
symbol. In view of the Helffer-Sjöstrant formula (2), we start with the resolvent
operator (z − P )−1.

Lemma 1.1. Under the previous assumptions, for any z ∈ C\R, the operator z−P
is invertible, and there exists rz ∈ S(1/m) such that r̂z

W = (z − P )−1.

Proof. This is just a consequence of ellipticity: for any fixed z = a + bi (b 6= 0), we
have

inf
t∈R

|z − t|
|t+ i|

> 0.
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We need a more explicit lower bound below. So let’s try to find a
constant C > 0 such that

(3)
|z − t|
|t+ i|

≥ bC, ∀t ∈ R.

This is equivalent to

(a− t)2 + b2 − (bC)2(t2 + 1) ≥ 0, ∀t ∈ R.

We will take C small enough so that bC < 1. By calculating the
discriminant and simplifying it, we get the condition on C:

1− C2

C2
(1− C2b2) ≥ a2.

As a consequence, if we assume |z| < C0, then we can find a constant
C so that (3) holds for all t ∈ R.

It follows that

|z − p| ≥ C|p+ i| ≥ cm

and thus z − p is elliptic in S(m). �

To apply Helffer-Sjöstrand formula, we need to study the dependence of rz on
z. For this purpose, we introduce the following variation of Beals’s theorem.

Recall that in Lecture 14 we have seen that any continuous linear
operator A : S → S ′ can be written as A = âW for some a =
a(x, ξ, ~) ∈ S ′, and Beals’s theorem tells us a ∈ S(1) if and only if

‖ad
l̂1
W ◦ · · · ◦ ad

l̂N
WA‖L(L2) = O(~N)

for any N and any linear functions l1, · · · , lN on R2n. Of course the
main part in the proof of Beals’s theorem is to prove the condition
above implies a ∈ S(1), namely, to prove |∂αx,ξa| ≤ Cα.

Proposition 1.2 (Beals’s Estimate with Parameter). Suppose a =
a(x, ξ, z; ~), i.e. a depends on a parameter z. Let δ = δ(z) be a
function valued in (0, 1] such that

‖ad
l̂1
W ◦ · · · ◦ ad

l̂N
WA‖L(L2) = O(δ−N~N)

holds for any N and any linear functions l1, · · · , lN on R2n. Then
there exists a universal constant M such that for any α,

|∂αx,ξa(x, ξ, z; ~)| ≤ Cα max(1,
√
~/δ)Mδ−|α|.

We will leave the proof as an exercise. [c.f. Helffer-Sjöstrand,
Spectral Asymptotics in the Semi-Classical Limit, Prop. 8.4.]

Using this result, we will prove the following resolvent symbol estimate:
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Theorem 1.3. Fix C0 > 0. For any z ∈ C \ R with |z| < C0, we have

|∂αx,ξrz| ≤ Cα max(1, ~1/2|Im(z)|−1)M |Im(z)|−1−|α|.

where rz ∈ S(1/m) is the symbol of the resolvent of P , namely (z − P )−1 = r̂z
W .

Proof. By Proposition 1.2, we only need to prove

(4) ‖ad
l̂1
W ◦ · · · ◦ ad

l̂N
W (z − P )−1‖L(L2) = O(|Im(z)|−1−N~N).

Using the formulae

adA(B−1) = −B−1(adAB)B−1

and

adA(BC) = (adAB)C +BadAC

we can write ad
l̂1
W ◦ · · · ◦ ad

l̂N
W (z − P )−1 as a summation of terms of the form

±(z − P )−1adα1

l̂W
(P )(z − P )−1adα2

l̂W
(P ) · · · (z − P )−1adαk

l̂W
(P )(z − P )−1,

where αj = {αj,1, · · · , αj,nj} such that {αj,l | ∀j, l} = {1, · · · , N}. Note that

p ∈ S(m) =⇒ {l, p} ∈ S(m) =⇒ ad
αj

l̂W
(P ) = p̂j

W for some pj ∈ ~njS(m).

Thus in view of the fact P + i has symbol in S(1/m), we get that

‖ad
αj

l̂W
(P )(z − P )−1‖L(L2) ≤ ‖ad

αj

l̂W
(P )(P + i)−1‖L(L2) · ‖(P + i)(z − P )−1‖L(L2)

≤ O(~nj |Im(z)|−1),

where in the last step we used Calderon-Vaillancourt theorem for the first term, and

‖(P + i)(z − P )−1‖L(L2(Rn)) ≤ C|Im(z)|−1

for the second term, which is a consequence of

• The fact (1) at the beginning of this lecture, which is a consequence of the
spectral theorem,
• The argument in the proof of Lemma 1.1, i.e. if we assume |z| < C0, then

there exists a universal constant C that is independent of z such that (3)
holds. In other words,

|z − t|
|t+ i|

≤ C|Im(z)|−1, ∀t ∈ R.

Similarly we have

‖(z − P )−1‖L(L2(Rn)) ≤ |Im(z)|−1,
so the estimate (4) holds, which completes the proof. �
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¶The functional calculus.

Now we are ready to prove that the operator f(P ) is also a semiclassical pseu-
dodifferential operator:

Theorem 1.4. If f ∈ S , then f(P ) = âW , where a ∈ S(m−k) for any k ∈ N.
Moreover, we have an asymptotic expansion

a(x, ξ) ∼
∑
k≥0

~kak(x, ξ),

where a0(x, ξ) = f(p(x, ξ), and in general,

ak(x, ξ) =
1

(2k)!
(∂t)

2k [f(t)qk(x, ξ, t)]
∣∣
t=p(x,ξ)

.

Proof. Using Helffer-Sjöstrand formula, we see f(P ) = âW , where

a(x, ξ) = − 1

π

∫
C
(∂̄zf̃(z))rz(x, ξ)L(dz),

where f̃ is an almost analytic extension of f . Although the (x, ξ)-derivatives of rz
is unbounded as Im(z) → 0, the unboundedness is controlled by Theorem 1.3. So

by using the fact ∂̄zf̃(z) = O(|Im(z)|∞) we see a ∈ S(1). More generally, for any
k ∈ N, if we apply the above arguments to fk(t) = f(t)(t + i)k, we can prove that
fk(P ) = (P + i)kf(P ) is a pseudodifferential operator with symbol in S(1), which
implies a ∈ S(m−k).

We also need an asymptotic expansion of a. For this purpose we start with the
asymptotic expansion of rz. Recall that by construction (Lecture 14), rz = r̃z?(1−u)
for some u ∈ ~∞S(1), and r̃z can be solved form the equation

(z − p) ? r̃z − 1 = O(~∞)

inductively, which has the form (exercise)

(5) rz ∼
∞∑
k=0

~k
qk(x, ξ, z)

(z − p(x, ξ))2k+1

where qk is a degree 2k polynomial in z (and thus is holomorphic in z):

qk(x, ξ, z) =
2k∑
j=0

qk,j(x, ξ)z
j

with q0 = 1, q1 = 0 and in general, qk,j ∈ S(m2k−j).

Again the expansion (5) is an expansion for each fixed z, and is not a good
one as Im(z) → 0. However, we may resolve this problem by fixing a δ ∈ (0, 1/2)
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and considering the two region |Im(z)| ≤ ~δ and |Im(z)| ≥ ~δ separately. Since

∂̄zf̃(z) = O(|Im(z)|∞), we see

− 1

π

∫
|Im(z)|<~δ

∂̄zf̃(z)rz(x, ξ)dxdy ∈ ~∞S(1/m).

For |Im(z)| > ~δ, Theorem 1.3 implies that rz ∈ ~δSδ(1/m). So the expansion (5) is
an expansion in ~δSδ(1/m) in this case, and we thus we get from Hellfer-Sjöstrand
formula the asymptotic expansion

a(x, ξ) ∼
∑
k≥0

~kãk(x, ξ)

in ~δSδ(1/m), where

ãk(x, ξ) = − 1

π

∫
|Im(z)|>~δ

∂̄zf̃(z)
qk(x, ξ, z)

(z − p(x, ξ))2k+1
L(dz).

Modulo ~∞S(1/m), we may replace ãk by

ak(x, ξ) = − 1

π

∫
C
∂̄zf̃(z)

qk(x, ξ, z)

(z − p(x, ξ))2k+1
L(dz)

= − 1

π

1

(2k)!

∫
C
∂̄z

(
f̃(z)qk(x, ξ, z)

)
(−∂z)2k

1

(z − p(x, ξ))
L(dz)

= − 1

π

1

(2k)!

∫
C
∂̄z(∂z)

2k
(
f̃(z)qk(x, ξ, z)

) 1

(z − p(x, ξ))
L(dz)

=
1

(2k)!
(∂t)

2k (f(t)qk(x, ξ, t))
∣∣
t=p(x,ξ)

,

where we used the fact that qk is a polynomial and thus is analytic in z, and the
fact f̃(z)qk(x, ξ, z) is an almost analytic extension of f(t)qk(x, ξ, t). In particular,

a0(x, ξ) = f(p(x, ξ)).

�

Remark. Suppose p ∼ p1 + ~p2 + · · · , then using q1 = 0 we easily get

a ∼ f(p1) + ~f ′(p1)p2 + · · · .
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2. Weyls’ law for ~-Pseudodifferential Operators

¶A trace formula.

Now we are ready to prove

Theorem 2.1. Suppose I = (a, b) is a finite interval and suppose

lim inf
(x,ξ)→∞

p(x, ξ) > b.

Then for any f ∈ C∞0 (I), the operator f(P ) is a trace class operator on L2(Rn) with

(6) trf(P ) ∼ (2π~)−n
∞∑
k=0

~k
∫
R2n

aj(x, ξ)dxdξ,

where the leading term a0(x, ξ) = f(p(x, ξ)).

Proof. Let p1 ∈ S(m) be a real-valued symbol such that

p− p1 ∈ C∞c (R2n) and inf p1 > b.

Then p1 + i is also elliptic in S(m). As a consequence, both P = p̂W and P1 = p̂1
W

are densely defined self-adjoint operator mapping H~(m) ⊂ L2(Rn) into L2(Rn).
Moreover, there is an open neighborhood Ω of I = [a, b] such that (z − P1)

−1 is
holomorphic for z in Ω.

For any f ∈ C∞0 (I), we let f̃ be an almost holomorphic extension of f such that

supp(f̃) ⊂ Ω. Since Spec(P1) ∩ I = ∅, we have f̃(P1) = 0.1

For Imz 6= 0, from z − P1 = z − P + P − P1 we get the following resolvent
identity

(z − P )−1 = (z − P1)
−1 + (z − P )−1(P − P1)(z − P1)

−1.

It follows from the Hellfer-Sjöstrand formula that

f(P ) = − 1

π

∫
C
∂̄zf̃(z)[(z − P )−1(P − P1)(z − P1)

−1]L(dz).

Since p − p1 is compactly supported, the operator P − P1 is trace class. It follows
that f(P ) has finite trace norm and thus is also trace class. It follows from Lecture
13 that

trf(P ) =
1

(2π~)n

∫
a(x, ξ)dxdξ.

Now the conclusion follows. �

1This is also a consequence of Hellfer-Sjöstrand formula.
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¶Weyl’s law.

Denote
N~(P, [a, b]) = #(Spec(P ) ∩ [a, b])

be the number of eigenvalues of P~ in the interval [a, b]. To estimate N~(P, [a, b]),
we approximate the characteristic function of the interval [a, b] by smooth functions
both from below and from above. Thus it is natural to introduce

V ([a, b]) = lim
ε→0+

Vol(p−1([a+ ε, b− ε]))

and
V ([a, b]) = lim

ε→0+
Vol(p−1([a− ε, b+ ε])).

As a direct consequence of the trace formula, we get

Theorem 2.2 (Weyl’s law). For any a < b, as ~→ 0 we have

(7)
1

(2π~)n
(V ([a, b]) + o(1)) ≤ N~(P, [a, b]) ≤

1

(2π~)n
(V ([a, b]) + o(1)).

Proof. Pick two sequence of compactly supported smooth functions fε, f̄ε (e.g. by
regularization via convolution) that approaches the characteristic function χ[a,b] of
the interval [a, b] from below and from above, namely

1[a+ε,b−ε] ≤ fε ≤ 1[a,b] ≤ f̄ε ≤ 1[a−ε,b+ε].

Then we have
trfε(P ) ≤ N~(P, [a, b]) ≤ trf̄ε(P ).

So the conclusion follows from the trace formula we just proved.

�

In particular, for Schrödinger operator P = −~2∆ + V , where V satisfying the
“polynomial growth” and “almost elliptic” conditions that we mentioned last time,
we have the following Weyl’s law for Schrödinger operators:

Theorem 2.3 (Weyl’s law for Schrödinger operator on Rn). For any a < b,

(8) N~(P, [a, b]) =
1

(2π~)n
(
Vol{(x, ξ) | a ≤ |ξ|2 + V (x) ≤ b}+ o(1)

)
.

Note that a special case of this theorem (namely P is the harmonic oscillator)
has been proven in Lecture 3.
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3. Weyl’s law for Ψ(M)

In this section we always assume

• (M, g) is a compact Riemannian manifold,
• m > 0 is a positive integer,
• P : Hm

~ (M)→ L2(M) is a self-adjoint pseudodifferential operator in Ψm(M),
• the principal symbol p = σm(P ) is real-valued and almost elliptic in Sm(T ∗M).

Moreover, for any a ∈ R, limε→0 Vol[p−1(a− ε, a+ ε)] = 0.

¶Basic properties of eigenvalues/eigenfunctions.

By adapting the proofs of Theorem 1.1 and Proposition 1.2 in Lecture 21 to the
setting of compact Riemannian manifolds, we have

Proposition 3.1. Under the above assumptions,

(1) P has discrete real spectrum

Spec(P ) : λ1(~) ≤ λ2(~) ≤ · · · ≤ λn(~) ≤ · · · → ∞.
(2) Each eigenfunction ϕj(x) is a smooth function, and {ϕj(x)} can be taken to

be an L2-orthonormal basis.

¶The functional calculus.

As we have seen, to prove Weyl’s law, the crucial ingredient is the following

Theorem 3.2. Suppose f ∈ S (R). Then f(P ) ∈ Ψ−∞(M) with principal symbol 2

σ(f(P )) = f(p(x, ξ)).

Proof. Idea: We first prove f(P ) ∈ Ψ0(M). According to Proposition 2.2 in Lecture
20, it is enough to prove

(a) For any coordinate patch (ϕα, Uα, Vα), there exists χ ∈ C∞0 (Uα) such that
(ϕ−1α )∗Mχf(P )Mχ(ϕα)∗ ∈ Ψ0(Rn).

(b) For any χ1, χ2 ∈ C∞(M) with supp(χ1) ∩ supp(χ2) = ∅, we want to prove
Mχ1f(P )Mχ2 ∈ ~∞Ψ−∞(M).

The passing from Ψ0(M) to Ψ−∞ is standard: one only need to apply the previous
result to (P + i)kf(P ) = gk(P ), where g(t) = (t+ i)kf(t) ∈ S . Finally we calculate
the principal symbol of f(P ) via the Helffer-Sjöstrand formula.

Step 1. We first prove (b), namely for any χ1, χ2 ∈ C∞(M) with supp(χ1) ∩
supp(χ2) = ∅, we want to prove Mχ1f(P )Mχ2 ∈ ~NΨ−N(M) for any N . According
to Beals’s theorem, it is enough to prove

‖Mχ1f(P )Mχ2‖L(H−N~ ,HN
~ ) = O(~N).

2Note that in our definition, Ψ−∞(M) is not negligible, and the principal symbol of an element
in Ψ−∞(M) is an element in S−∞(T ∗M). Only elements in ~∞Ψ−∞(M) are negligible and has
zero principal symbol of any order.
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According to the Hellfer-Sjöstrand formula

f(P ) = − 1

π

∫
C
∂̄zf̃(z)(z − P )−1L(dz),

it is enough to prove

(9) ‖Mχ1(z − P )−1Mχ2‖L(H−N~ ,HN
~ ) = O(~N |Im(z)|−KN )

for some KN > 0. [We can’t conclude (9) directly since we don’t know where the
resolvent (z−P )−1 is a semiclassical pseudodifferential operator or not. So the idea
is: approximate (z − P )−1 by a semiclassical pseudodifferential operator so that we
can control both the norm of the expression (9) with (z − P )−1 replaced by the
semiclassical pseudodifferential operator, and the norm of the remainder.]

For z ∈ C \ R, we let Q0(z) = Op((z − p)−1) ∈ Ψ−m(M). According to Propo-
sition 2.5 in Lecture 20,

σ0(Id− (z − P )Q0) = 1− σm(z − P )σ−m(Q0) = 0

and thus
(z − P )Q0 = Id−R1

for some R1(z) ∈ ~Ψ−1(M). According to the Calderon-Vailancourt theorem, the
operator norm of ‖R1(z)‖L(H−N~ ,H−N+1

~ ) is controlled by finitely many derivatives of

r1(z), which, by using the Moyal product formula in local charts, together with the
resolvent estimate, namely Theorem 1.3, is controlled by Im(z)−K1 for some K1 > 0:

‖R1(z)‖L(H−N~ ,H−N+1
~ ) = O(~|Im(z)|−K1).

If we replace Q0(z) by

QL(z) = Q0 +Q0R1 + · · ·+Q0R
L
1 ∈ Ψ−m(M),

and denote RL = (R1)
L ∈ ~LΨ−L(M) we will get

(z − P )QL = (Id−R1)(Id +R1 + · · ·+RL
1 ) = Id−RL+1(z)

with
‖RL(z)‖L(H−N~ ,H−N+L

~ ) = O(~L|Im(z)|−K′L)

for some K ′L > 0. and similarly, since the estimates for QL(z) blow up as Im(z)→ 0
only polynomially,

‖Mχ1QLMχ2‖L(H−N~ ,HN
~ ) = O(~N |Im(z)|−K′′L)

for some K ′′L > 0. As a consequence,

(z − P )−1 = QL + (z − P )−1RL+1(z),

and if we take L large enough, we will get

‖Mχ1(z − P )−1Mχ2‖L(H−N~ ,HN
~ ) = O(~N |Im(z)|−KN )

as desired.
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Step 2. We then prove (a), namely for any coordinate patch (ϕα, Uα, Vα), there

exists χ ∈ C∞0 (Uα) such that (ϕ−1α )∗Mχf(P )Mχ(ϕα)∗ ∈ Ψ0(Rn).

According to Beals’s Theorem (for manifolds), it is enough to prove

(10) ‖ad
l̂1
W ◦ · · · ◦ ad

l̂N
W (ϕ−1α )∗Mχf(P )Mχ(ϕα)∗‖L(L2) = O(~N)

holds for any N and any linear functions l1, · · · , lN on R2n.

By definition one can check

adl̂W [(ϕ−1α )∗Mχ(z − P )−1Mχ(ϕα)∗] = (ϕ−1α )∗adL̂[Mχ(z − P )−1Mχ](ϕα)∗

where

L̂ = (ϕα)∗Mχ̃l̂
WMχ̃(ϕ−1α )∗

for some χ̃ ∈ C∞0 (Vα) such that ϕ∗αχ̃ = 1 on supp(χ). Since

‖adL̂[(z − P )−1]‖L(L2) = ‖(z − P )−1adL̂(P )(z − P )−1‖L(L2) = O(~|Im(z)|2),

we conclude from the Hellfer-Sjöstrand formula that

‖adl̂W [(ϕ−1α )∗Mχf(P )Mχ(ϕα)∗]‖L(L2) = O(~).

Similarly one can prove (10) for all N and the conclusion follows.

Step 3. Now we prove f(P ) ∈ Ψ−∞(M).

By Step 1 and Step 2, we have seen f(P ) ∈ Ψ0(M). If we replace f by gk(t) =
(t+ i)kf(t) ∈ S , we will get

gk(P ) = (P + i)kf(P ) : L2(M)→ Hk
~ (M)

for any k and thus f(P ) ∈ Ψ−∞(M).

Step 4. Finally we calculate the principal symbol of f(P ).

Again this is a consequence of Hellfer-Sjöstrand formula. In Step 1 we have seen

Op((z − p)−1)(z − P ) = I +O(~|Im(z)|−K1)

which implies

(z − P )−1 = Op((z − p)−1) +O(~|Im(z)|−K1−1).

Thus

f(P ) = − 1

π

∫
C
∂̄zf̃(z)Op((z − p)−1)L(dz) +O(~) = Op(f(p(x, ξ))) +O(~).

So by definition, σ(f(P )) = f(p(x, ξ)). �

Note that in this setting the trace formula is even simpler: Under the ellipticity
assumption on p = σ(P ) in Sm(T ∗M) with m > 0, locally the “principal symbol” of
f(P ) is a Schwartz function. As a consequence, we get the following trace formula
for P ∈ Ψm(M) satisfying the conditions at the beginning of this section:
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Theorem 3.3. Suppose f ∈ S . Then f(P ) is a trace class operator on L2(M) and

(2π~)nTr(f(P )) =

∫
T ∗M

f(p(x, ξ))dxdξ +O(~).

¶Generalized Weyl’s law.

By playing the same trick, namely by approximating χ(a,b) both from above
and below via smooth functions, one can easily prove the following Weyl’s law for
P ∈ Ψm(M) satisfying the conditions at the beginning of this section:

Theorem 3.4 (Weyl’s law on manifolds). For any a < b, as ~→ 0 we have

N~(P, [a, b]) =
1

(2π~)n

(
Vol(p−1([a, b])) + o(1)

)
.

In particular, if we take P = −~2∆ + V , we will get Weyl’s law for Schrödinger
operator on manifolds,

N~(P, [a, b]) =
1

(2π~)n
(
Vol{(x, ξ) | a ≤ |ξ|2 + V (x) ≤ b}+ o(1)

)
.

Remark. In particular, if we take V = 0, we get Weyl’s law for the Laplace-Beltrami
operator ∆ on (M, g):

#{j | λj ≤ λ} =
ωnVol(M)

(2π)n
λn/2 + o(λn/2)

as λ→∞, where ωn is the volume of the unit ball in Rn.

In fact, with a bit more work, we can prove the following generalized Weyl’s law
(which reduced to Weyl’s law above if we take B = Id):

Theorem 3.5 (Generalized Weyl’s law). Suppose B ∈ Ψ0(M) and a < b. Under
the assumptions at beginning of this section, as ~→ 0 we have

(11) (2π~)n
∑

a≤λj≤b

〈Bϕj, ϕj〉 →
∫∫

a≤p≤b
σ(B)dxdξ.

Proof. Fix a and b and let Π : L2(M) → L2(M) be the orthogonal projection
from L2(M) onto the subspace spanned by eigenfunction ϕj’s of P associated to
eigenvalues in the interval [a, b]. Then by definition,∑

a≤λj≤b

〈Bϕj, ϕj〉 = Tr(ΠBΠ).

As before we pick two sequence of compactly supported smooth functions fε and

f̄ε that approaches the characteristic function χ[a,b] from below and above, namely

1[a+ε,b−ε] ≤ fε ≤ 1[a,b] ≤ f̄ε ≤ 1[a−ε,b+ε].
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Then fε(P ) and f̄ε(P ) are pseudo-differential operators in Ψ−∞(M) with

Πfε(P ) = fε(P )Π = fε(P ), f̄ε(P )Π = Πf̄ε(P ) = Π,

and thus

ΠB = fε(P )B + (Π− fε(P ))B = fε(P )B + Π(f̄ε(P )− fε(P ))B.

It follows

Tr(ΠBΠ) = Tr(ΠB) = Tr(fε(P )B) + Tr(Π(f̄ε(P )− fε(P ))B).

Since 0 ≤ f̄ε − fε ≤ 1 and since f̄ε(P ) − fε(P ) is self-adjoint, the definition of the
trace norm together with Theorem 3.4 implies

‖f̄ε(P )− fε(P )‖tr ≤ #{j | λj ∈ (a−ε, a+ε) ∪ (b−ε, b+ε)} ≤ C(Aε +Bε(~))~−n,

where Aε = Vol[p−1((a−ε, a+ε) ∪ (b−ε, b+ε))] and lim~→0Bε(~) = 0. It follows 3

(2π~)nTr
(

Π(f̄ε(P )− fε(P ))B
)
≤ (2π~)n‖Π(f̄ε(P )− fε(P ))B‖tr ≤ C(Aε +Bε(~))

and thus
(2π~)nTr(ΠBΠ) = (2π~)nTr(fε(P )B) + C(Aε +Bε(~))

=

∫
T ∗M

fε(p)σ0(B)dxdξ +Oε(~) + C(Aε +Bε(~)).

It follows

lim inf
~→0

(2π~)nTr(ΠBΠ) =

∫
T ∗M

fε(p)σ0(B)dxdξ +O(Aε)

and

lim sup
~→0

(2π~)nTr(ΠBΠ) =

∫
T ∗M

fε(p)σ0(B)dxdξ +O(Aε).

Letting ε→ 0, the conclusion follows.

�

3Here we used the following fact: If A is compact and B is bounded, then their singular values
satisfy sj(AB) ≤ sj(A)‖B‖L. This fact can be proved by using the min-max characterization of
the eigenvalues of positive (self-adjoint) compact operators.


