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TIETZE EXTENSION THEOREM

Last time we learned:

• Separation axioms: (T1), (T2), (T3), (T4)

– The only “(Ti) =⇒ (Tj)” (1 ≤ i 6= j ≤ 4) is (T2) =⇒ (T1)

– (T1) + (T4) =⇒ (T3) , (T1) + (T3) =⇒ (T2)

– compact + (T3) =⇒ (T4) , compact + (T2) =⇒ (T3)

– Lindelöf + (T3) =⇒ (T4)

• Urysohn’s lemma: (X,T ) is (T4) if and only if disjoint closed subsets can be
separated by a continuous map.

– A,B disjoint closed sets in (T4) space =⇒ ∃ continuous f : X → [0, 1]
such that f(A) = 0, f(B) = 1.

– In a (T4) space, A = f−1(0) for some continuous function f : X → [0, 1]
⇐⇒ A is a closed Gδ set.

1. Tietze Extension Theorem

Although the function we get in Urysohn’s lemma looks too special, they can
be used as building blocks to construct more complicated continuous functions with
certain properties, as we have seen in the proof of Urysohn’s metrization theorem and
in the proof of the variant of Urysohn’s lemma. In this section we will give another
application of Urysohn’s lemma, Tietze extension theorem,1 which can be viewed as a
generalization of Urysohn’s lemma (although they are in fact equivalent), and thus is
directly applicable to more situations.

We start with a trivial definition.

Definition 1.1. Let A ⊂ X be a subset. We say a map f̃ : X → Y is an extension of
a map f : A→ Y if f̃ = f on A.

In analysis, it is always important to extend a given function from a smaller domain
to a larger domain, while keeping some properties, e.g. continuity (or smoothness),

1According to wikipedia, the theorem was first proved by Brouwer and Lebesgue for the special
case of the theorem when X is Rn, and then was extended by Tietze to all metric spaces. The current
version for normal space was proved by Urysohn.
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boundedness. As a result, Tietze extension theorem is one of the most useful theorems
in topology.

Theorem 1.2 (Tietze Extension Theorem). A topological space (X,T ) is normal if
and only if for any closed set A ⊂ X and given any continuous function f : A→ [0, 1],

there exists a continuous function ef : X → [0, 1] which is an extension of f .

Proof.

(⇐) Let A,B be disjoint closed sets in X. Then A ∪B is closed in X, and

f : A ∪B → [0, 1], f(x) =

¨
0, x ∈ A
1, x ∈ B

is a continuous function on A ∪ B. By assumption, f can be extended to a
continuous function ef : X → [0, 1] such that ef = f on A ∪B. So by Urysohn’s
lemma, X is (T4).

(⇒) The idea
Consider the “restriction map”

R : C(X, [0, 1])→ C(A, [0, 1]), g 7→ g|A,
where C(X, [0, 1]) means the space of all continuous maps f : X →
[0, 1]. Then we want to prove that R is surjective, i.e. we want to
solve the equation

Rg = f.

We will apply a standard trick in analysis:
À First find an approximate solution.
Á Then iteratively find better and better approximations.
Â Finally prove the sequence of approximate solutions
converges to a true solution.

Now we realize the idea. For simplicity, we replace [0, 1] by [−1, 1].

Step 1 [Construction an approximate solution]

First we approximate the function f by

f1 : A→ R, f1(x) =

8<:
1/3, if f(x) > 1/3,
f(x), if |f(x)| 6 1/3,
-1/3, if f(x) 6 −1/3.

By construction we have

|f(x)− f1(x)| 6 2

3
, ∀x ∈ A.

Then we use Urysohn’s lemma to find a continuous function g : X → R s.t.

Rg ≈ f1.
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There is a very obvious candidate for such a function g: since

A1 :=
�
x ∈ A

����f(x) 6
1

3

�
and B1 :=

�
x ∈ A

����f(x) 6 −1

3

�
are both closed in X, there exists a continuous g : X → [−1

3
, 1
3
] s.t.

g(x) =
1

3
on A1, g(x) = −1

3
on B1.

It’s easy to see that g(x) also satisfies

|f(x)−Rg(x)| 6 2

3
, ∀x ∈ A.

Step 2 [Do iteration]

Write f = f1. According to Step 1, we have obtained a continuous function
g1 : X → [−1

3
, 1
3
] s.t.

|f1(x)−Rg1(x)| 6 2

3
, ∀x ∈ A.

Repeat Step 1 with f replaced by f2 = f1−Rg1, we can construct a continuous
function g2 : X → [−1

3
· 2
3
, 1
3
· 2
3
] s.t.

|f2(x)−Rg2(x)| 6 (
2

3
)2, ∀x ∈ A.

Iteratively we can find a sequence of continuous functions

gn : X →
�
−1

3
(
2

3
)n−1,

1

3
(
2

3
)n−1

�
s.t. if we denote fn+1 = fn −Rgn, then

|fn(x)−Rgn(x)| 6 (
2

3
)n, ∀x ∈ A.

Step 3 [Converges to a solution]

Let ef(x) =
∞X
n=1

gn(x).

Since each gn is continuous on X, and

|gn(x)| 6 1

3
(
2

3
)n−1,

we see the series converges uniformly and thus ef is continuous on X, and

| ef(x)| 6 1, ∀x ∈ X.
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Finally for ∀x ∈ A, we have�����f(x)−
NX
n=1

gn(x)

����� = |f1 − g1 − · · · − gN |

= |f2 − g2 − · · · − gN |
= · · ·
= |fN − gN |

6 (
2

3
)N ,

So f(x) = ef(x) for x ∈ A.
�

2. Various generalizations

Obviously in the statement of Tietze extension theorem, we can replace the target
space [0, 1] by any closed interval [a, b]: We only need to compose the functions we get
with the linear transform

t 7→ a+ t(b− a)

and its inverse transform.

A not-that-obvious extension is: we can replace [0, 1] by R.

Theorem 2.1 (Tietze extension theorem for unbounded functions). Suppose X is
normal and A ⊂ X is closed. Then any continuous function f : A → R can be
extended to a continuous function ef : X → R.

Proof. Composing f with the function arctan(x), we get a continuous function

f1 := arctan ◦f : A→ (−π
2
,
π

2
).

By Tietze extension theorem, we can extend f1 to a continuous function

ff1 : X → [−π
2
,
π

2
].

Let

B = ff1−1(±π
2

).

Then B is closed in X, and B ∩A = ∅. By Urysohn’s lemma, there exists a continuous
function g : X → [0, 1] s.t.

g(A) = 1 and g(B) = 0.

Define

h(x) = ff1(x)g(x).
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Then h is a continuous function mapping X into (−π
2
, π
2
). Finally we letef(x) = tanh(x).

Then ef : X → R is continuous, andef(x) = tanh(x) = tanff1(x) = tan f1(x) = x, ∀x ∈ A.
�

Remark. One can also extend continuous vector-valued functions

f : A→ [0, 1]n, f : A→ Rn, or f : A→ [0, 1]S

to continuous vector-valued functions on X, i.e. toef : X → [0, 1]n, ef : X → Rn, or ef : X → [0, 1]S,

where S is an arbitrary set. To do so, one only need to extend each component of
f separately. [Note: A map to the product space is continuous if and only if all its
components are continuous.]

On the other hand, for a topological space Y , in general one can’t expect to extend
any continuous function f : A→ Y to a continuous function ef : X → Y .

• To extend a function f : {0, 1} → Y to a continuous mapef : [0, 1]→ Y,

a necessary condition is: f(0) and f(1) should lie in the same “path component”
of Y .
• To extend a continuous map f : S1 → Y to a continuous map ef : D → Y ,

where D is the unit disc in the plane, one need require the image f(S1) to be
“contractible” in Y . In particular, we will see that the identity map

f : S1 → S1, x 7→ x

can not be extended to a continuous map ef : D → S1. [Brouwer fixed point
theorem]

We will study these connectivity phenomena in the second half of this course.

Remark. One may pose extra assumptions on the extension. For example, one can
extend smooth functions to smooth functions, which is known as Whitney extension
theorem. One can also require the extension to preserve other properties like Lips-
chitz/Hölder continuity (for metric space), or boundedness (See PSet).

To apply Urysohn’e lemma or Tietze extension theorem, one need to assume that
the source space is normal. One class of normal spaces that appears in many applica-
tions are those topological spaces that are both compact and Hausdorff. However, in
some other applications, compactness is too strong, and we only have “local compact-
ness” and Hausdorff. Recall [PSet 3-2-2(c)]:
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Definition 2.2. A topological space (X,T ) is called locally compact if for any x ∈ X,
there exists a compact set Kx and an open set Ux such that

x ∈ Ux ⊂ Kx.

Notation. A locally compact Hausdorff space will be abbreviated as LCH.

Example.

• Any compact Hausdorff space is LCH.
• Rn is LCH.
• More generally, any locally Euclidian Hausdorff space is LCH.

– We say a topological space is locally Euclidian if for any x ∈ X, there
exists a neighborhood U of x which is homeomorphic to an open ball in
Euclidian space.

• Let K be any compact Hausdorff space. Let p be any point such that

X = K \ {p}
is non-compact. Then
Fact 1. X is a non-compact LCH.

As a subspace of a Hausdorff space, X is Hausdorff. To see X is
locally compact, for any x ∈ X ⊂ K, since K is Hausdorff we can find
disjoint open sets U, V in K such that x ∈ U , p ∈ V . Now K \ V is
a closed subset in compact space K, and thus is compact in K. Since
K \ V ⊂ X, it is also compact in X. By definition it is a compact
neighborhood of x in X, since U ⊂ K \ V .

Conversely,
Fact 2. Any non-compact LCH arises this way:

According to PSet3-1-3(b), any non-compact topological space admits
a one-point compactification X∗ = X ∪{∞} 2. In the case X is a non-
compact LCH, one can easily check that the X∗ is a compact Hausdorff
space. In particular, this shows that any LCH can be realized an an
open subspace of some compact Hausdorff space.

Remark. One can prove that the space Qp, i.e. the completion of Q under the
p-adic metric, is locally compact, and thus LCH. As a result, analysis on LCH
is very useful in p-adic analysis.

• Q ⊂ R is NOT locally compact. [Why?]
• The Sorgenfrey line (R,TSorgenfrey) is NOT locally compact. [Why?]

2The one-point compactification is also known as the Alexandrov compactification, and sometimes
denoted by αX.



TIETZE EXTENSION THEOREM 7

LCHs appear widely in analysis. For LCHs, people also want to apply Urysohn’s
lemma or Tietze extension theorem to construct continuous functions with specific
properties. Unfortunately, not all LCH’s are normal, so that we can’t extend all con-
tinuous functions defined on closed sets. [Note: normal is a necessary and sufficient
condition in Urysohn’e lemma as well as in Tietze extension theorem.] However, we
can prove that a weaker version holds for LCH, which is one of the most useful results
in the analysis on LCH:

Theorem 2.3 (Urysohn’s Lemma, LCH version). Let X be a LCH, and K,F be disjoint
subsets in X with K compact and F closed. Then there exists a continuous function
f : X → [0, 1] such that f(K) = 1 and f(F ) = 0.

Proof. The proof is based on the following separation property in LCH. [You can com-
pare this with the equivalent characterization of (T4) that we proved last time.]

Lemma 2.4. Let X be a LCH, K be a compact set in X, and U be an
open set in X such that K ⊂ U . Then there exists an open set V such
that V is compact, and

K ⊂ V ⊂ V ⊂ U.

We will leave the proof of the lemma as an exercise. Applying the lemma to the pair
K ⊂ F c, we can find an open set V with V compact, such that

K ⊂ V ⊂ V ⊂ F c.

Applying the lemma again, but now to K ⊂ V , we will find an open set U with U
compact, such that

K ⊂ U ⊂ U ⊂ V.

Since V is a compact Hausdorff space, it is normal. According to Urysohn’s lemma,
one can find a continuous function g : V → [0, 1] such that

g(K) = 1, g(V \ U) = 0.

We can extend g to a continuous function f : X → [0, 1] by simply “extend by 0”, i.e.

f(x) =

¨
g(x), x ∈ V ,
0, x ∈ X \ V .

Then f is continuous on both V and X \ U . It follows that f is continuous on X.
Obviously f(K) = 1 and f(F ) = 0. �

In a very similar way, one can prove the following LCH version of Tietze extension
theorem. We will leave the proof as an exercise as well:

Theorem 2.5 (Tietze extension theorem, LCH version). Let X be a LCH, and K be
a compact subset. Then any continuous function f : K → R can be extended to a
compactly supported continuous function f : X → R.
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3. Various applications

Tietze extension theorem has many applications. For example, in real analysis,
Tietze extension theorem was used to produce a sequence of continuous functions
that approximates (a.e.) a given measurable function. In what follows we give more
applications of Tietze extension theorem.

Application 1: Yet another characterization of compactness for metric spaces.

We have given several different characterization of compactness for metric spaces.
Here is another one:

Proposition 3.1. A metric space (X, d) is compact if and only if any continuous
function f : X → R is bounded.

Proof. If (X, d) is compact, then by the extreme value theorem, any continuous function
f : X → R is bounded.

To prove the converse, we argue by contradiction. Suppose (X, d) is non-compact,
then there exists A = {x1, x2, · · · } such that A′ = ∅. It follows that A is closed and
each xn is isolated in A. So the function

f : A→ R, f(xn) = n

is continuous on A. By Tietze extension theorem, there exists a continuous functionef : X → R such that ef = f on A. Obviously ef is an unbounded continuous function
on X, a contradiction. �

Application 2: From the Cantor set to space-filling curves

Our second application is concerned with the Cantor set C. Recall

C = [0, 1] \
∞[
n=1

3n−1−1[
k=0

(
3k + 1

3n
,
3k + 2

3n
).

As we mentioned at the beginning of Lecture 7, one way to understand C is via the
ternary representation of real numbers, i.e. regard C as the image of the map

g : {0, 1}N → [0, 1], a = (a1, a2, · · · ) 7→
∞X
k=1

2

3k
ak.

We have checked in PSet 3-2-1(a)) that the map g is a homeomorphism from ({0, 1}N,Tproduct)
onto the Cantor set C.

On the other hand, the map

h : {0, 1}N → [0, 1]2, a = (a1, a2, · · · ) 7→
 ∞X
k=1

a2k−1
2k

,
∞X
k=1

a2k
2k

!

is continuous and surjective:
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To check continuity, one only need to check continuity of each compo-
nent, which can be done easily via sub-base. The surjectivity is just
another way to say that each real number has a binary representation.
[Note: h can’t be injective, otherwise as a bijective continuous map from
a compact space to a Hausdorff space, it will has to be a homeomor-
phism, which is absurd.]

As a consequence, we get a continuous surjective map

h ◦ g−1 : C → [0, 1]2.

Since C is closed in [0, 1], Tietze extension theorem indicates that there exists a con-
tinuous surjective map

f : [0, 1]→ [0, 1]2.

Definition 3.2. Any continuous surjective map from [0, 1] to [0, 1]2 is called a Peano
Curve or a space-filling curve.

Remarks.

(1) By using a very similar argument, one can easily construct surjective continuous
map

f : [0, 1]→ [0, 1]n

or even surjective continuous map

f : [0, 1]→ [0, 1]N.

(2) Of course our argument is an “non-constructive” proof of the existence Peano
curve. In literature there are also many “constructive proofs” which iteratively
construct such a curve.
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(3) The space-filling curves are not just theoretic monsters. They have many prac-
tical applications in real life. For example, it is used in storing multidimensional
data into computer (which is arranged linearly), e.g. Google maps, so that when
you move a little bit on the map, you only move a little bit in the memory, that
is why we require continuity of the function.

Application 3: The Stone-Čech compactification of LCHs.

Let X be a non-compact LCH. We have seen how to compactify X to a compact
Hausdorff space via the Alexandrov compactification (i.e. the-one point compactifica-
tion). Geometrically, the Alexandrov compactification αX of X is a compactification
that glue all “open ends” of X together, which is not as good as we want in many ap-
plications. Here is another widely used way to compactify X, via continuous functions.

As usual we will denote by C(X, [0, 1]) the space of all continuous functions f :
X → [0, 1]. Consider the “huge product space”

Q = [0, 1]C(X,[0,1]),

equipped with the product topology. Since compactness and Hausdorff are both pro-
ductive [PSet 4-2-2], Q is a compact Hausdorff space.

Theorem 3.3. Let X be a LCH. Then the map θ defined by

θ : X → Q, x 7→ (f(x))f∈C(X,[0,1]).

is a homeomorphism to its image θ(X).

Proof. For simplicity we denote

βX = θ(X).

It is compact since it is a closed subset in the compact space Q. It is Hausdorff since
it is a subspace of the Hausdorff space Q.

Before we prove the theorem, first note that any f ∈ C(X, [0, 1]) induces a map

πf : Q→ [0, 1]

is continuous since it is just the coordinate map. We denote

f̃ = πf |βX : βX → [0, 1].

Then f̃ is continuous and satisfies f̃ ◦ θ = f . Since βX is the closure of θ(X), such

a continuous function f̃ : βX → [0, 1] is unique. Moreover, by our construction, if

suppf ⊂ K for some compact set K, then f̃ = 0 on βX \ θ(K).

To prove θ : X → θ(X) is a homeomorphism, it is enough to prove f is continuous,
bijective and open.

• θ is continuous since each component of θ is continuous.
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• θ is injective (and thus bijective onto θ(X)): For any x 6= y, by Urysohn lemma
one can find continuous function f ∈ C(X, [0, 1]) such that f(x) 6= f(y). Then

the continuous function f̃ satisfies f̃(θ(x)) 6= f̃(θ(y)). So θ(x) 6= θ(y).
• θ is open: For any open set U in X, and any point y = θ(x) ∈ θ(U), by locally

compactness one can find a compact set K ⊂ U such that x ∈ Int(K) ⊂ K. [To
get such K, one can apply Lemma 2.4 to the pair {x} ⊂ U . The set V we get
there can be taken as K here.] According to LCH version of Urysohn’s lemma,
there exists f ∈ C(X, [0, 1]) such that f(x) = 1 and supp(f) ⊂ K. Consider

the function f̃ : βX → [0, 1] as constructed above. Then f̃ = 0 on βX \ θ(U).
It follows that the open set

V = f̃−1((0,+∞)) ⊂ βX

is contained in θ(U). Clearly we have y ∈ V since f(x) = 1.

�

The closure of the image,
βX := θ(X),

is a compactification of X. It is known as the Stone-Čech compactification of X.

In the proof, we also get the following important property of the Stone-Čech com-
pactification.

Proposition 3.4. Let X be a non-compact LCH. Then any bounded continuous func-
tion f : X → R can be “extended” uniquely to a continuous function f̃ : βX → R.

Remark. So a space may have many different compactifications. We can view each
compactification X as a pair (ι,X), where ι : X → X is a homeomorphism from
X to its image ι(X). We say a compactification (ι,X) of X is finer than another

compactification (ι′, X
′
), (and say (ι′, X

′
) is coarser than (ι,X)), if three exists a

continuous map g : X
′ → X such that ι = π ◦ ι′. One can prove that for non-compact

LCHs, the Alexandrov compactification αX is the coarsest compactification, while the
Stone-Čech compactification is the finest compactification.

Application 4: Partition of unity.

Our last application is to “Partition of unity”, which we will have more to say next
time. Today we will only prove a simple version:

Theorem 3.5 (“Partition of unity”). Let Kα be closed subsets in a normal space X
such that [

α

Kα = X.

Let Uα be open neighbourhoods of Kα’s which is locally finite, i.e.

∀x ∈ X, ∃ open Ux 3 x s.t. Ux ∩ Uα 6= ∅ for at most finitely many α’s.
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Then there exist continuous functions fα : X → [0, 1] such that

Àfα > 0 on Kα.
Áfα = 0 on U c

α.
Â
P
α
fα(x) = 1,∀x ∈ X.

Proof. By Tietze extension theorem (in fact, Urysohn’s lemma), there exist continuous
functions gα : X → [0, 1] such that

gα = 1 on Kα, gα = 0 on U c
α.

Define
g(x) =

X
α

gα(x).

Then on open set Ux, g is a finite sum of continuous functions. So g is well-defined and
is continuous on each Ux, and hence g is well-defined and is continuous on the whole
of X. Moreover,

g(x) ≥ 1, ∀x
since

S
α
Kα = X. Now we set

fα(x) =
gα(x)

g(x)
.

It is easy to check that fα’s are what we need. �

Remark. Next time we will discuss topological conditions which guarantee the local
finiteness assumption above, as well as applications of “partition of unity”.


