
LECTURE 2 — 04/09/2020
METRIC SPACES

Last time we have seen

• Topology is the structure using which one can talk about neighborhood of points
and continuity of maps.
• Topology is the underline structure for both analysis and geometry: In analysis

we study properties of continuous maps, while in geometry we study properties
that are invariant under continuous deformation.

General topology is a very young subject born in the 20th century (while algebraic
topology is much older). Historically, Frechet tried to introduce a reasonable concep-
tion of an abstract space, and he succeeded by giving the definition of an abstract
metric space in his thesis in 1906. After carefully distinguishing the role of neighbor-
hood/limit/distance in metric spaces, Hausdorff was able to give the first definition of
topological space (which is not the same as current definitions) in 1912.

1. Metric Spaces

First we recall the definition:

Definition 1.1. A metric on a set X is a map

d : X ×X → R
satisfying

(a) (positive definiteness) d(x, y) ≥ 0, and d(x, y) = 0⇔ x = y,
(b) (symmetry) d(x, y) = d(y, x),
(c) (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

The pair (X, d) is called a metric space.

Remark. Of course one can remove the assumption d(x, y) ≥ 0, since it is the conse-
quence of the fact d(x, x) = 0, the symmetry and the triangle inequality.

Of course the conception of metric space comes from the metric structure on the
Euclidean spaces. However, it turns out that there exists many many metric spaces,
in different branches of mathematics. We list some of them:
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Example.

(1) On X = R, we have the simplest metric d(x, y) = |x− y|.
(2) On X = Rn, we have

• (the usual Euclidean metric) d2(x, y) =
È

(x1 − y1)2 + · · ·+ (xn − yn)2.
• (the l1-metric) d1(x, y) = |x1 − y1|+ · · ·+ |xn − yn|.
• (the l∞-metric) d∞(x, y) = sup{|x1 − y1|, · · · , |xn − yn|}.

They are all special cases of the lp-metric (1 ≤ p ≤ ∞):

dp(x, y) = (|x1 − y1|p + · · ·+ |xn − yn|p)1/p .

(3) On the infinite Cartesian product

X = RN = {(x1, x2, · · · , xn, · · · ) | xn ∈ R}
we can not define the “lp metrics” as above because they may diverge. However,
one can easily overcome the convergence problem via
• (the uniform metric)

d((xn)n∈N, (yn)n∈N) = sup
n∈N

min(|xn − yn|, 1).

• Here is another very useful metric RN:

d((xn)n∈N, (yn)n∈N) =
∞X
n=1

1

2n
|xn − yn|

1 + |xn − yn|
.

(4) Another way to solve the convergence problem above is: only consider special
subsets. For example,
• (the lp space, 1 ≤ p ≤ ∞) Consider the subspace

X = lp(R) =

(
(xn)n∈N

����� ‖x‖p :=

�X
n

|xn|p
�1/p

< +∞
)
⊂ RN,

then we can define lp-metric as above:

d((xn)n∈N, (yn)n∈N) =

�X
n

|xn − yn|p
�1/p

.

• (the Hilbert cube) Take X = [0, 1]N ⊂ RN, with metric

d((xn)n∈N, (yn)n∈N) =
∞X
n=1

2−n|xn − yn|.

(5) (the discrete metric) For any set X, there is a simple metric

d(x, y) =

¨
0 x = y,
1 x 6= y.
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(6) For X = C([a, b]) = the set of all continuous functions on [a, b], we have
• (the L1-metric)

d(f, g) =
Z b

a
|f(x)− g(x)|dx.

• (the L∞-metric)

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|.

• (the L2-metric)

d(f, g) =
�Z b

a
|f(x)− g(x)|2dx

�1/2

.

They are all special cases of the Lp-metric (1 ≤ p ≤ ∞):

d(f, g) =
�Z b

a
|f(x)− g(x)|pdx

�1/p

.

(7) (the W 1,2-metric) For X = C1([a, b]) = the set of all functions on [a, b] with
continuous derivatives, we have the W 1,2-metric

d(f, g) =
�Z b

a
|f(x)− g(x)|2dx

�1/2

+
�Z b

a
|f ′(x)− g′(x)|2dx

�1/2

.

(8) (the word metric) For X = G be a group, we can choose a symmetric generating
subset S ⊂ G 1 and define the word metric induced by S via

d(g1, g2) = min {n : ∃s1, · · · , sn ∈ S s.t. g1 · s1 · · · sn = g2}.
(9) (the p-adic metric) Let p be a prime number, and let X = Q = the set of all

rational numbers. Then for any 0 6= x ∈ Q, we can write

x = pn
r

s

for some n, r, s ∈ Z satisfying (p, r) = (p, s) = 1 (uniquely determine n). Define
the p-adic norm on Q by

|x|p = p−n (and set |0|p = 0).

Then define the p-adic metric on Q by d(x1, x2) := |x1 − x2|p.
(10) (The Hausdorff metric) Let X = the set of all bounded closed subsets in R.

The Hausdorff metric on X is defined by

d(A,B) = inf {ε ≥ 0 : A ⊂ Bε and B ⊂ Aε},
where Aε = {y ∈ R : ∃x ∈ A s.t. |x− y| ≤ ε} is the ε-neighborhood of A.

1A subset S ⊂ G is called a generating subset if any element in G can be written as the product of
finitely many elements in S. It is called symmetric if S = S−1.
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On any given metric space, one can easily produce new metrics from old ones:

Proposition 1.2. Let (X, d) be a metric space. Let f : [0,+∞)→ [0,+∞) be a strictly
increasing function s.t. f(0) = 0 and

f(α + β) ≤ f(α) + f(β), ∀α, β ∈ [0,+∞).

Then d̃(x, y) := f(d(x, y)) is a metric on X.

Proof. It is straightforward to check

• d̃(x, y) = 0⇐⇒ d(x, y) = 0⇐⇒ x = y,

• d̃(x, y) = f(d(x, y)) = f(d(y, x)) = d̃(y, x),

• d̃(x, z) = f(d(x, z))≤f(d(x, y)+d(y, z))≤f(d(x, y))+f(d(y, z))≤ d̃(x, y)+d̃(y, z).

�

As a consequence, for any metric space (X, d), the formula

d̄(x, y) :=
d(x, y)

1 + d(x, y)

defines a new metric on X. Note: this new metric has the advantage that

d̄(x, y) < 1

holds for all x, y. In other words, any metric space can be made into a bounded metric
space. (We have used this in example (3) above.)

One can also construct new metric spaces from old ones.

Proposition 1.3 (“the subspace metric”). If (X, d) is a metric space and Y ⊂ X is
a subset, then

dY := d|Y×Y
is a metric on Y.

Proof. This is quite obvious:

• dY (y1, y2) = 0, y1, y2 ∈ Y ⊂ X ⇐⇒ y1 = y2.
• dY (y1, y2) = d(y1, y2) = d(y2, y1) = dY (y2, y1).
• dY (y1, y3) = d(y1, y3) ≤ d(y1, y2) + d(y2, y3) = dY (y1, y2) + dY (y2, y3).

�
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Proposition 1.4 (“the induced metric”). Let (X, d1) be a metric space, Y is a set,
and f : Y → X an injective map. Then

d(y1, y2) := d1(f(y1), f(y2))

is a metric on Y.

Proof. Again

• d(y1, y2) = 0⇐⇒ f(y1) = f(y2)⇐⇒ y1 = y2.
• d(y1, y2) = d1(f(y1), f(y2)) = d1(f(y2), f(y1)) = d(y2, y1).
• d(y1, y3)=d1(f(y1),f(y3))≤d1(f(y1),f(y2))+d1(f(y2),f(y3))=d(y1, y2)+d(y2, y3).

�

Proposition 1.5 (“the product metric”). If (X, d1), (Y, d2) are metric spaces, then

d((x1, y1), (x2, y2)) := d1(x1, x2) + d2(y1, y2)

makes X × Y a metric space.

Proof. We check

• d((x1, y1), (x2, y2))=0⇐⇒d1(x1, x2) = 0 and d2(y1, y2)=0⇐⇒x1 =x2, y1 =y2.
• d((x1, y1), (x2, y2))=d1(x1, x2)+d2(y1, y2)=d1(x2, x1)+d2(y2, y1)=d((x2, y2), (x1, y1)).
•

d((x1, y1), (x3, y3)) = d1(x1, x3) + d2(y1, y3)

≤ d1(x1, x2) + d1(x2, x3) + d2(y1, y2) + d2(y2, y3)

= d((x1, y1), (x2, y2)) + d((x2, y2), (x3, y3)).

�

Remark. There are many different ways to put a “product metric” on the Cartesian
product of metric spaces. For example, for each 1 ≤ p ≤ ∞, one can define an lp-type
product metric on X1 × · · · ×Xn via the formula

dp((x1, · · · , xn), (y1, · · · , yn)) := (|x1 − y1|p + · · ·+ |xn − yn|p)1/p .

By this way, we can regard (Rn, dp) as the product of n copies of (R, | · |).
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2. Geometry of metric spaces

As in the Euclidean case, in a metric space (X, dX) we denote:

• The open ball of radius r centered at x0:

B(x0, r) = {x ∈ X | dX(x, x0) < r}.
• The closed ball of radius r centered at x0:

B(x0, r) = {x ∈ X | dX(x, x0) ≤ r}.
• The sphere of radius r centered at x0:

S(x0, r) = {x ∈ X | dX(x, x0) = r}.
Given the definitions of balls, we can easily extend the conceptions of open sets

and closed sets in the Euclidean case to any metric space:

Definition 2.1 (Open sets and closed sets). Let (X, d) be a metric space.

(1) A subset U ⊂ X is said to be open , if

∀x ∈ U,∃ε = ε(x) > 0 s.t. B(x, ε) ⊂ U.

(2) A subset F ⊂ X is said to be closed if its complement F c = X \ F is open.

Similarly one can define the conceptions like the interior points, the boundary points
or the closure of a set in any metric space.

Example.

(1) Open balls are open, and closed balls are closed.
Note: This is NOT as obvious as it looks like.
— To prove B(x0, r) is open, by definition, for any x ∈ B(x0, r) one need to
pick ε carefully, say ε = r − d(x, x0), so that B(x, ε) ⊂ B(x0, r).
— To prove B(x0, r) is closed, by definition, for any x 6∈ B(x0, r) one need to

pick ε carefully, say ε = d(x, x0)− r, so that B(x, ε) ⊂ B(x0, r)
c
.

(2) Two special open sets in any metric space:
• The total space X itself is always both open and closed.
• And the empty set ∅ is always both open and closed.

(3) Let X = (1, 4) ∪ [5, 6] ⊂ R, endowed with the subspace metric d. Then
• (1, 4) is both open and closed in (X, d). So is [5, 6].
• (1, 2) is open but not closed in (X, d).
• (1, 2] is closed but not open in (X, d).
• (2, 3] is neither open nor closed in (X, d).

(4) Let (X, d) be any set endowed with the discrete metric. Then
• any subset A ⊂ X is open, (since ∀x ∈ A, the open ball B(x, 1)={x}⊂A.)
• thus any subset A ⊂ X is also closed.
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We are interested in comparing different metrics.

Question: Can different metrics on the same set generate the same set of open sets?

Answer : Yes.

Example. (1) Open balls in (X, kd) (where k > 0) coincide with open balls in (X, d)
(with different radii). So kd and d define the same set of open sets.

(2) On Rn, consider the l1 and l2 metrics:

d1(x, y) = |x1 − y1|+ · · ·+ |xn − yn|,

d2(x, y) =
È

(x1 − y1)2 + · · ·+ (xn − yn)2

Then d1 open balls are not d2 open balls. However,

d1(x, y) ≤ n ·max
i
|xi − yi| ≤ n · d2(x, y),

d2(x, y) ≤
√
n ·max

i
|xi − yi| ≤

√
n · d1(x, y).

It follows

any d1-open ball contains a smaller d2-open ball;

any d2-open ball contains a smaller d1-open ball.

As a consequence, d1 open sets are exactly the same as d2 open sets.
(3) Let (X, d) be any metric space. We have seen that

d1(x, y) :=
d(x, y)

1 + d(x, y)

is also a metric on X.
Fact: A set U ⊂ X is d-open if and only if it is d1-open.

Proof. Since d1(x, y) ≤ d(x, y), we see any d1-open set is also d-open. (Reason: If
U is d1-open, then ∀x ∈ U,∃ε > 0 s.t. Bd1(x, ε) ⊂ U . But d1(x, y) ≤ d(x, y) ⇒
Bd(x, ε) ⊂ Bd1(x, ε). So Bd(x, ε) ⊂ U.)

Conversely suppose U ⊂ X is a d-open set. Fix any x ∈ U . Pick ε > 0 such that
Bd(x, ε) ⊂ U. Then for any y ∈ Bd1(x, ε

1+ε
), we have

d1(x, y) <
ε

1 + ε
=⇒ d(x, y)

1 + d(x, y)
<

ε

1 + ε
=⇒ d(x, y) < ε,

where we used the monotonicity of the function x 7→ x
1+x

= 1 − 1
1+x

. As a conse-
quence,

Bd1(x,
ε

1 + ε
) ⊂ Bd(x, ε) ⊂ U.

It follows by definition that U is also d1-open. �
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Definition 2.2 (equivalent metrics). Let d1 and d2 be two metrics on a set X.

(1) We say d1 and d2 are topologically equivalent if they produce the same set of
open sets.

(2) We say d1 and d2 are strongly equivalent if there exist constants C1, C2 > 0 s.t.

C1d1(x, y) ≤ d2(x, y) ≤ C2d1(x, y),∀x, y ∈ X.
Remarks.

(1) We don’t require d1-open-balls to be d2-open-balls!
(2) From the examples we can easily see that strongly equivalent metrics are al-

ways topologically equivalent, but the converse is not true: the two metrics in
example (3) above are NOT strongly equivalent in general. To see this, one can
choose an unbounded metric space (X, d)2. Since the new metric space (X, d1)
is always bounded, d and d1 can’t be strongly equivalent.

Another useful conception for Euclidean spaces which can be easily extended to
abstract metric spaces is the conception of convergence:

Definition 2.3. Let (X, d) be a metric space. We say a sequence of points xi converges
to a point x0 in X (with respect to the metric d) if

∀ε > 0,∃N s.t. ∀i > N, d(xi, x0) < ε.

Using the conception of convergence, one can characterize closed sets as in the
Euclidean case:

Proposition 2.4. A subset F in a metric space (X, d) is closed if and only if for any
sequence {xn} ⊂ F with xn → x0 ∈ X, one has x0 ∈ F .

Proof. Suppose F is a closed subset in (X, d). Take any sequence {xn} ⊂ F with
xn → x0 ∈ X. To prove x0 ∈ F , we proceed by contradiction. Suppose x0 6∈ F , i.e.
x0 ∈ F c. Since F c is open, one can find ε0 such that B(x0, ε0) ⊂ F c. By definition of
convergence, there exists N such that d(xi, x0) < ε0 for i > N . This implies xi ∈ F c

for i > N , which is a contradiction since we have chosen xn ∈ F .

Conversely, suppose for any sequence {xn} ⊂ F with xn → x0 ∈ X, the limit
x0 ∈ F . To prove that F is closed, again we proceed by contradiction. Suppose F is
not closed, i.e. F c is not open. Then there exists x0 ∈ F c so that none of the balls
B(x0, 1/n) is contained in F c, that is, there exists xn ∈ B(x0, 1/n) with xn 6∈ F c, i.e.
xn ∈ F . By the choice of xn, we have xn → x0. So x0 ∈ F , a contradiction. �

2As usual, for a subset A of a metric space (X, d), one can define the diameter of A to be diam(A) :=
sup{d(x, y) | x, y ∈ A}, which could be +∞. We say A is a bounded subset if diam(A) < +∞. We
say (X, d) is a bounded metric space if diam(X) < +∞. It is quit obvious that if two metrics on a
set are strongly equivalent, then it is bounded with respect to one metric if and only if it is bounded
with respect to the other.
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3. Continuous maps between metric spaces

We want to define continuity for maps between abstract spaces. For metric spaces,
it is easy to do so since we have defined the conception of convergence:

Definition 3.1 (continuous map). Let (X, dX) and (Y, dY ) be two metric spaces. A
map f : X → Y is continuous at x0 ∈ X if for any sequence xi which converges to x0

in X, the image f(xi) converges to f(x0) in Y . We say the map f is a continuous map
if it is continuous at every x0 ∈ X.

It is not hard to prove

Lemma 3.2. A map f : (X, dX)→ (Y, dY ) is continuous at x0 ∈ X if and only if

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε.

To get a better understanding the meaning of the continuity in metric spaces, let’s
gover some simple examples.

Example.

(1) For Euclidean spaces, continuity is the same as what we have learned in calculus.
(2) Let (X, d) be any metric space.

• for any fixed x̄ ∈ X, the function

dx̄ : X → R, x 7→ dx̄(y) := d(x, x̄)

is continuous (where we always endow R with the usual metric).

Proof. For ∀ε > 0,∀x0 ∈ X, and ∀x ∈ X with d(x, x0) < ε, we have

|dx̄(x)− dx̄(x0)| = |d(x, x̄)− d(x0, x̄)| ≤ d(x, x0) < ε.

[So dX is in fact Lipschitz continuous with Lipschitz constant 1.] �

• More generally, for any A ⊂ X, we can define

dA : X → R, x 7→ dA(x) := inf{d(x, y) : y ∈ A}.

Fact: dA is continuous.

Sketch of proof. First apply the triangle inequality to prove

|dA(x)− dA(y)| ≤ d(x, y).

Then the conclusion follows. �

• If we endow X×X with the “product metric” dX×X as in Proposition 1.5,
then the function d : X ×X → R is continuous. [Try to prove this.]
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(3) Endow the space X = C([a, b]) with the metric

dX(f, g) := sup
x∈[a,b]

|f(x)− g(x)|.

Then the “integration map”Z
: X → R, f 7→

Z b

a
f(x)dx

is continuous, since����
Z b

a
f(x)dx−

Z b

a
g(x)dx

���� ≤
Z b

a
|f(x)− g(x)|dx ≤ (b− a) · dX(f, g).

(4) Let X be any set, and dX be the discrete metric on X. Let (Y, dY ) be any
metric space.
• Any map f : X → Y is continuous.

Proof. For any ε > 0, we simply take δ = 1. Then for any x, x0 ∈ X with
dX(x, x0) < 1, we must have x = x0 since dX is the discrete metric. It
follows dY (f(x), f(x0)) = 0 < ε. �

• Among all maps f : Y → X, only “locally constant maps” are continuous.

Proof. [A map f : Y → X is locally constant means: for any y0 ∈ Y ,
there is an δ > 0 so that f(y) = f(y0) for all y satisfying d(y0, y) < δ.]
Obviously if f is locally constant, then it is continuous.
Conversely, suppose f : Y → X is continuous at y0. Then there exists δ > 0
such that for any y ∈ Y with dY (y, y0) < δ, we have dX(f(y), f(y0)) < 1,
which implies f(y) = f(y0) since dX is the discrete metric. �

We can rewrite Lemma 3.2 as:

Lemma 3.3 (the geometric interpretation of continuity at a point).
A map f : (X, dX) → (Y, dY ) is continuous at a point x0 if and only if it maps the
“δ-neighborhood of x0” into an “ε-neighborhood of f(x0)”, i.e.

∀ε > 0,∃δ > 0 s.t. f(BX(x0, δ)) ⊂ BY (f(x0), ε).

This can be further rewritten via open sets:

Proposition 3.4. Let f : (X, dX) → (Y, dY ) be a map between metric spaces. Then
f is continuous at x ∈ X if and only if for any open set V ⊂ Y with f(x) ∈ V, the
preimage f−1(V ) contains an open set U ⊂ X with x ∈ U.

Remark. Note: We don’t claim here that f−1(V ) is open in X!
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Proof. Suppose f is continuous at x ∈ X, and V ⊂ Y is open such that f(x) ∈ V .
By definition, ∃ε > 0 s.t. B(f(x), ε) ⊂ V. By continuity of f at x, ∃δ > 0 such that
f (B(x, δ)) ⊂ B(f(x), ε). So B(x, δ) ⊂ f−1 (B(f(x), ε)) ⊂ f−1(V ).

Conversely suppose for any open set V ⊂ Y with f(x) ∈ V, f−1(V ) contains an
open set U 3 x. Then in particular for ∀ε > 0, f−1 (B(f(x), ε)) contains an open set
U with x ∈ U. By the definition of open set, ∃δ > 0 s.t. B(x, δ) ⊂ U, which implies
B(x, δ)⊂f−1 (B(f(x), ε)). So f (B(f(x), δ))⊂B(f(x), ε), i.e. f is continuous at x. �

As a consequence, we get the following characterization of continuous maps between
abstract metric spaces:

Theorem 3.5. A map f : (X, dX)→ (Y, dY ) is continuous if and only if for any open
set V in Y , the preimage f−1(V ) is open in X.

Proof. Suppose f is continuous, and V ⊂ Y is open. Then ∀x ∈ f−1(V ), by Proposition
3.4, f−1(V ) contains an open set U with x ∈ U. So f−1(V ) is open in X.

Conversely suppose for any open set V ⊂ Y , the preimage f−1(V ) is open in X.
For any x ∈ X, take any open set V in Y with f(x) ∈ V . Then f−1(V ) itself is a open
set in X which contains the point x. So by the Proposition above, f is continuous. �

As a consequence, we have

Corollary 3.6. If f : (X, dX)→ (Y, dY ) is continuous, d̃X and d̃Y are metrics topolog-

ically equivalent to dX and dY respectively, then f : (X, d̃X)→ (Y, d̃Y ) is continuous.

In conclusion:

Although we defined continuity via the metric structure, continuity is
really independent of the metric: it depends only on the collection of
open sets produced by the metric!

So continuity is a topological property, not a metric property.

To compare, let’s end today’s lecture with a similar conception: the “uniform
continuity” of a map. The definition is straightforward:

Definition 3.7. A map f : (X, dX)→ (Y, dY ) is uniformly continuous if

∀ε > 0, ∃δ > 0, s.t. dX(x1, x2) < δ ⇒ dY (f(x1), f(x2)) < ε.

Of course uniformly continuous functions are continuous, but the converse is not
true. It turns out that “uniform continuity” is NOT a topological property: it does
depend on the metric.
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Example. Let d be the standard metric on R, and let d1 be the metric on R induced
by the map arctan : R→ (−π

2
, π

2
), i.e.

d1(x, y) := | arctan(x)− arctan(y)|.
Then open balls of d1 are exactly open intervals in R. So d and d1 induces the same
set of open sets, i.e. they are topologically equivalent.

Consider the identity map

f : R→ R, f(x) = x.

Then f : (R, d) → (R, d) is uniformly continuous, but f : (R, d1) → (R, d) is NOT
uniformly continuous since

d1(n, n+ 1) = | arctan(n)− arctan(n+ 1)| → 0 as n→∞
but d(n, n+ 1) = 1.


