
Topology (H) Lecture 9
Lecturer: Zuoqin Wang
Time: April 26, 2020

AXIOMS OF COUNTABILITY

Last time we learned

• Topological properties of metric spaces: (T2), (T4), (A1)
• Metric properties of metric spaces: bounded, totally bounded, complete = ab-

solute closed, Lebesgue number
• Equivalent characterizations of compactness in metric spaces: compact = se-

quentially compact = limit point compact = complete and totally bounded

1. Axioms of countability

Let’s recall

Definition 1.1. A topological space (X,T ) is called first countable, or an (A1)-space,
if it satisfies

For any x ∈ X, there exists a countable family of open

neighborhoods of x, {Ux
1 , U

x
2 , U

x
3 , · · · }, such that for any

open neighborhood U of x, there exists n s.t. Ux
n ⊂ U.

(A1)

Such a family {Ux
n | n ∈ N} is called a countable neighbourhood base at x.

Remark. If (X,T ) is first countable, then for each point one can choose a countable
neighborhood base {Ux

n} satisfying

Ux
1 ⊃ Ux

2 ⊃ Ux
3 ⊃ · · · ,

since if one has a countable neighbourhood base V x
1 , V

x
2 , · · · at x, then one can take

Ux
1 = V x

1 , Ux
2 = V x

1 ∩ V x
2 , Ux

3 = V x
1 ∩ V x

2 ∩ V x
3 , · · · .

It is easy to check that {Ux
n |n ∈ N} is a decreasing neighbourhood base at x.

Last time we have seen

Proposition 1.2. Suppose (X,T ) is first countable.

(1) A subset F ⊂ X is closed if and only if it contains all its sequential limits, i.e.
for any sequence {xn} ⊂ F with xn → x ∈ X, we have x ∈ F.
• As a consequence: a map f : X → Y is continuous if and only if it is

sequentially continuous, i.e. if xn → x0, then f(xn)→ f(x0).
(2) If (X,T ) is also Hausdorff, then a subset A in X is limit point compact if and

only if it is sequentially compact.
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2 AXIOMS OF COUNTABILITY

Here are some examples of (A1) spaces and non-(A1) spaces.

Example.

(1) Any metric space is first countable since we can take

Ux
n = B(x,

1

n
).

(2) The Sorgenfrey line (R,Tsorgenfrey) is first countable since we can take

Ux
n = [x, x+

1

n
).

However, we will see soon that this space is NOT metrizable.
(3) The space (R,Tcocountable) is NOT first countable: For any sequence of open

neighborhoods {Un
x } of x, one can always construct a new open set by dropping

of one more point from ∩nUn
x , which cannot contain any Un

x .
(4) The space (M([0, 1],R) = R[0,1],Tproduct) is NOT first countable, since we have

seen (in Lecture 5 page 5) that there exists a non-closed subset

A = {f : [0, 1]→ R | f(x) 6= 0 for only countably many x}
which contains all its sequential limit points.

For Euclidean space Rn, we have seen in Lecture 4 that not only it has a countable
neighborhood base at each point x, but it has a base which contains only countably
many open sets,

B = {B(x, r) | x ∈ Qn, r ∈ Q>0}.
This is a stronger countability property, which deserve a name:

Definition 1.3. A topological space (X,T ) is called second countable, or an (A2)-
space, if it satisfies

there exists a countable family of open sets {U1, U2, U3, · · · }
which form a base of the topology T .

(A2)

Such a family {Un | n ∈ N} is called a countable base of T .

Obviously any second countable space is a first countable space. But the converse
is not true, for example, (R,Tdiscrete) is first countable as it is a metric space, but it is
not second countable.

There is a big class of metric spaces which is second countable:

Proposition 1.4. Any totally bounded metric space is second countable.

Proof. Suppose (X, d) is totally bounded. By definition, for any n, one has a finite
1
n
-net, i.e. there exists finitely many points xn,1, xn,2, · · · , xn,k(n) ∈ X such that

X =
k(n)[
i=1

B(xi,
1

n
).
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We claim that the countable collection

B := {B(xn,i, 1/n) : n ∈ N, 1 6 i 6 k(n)}
is a base of the metric topology T . To see this, we take any open set U and any
point x ∈ U . Then there exists ε > 0 s.t. B(x, ε) ⊂ U. Now we choose n ∈ N and
1 ≤ i ≤ k(n) s.t.

1

n
<
ε

2
and d(x, xn,i) <

1

n
.

It follows

B(xn,i,
1

n
) ⊂ B(x,

2

n
) ⊂ B(x, ε) ⊂ U,

i.e. the countable family B is a base. �

Since any compact metric space is totally bounded, we get as a consequence,

Any compact metric space is second countable.

So for example, [0, 1] is second countable.

Example. Consider the Hilbert cube

X = [0, 1]N = {(x1, x2, · · · ) | xi ∈ [0, 1]}.
It is a metric space with the metric (Lecture 2, page 2)

d((xn), (yn)) :=
∞X
n=1

2−n|xn − yn|.

So on X we have a metric topology. By construction it also admits a product topology.
Claim: The metric topology Tmetric and the product topology Tproduct on X coincide.

Proof. Take any metric ball B((xn), r). Take N0 large and ε0 small s.t.

2−N0 <
r

2
and ε0 <

r

2N0

.

Then for any point (yn) ∈ QN0
i=1(xi − ε0, xi + ε0)×

Q
i>N0

[0, 1], we have

d((xn), (yn)) <
N0X
i=1

2−iε0 +
X
i>N0

2−i < N0ε0 + 2−N0 < r.

It follows that any metric ball contains a smaller open set in the product
topology. Since metric balls generate Tmetric, we conclude that Tproduct

is stronger than Tmetric.
Conversely, for any Tproduct-open set of the form

U =
N0Y
i=1

(xi − ε0, xi + ε0)×
Y
i>N0

[0, 1]

which generates Tproduct, we can take r = 2−N0ε0 and it is easy to check
B((xn), r) ⊂ U . So Tmetric is also stronger than Tproduct. �
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As a consequence, we see that the Hilbert cube (X,Tproduct) is a compact metric space,
and thus is second countable.

Definition 1.5. We say a topological space (X,T ) is metrizable if there exists a metric
structure on X so that the metric topology coincides with T .

Remark. According to what we proved last time, any metrizable topological space must
be first countable, Hausdorff and normal.

On the other hand, if we endow X with the box topology, then (X,Tbox) is not
second countable. In fact, we have
Fact: (X,Tbox) is not even first countable.

Proof. Fix any point x = (xi) in X. Suppose on the contrary that

{Un(x) =
Y
i

U
(n)
i (xi) | n ∈ N}

is a countable neighborhood base of (X,Tbox) at (xi). Note that each

U
(n)
i (xi) is an open neighborhood of xi in [0, 1]. Let ÜU (n)

i (xi) $ U
(n)
i (xi)

be a strictly smaller open neighborhood of xi in [0, 1]. Then the set

U :=
Y
i

ÜU (i)
i (xi)

is an open neighborhood of the point (xn) in the box topology, but none
of the Un(x)’s is contained in U , a contradiction. �

It follows that ([0, 1]N,Tbox) is not metrizable.

If you think very hard about the countable base for the Euclidean space Rn that
we constructed, namely

B = {B(x, r) | x ∈ Qn, r ∈ Q>0},
you will find that a crucial reason is that Rn admits a countable dense subset Qn. It
turns out that this is the common feather for any second countable space,

Proposition 1.6. Any second countable topological space has a countable dense subset.

Proof. Let {Un|n ∈ N} be a countable base of (X,T ). For each n, we choose a point
xn ∈ Un. Let

A = {xn|n ∈ N}.
Then A is a countable subset in X. We claim that A = X. In fact, for any x ∈ X and
any open neighborhood U of x, there exists n s.t. x ∈ Un ⊂ U. In particular, U∩A 6= ∅.
So we get A = X. �

Remark. What we really proved is: In any topological space, there exists a dense subset
whose cardinality is no more than the cardinality of a base.
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Definition 1.7. A topological space (X,T ) is separable if it contains a countable
dense subset.

So we can rewrite the proposition we just proved as

Any second countable topological space is separable.

Remarks.

(1) The converse is NOT true. For example,
Fact: (R,Tsorgenfrey) is separable, but not second countable.

Proof. To show (R,Tsorgenfrey) is separable, it is enough to show Q =
R with respect to the Sorgenfrey topology, which follows from the fact
that for any x ∈ R and any interval [x, x+ ε), one can find a rational
number r ∈ [x, x+ ε).
To see (R,Tsorgenfrey) is not second countable, we let B be any base
of Tsorgenfrey. Then for any x ∈ R, there exists an open set Bx ∈ B
s.t.

x ∈ Bx ⊂ [x, x+ 1),

which implies x = inf Bx. As a consequence, for any x 6= y, we have
Bx 6= By. So B is an uncountable family. �

However, we have

Proposition 1.8. A metric space (or a metrizable topological space) is second
countable if and only if it is separable.

Proof. Let (X, d) be a separable metric space, and A = {xn|n ∈ N} be a
countable dense subset. Then

B = {B(xn,
1

m
)|n,m ∈ N}

is a countable base for the metric topology. �

Corollary 1.9. (R,Tsorgenfrey) is NOT metrizable.

(2) Separability is a very useful conception in functional analysis. It is used to
prove certain compactness results. Another well-known result is

A Hilbert space H is separable if and only if it has a countable or-
thonormal basis.

From this fact it is easy to construct non-separable Hilbert spaces. For example,
consider

whiteàl2(R) = {f : R→ R | f(x) 6= 0 for countably many x, and
X
x

|f(x)|2 <∞}.

It is an inner product space with inner product

〈f, g〉 :=
X
x∈R

f(x)g(x),
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which induces a metric structure and admits a completion. The resulting
Hilbert space can’t admit any countable orthogonal basis.

Roughly speaking, separability means you can use countably many data to “recov-
er” the whole space. Here is an example:

Proposition 1.10. Any compact metric space (X, d) is (topologically) homeomorphic
to a closed subset of the Hilbert cube [0, 1]N.

Proof. Since X is compact, it is bounded. By scaling the metric d, we may assume
diam(X) 6 1. Let A = {xn|n ∈ N} be a countable dense subset in X. We define

F : X → [0, 1]N

x 7→ (d(x, x1), d(x, x2), · · · , d(x, xn), · · · ).

Then we have:

• F is continuous since each πn ◦ F = d(x, xn) is continuous.
• F is injective: if F (x) = F (y), then

d(x, xn) = d(y, xn), ∀n.

Since A is dense, there exists xnk
→ x. By continuity of d,

d(x, y) = lim
k→∞

d(xnk
, y) = lim

k→∞
d(xnk

, x) = 0.

• [0, 1]N is Hausdorff since it is a metric space.

It follows [see PSet 3-3-1(a)] that the map

F : X → F (X) ⊂ [0, 1]N

is a homeomorphism. Obviously, F (X) is closed, since it is “a compact subset in a
Hausdorff space”. �

Remark. Countability is always combined with compactness. There are some other
conceptions which has a mixed flavor of countability and compactness, e.g .

Definition 1.11. A topological space (X,T ) is Lindelöf if any open covering U of
X admits a countable sub-covering.

Definition 1.12. A topological space (X,T ) is countably compact if every countable
open covering of X admits a finite sub-covering.

We will not study them here, instead we will leave some properties as exercises.
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2. Urysohn’s metrization theorem

We have seen some necessary conditions for a topological space to be metrizable:
It must be first countable, Hausdorff and normal. On the other hand, these conditions
are not sufficient. For example,
Fact: The Sorgenfrey line (R,Tsorgenfrey) is first countable, Hausdorff, normal but not
metrizable.

Proof. We have seen that (R,Tsorgenfrey) is first countable but not metriz-
able. Obviously it is Hausdorff, since any x < y can be separated
by open sets [x, (x + y)/2) and [y, y + 1). It remains to show that
(R,Tsorgenfrey) is normal, i.e. disjoint closed sets can be separated by
disjoint open sets. So we let A,B be disjoint closed sets. For any a ∈ A,
we have a ∈ Bc. Since Bc is open, we can take εa > 0 such that
[a, a + εa) ∩ B = ∅. Similarly for any b ∈ B we take εb > 0 such that
[b, b+ εb) ∩ A = ∅. Note that we always has

[a, a+ εa) ∩ [b, b+ εb) = ∅, ∀a ∈ A and b ∈ B,

otherwise we will have b ∈ [a, a + εa) or a ∈ [b, b + εb), which is a
contradiction. It follows that

UA := ∪a∈A[a, a+ εa) and UB := ∪b∈B[b, b+ εb)

are disjoint open sets separating A and B. �

Although the metrization problem is subtle in general, it has a very simple answer
for second countable spaces.

Theorem 2.1 (Urysohn’s metrization theorem). A second countable topological space
(X,T ) is metrizable if and only if it is Hausdorff and normal.

Remark.

• The proof is again “from countably many information to recover the whole”.
However, we can’t replace the assumption “second countable” by “separable”,
as can be seen by the counterexample (R,Tsorgenfrey).
• The proof is similar to that of Proposition 1.10: We will embed (X,T ) into

the Hilbert cube [0, 1]N, so that (X,T ) inherits a subspace metric! The only
issue is: we don’t use countably many points to separate. Instead, we need to
make use of the countable base.
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Our major tool in the proof is the following very important result of Urysohn 1

which we will prove next time:

Lemma 2.2 (Urysohn’s Lemma). A topological space (X,T ) is normal if and only if
for any disjoint closed sets A,B ⊂ X, there exists a continuous function f : X → [0, 1]
such that f−1(0) ⊃ A, f−1(1) ⊃ B.

Proof of Urysohn’s Metrization Theorem.

Step 1. As we mentioned above, we want to construct an “embedding”

F : X → [0, 1]N.

To do so, we let B = {Bn|n ∈ N} be a countable base of T . Consider

I = {(m,n)|Bn ⊂ Bm} ⊂ N× N.

Claim: I 6= ∅.
Proof of Claim. For any x ∈ X and any open neighborhood U of x, since
{x} and U c are disjoint closed sets in X, by the definition of normal
space, there exists open neighborhood U1 of x and open neighborhood
V1 of U c such that

U1 ∩ V1 = ∅.
Since B is a base, there exists Bm ∈ B s.t.

x ∈ Bm ⊂ U1.

Similarly since {x} and Bc
m are disjoint closed sets, there exists disjoint

open sets U2, V2 s.t.

x ∈ U2, and Bc
m ⊂ V2.

Now take Bn ∈ B s.t.

x ∈ Bn ⊂ U2.

Then

Bn ⊂ U2 ⊂ V c
2 ⊂ (Bc

m)c = Bm.

�

In fact we proved more:

For any x ∈ U , there exists (m,n) ∈ I s.t. x ∈ Bn and U c ⊂ Bc
m.

1P. Urysohn was a famous Soviet mathematician. He was awarded his habilitation with topic
“integral equations” at Moscow University in June 1921, and turned to topology after that. In
about three years he made a big contribution to dimension theory, and proved many important and
fundamental theorems including Urysohn lemma and Urysohn metrization theorem. He died in 1924,
at age 26, while swimming off the coast of Brittany, France.
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Step 2. Now for any (m,n) ∈ I, by applying Urysohn’s lemma to the pair of disjoint

closed sets Bn and Bc
m, we can find a continuous function gn,m : X → [0, 1] s.t.

gn,m(Bn) = 1 and gn,m(Bc
m) = 0.

Since I is a countable set, we will renumber gn,m’s to f1, f2, f3, · · · . Note that the
sequence of functions f1, f2, · · · satisfy the property that

∀x ∈ X and any open U 3 x, there exists n s. t. fn(x) = 1, fn(U c) = 0.

Step 3. Finally we define

F : X → [0, 1]N, x 7→ (f1(x), f2(x), · · · ).
Claim: F is a homeomorphism from X to F (X) in [0, 1]N .

Proof of Claim. Since each fi is continuous, F is continuous. Moreover,
F is injective since for any x 6= y, there exists n s.t.

fn(x) = 1 and fn(y) = 0.

So F is a continuous and bijective map from X to F (X). To prove F is
a homeomorphism onto its image, we only need to prove F is an open
map onto its image F (X).

We let U ⊂ X be open, and z0 ∈ F (U). Take x0 ∈ U such that
z0 = F (x0). Take n s.t.

fn(x0) > 0 and fn(U c) = 0.

Let V = π−1n ((0,+∞)), where πn is the projection map from [0, 1]N to
its nth component. Then V is open in [0, 1]N. So

W := V ∩ F (X)

is open in F (X).
Sub-Claim: z0 ∈ W ⊂ F (U).

Proof of Sub-Claim. We have z0 ∈ W since

πn(z0) = πn(F (x0)) = fn(x0) > 0.

We have W ⊂ F (U) since for any z ∈ W , there exists x s.t.

F (x) = z and fn(x) > 0,

which implies that x ∈ U and thus z ∈ F (U). �
As a consequence, F (U) is open in F (X). So the Claim is proved. �

Since F (X) is a subset in metric space [0, 1]N, it admits a subspace metric whose
topology is the same as the subspace topology. Now pull-back the metric to X. It is
obvious that the resulting metric topology on X coincides with the original topology
on X. �


