
Topology (H) Lecture 16
Lecturer: Zuoqin Wang
Time: May 12, 2020

PATH, CONTINUOUS DEFORMATION AND HOMOTOPY

Last time we learned:

• Connectedness: many different characterizations of disconnected
– Generalized Intermediate Value Theorem
– closure, union (under conditions)
– connectedness is productive (and divisible)

• Connected components: closed (but not necessarily open).
– A numerical topological invariant: the number of connected components
– πc : T OP → T OP totdis

1. Path and Path-connectedness

We now turn to a closely related conception: the path connectedness. It is more in-
tuitive, and, as we will see soon, can be extended to define “higher level” connectedness
which is described by computable algebraic quantities.

Definition 1.1. Let X be a topological space, and x, y ∈ X. A path from x to y is a
continuous map γ : [0, 1]→ X s.t.

γ(0) = x, γ(1) = y.

In the case x = y, we will call the path a loop with base point x.

Notations for path space and loop space:

Ω(X;x0, x1) = {γ ∈ C([0, 1], X) | γ(0) = x0, γ(1) = x1},
Ω(X;x0) = {γ ∈ C([0, 1], X) | γ(0) = γ(1) = x0}.

Remark. In our definition, path is a continuous map, not just a “geometric curve”. In
other words, different parametrizations of the same geometric curve will be regarded
as different paths.

Remark. It is possible to define some “algebraic operations” on paths. For example,

• Given any path γ from x to y, we can “reverse” the path to get a new path γ̄
from y to x by letting

γ̄(t) := γ(1− t).
[The map γ̄ is continuous because it is the composition of two continuous maps:
the map γ and the map t 7→ 1− t.]
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2 PATH, CONTINUOUS DEFORMATION AND HOMOTOPY

• Given two paths, γ1 from x to y and γ2 from y to z, we can “connect” the two
paths to get a new path γ1 ∗ γ2 from x to z by letting

γ1 ∗ γ2(t) =

¨
γ1(2t), 0 ≤ t ≤ 1

2
,

γ2(2t− 1), 1
2
≤ t ≤ 1.

[The continuity of γ1 ∗ γ2 follows from the pasting lemma in PSet 2-2-2.]
• There is a special path from x to x: the constant path γx defined by

γx(t) = x, ∀t ∈ [0, 1].

Unfortunately these operations are not “very algebraic”. For example, γ ∗ γ̄ is different
from γ̄ ∗ γ, since the first one is a path from x to x while the second one is a path
from y to y. Even in the case x = y, they are still different paths since they are loops
going in “opposite directions”. Also we want the constant path γx to be the identity
element, but it is not. We will show how to solve this problem and develop a correct
“algebra of paths” next time.

Definition 1.2. We say a topological space X is path-connected is any two points in
X can be connected by a path.

It is easy to prove that the conception of path-connectedness is stronger than
connectedness:

Proposition 1.3. If X is path-connected, then X is connected.

Proof. By contradiction. Suppose there exists nonempty disjoint open sets A and B
such that X = A ∪B. Take a point x in A, y in B and a path γ from x to y. Then

[0, 1] = γ−1(A) ∪ γ−1(B)

is the union of non-empty disjoint open sets, which contradicts with the connectedness
of [0, 1]. �

Example.

(1) Any connected open set U ⊂ Rn is path connected.
Reason: [The continuity method] Fix any x ∈ U and consider the set

A = {y ∈ U | there exists a path from x to y}.
Then
• A is open: For any y ∈ A, we take ε > 0 small enough such that
B(y, ε) ⊂ U . Let γ1 be a path in U connecting x to y. For any
y1 ∈ B(y, ε), let γ2 be the “line segment path” connecting the
center y to y1, which is given explicitly by

γ1(t) = ty1 + (1− t)y.
Then γ ∗ γ1 is a path from x to y1. So y1 ∈ A.



PATH, CONTINUOUS DEFORMATION AND HOMOTOPY 3

• A is closed: By the same argument one can prove if y 6∈ A, then
for any point y1 ∈ B(y, ε), we also have y1 6∈ A. So Ac is open,
i.e. A is closed.

Since U is connected and since A is non-empty (we always have x ∈ A
since we have the constant curve), we conclude A = U . So any point
in U can be connected to x. It follows that any two points can be
connected by a path: first connect one point to x, then connect x to
the other point.
By the same argument one can prove:
Fact: A topological manifold is path connected if and only if it is

connected.
(2) R2 \Q2 is path connected.

Reason: Since Q2 is a countable set, for any x ∈ R2 \Q2, there exists
uncountably many lines l s.t.

x ∈ l ⊂ R2 \Q2.

Now for x 6= y ∈ R2 \ Q2, pick two such lines, one contains x and
the other contains y, such that they are not parallel. Now you travel
from x through the first line to the intersection point, then through
the second line to y.

(3) The topologist’s sine curve

X = {(x, sin π
x

) | 0 < x ≤ 1} ∪ {(0, y) | − 1 ≤ y ≤ 1}

is connected (we have seen this in Lecture 15). But it is NOT path connected.
Reason: There is no path in X connecting the point (0, 0) to (1, 0).
To see this we suppose γ : [0, 1]→ X is a path with γ(0) = (0, 0) and
γ(1) = (1, 0). Write γ(t) = (γ1(t), γ2(t)). Let s = sup{t | γ1(t) = 0}.
Then s < 1, γ1(s) = 0 and γ1(t) > 0 for all t > s. It follows that for
t > s, γ2(t) = sin π

γ1(t)
. Now take a decreasing sequence tn → s with

γ1(tn) = 2
2n+1

. [The existence of such sequence is guaranteed by the
continuity of γ1.] Then γ2(tn) is an oscillating sequence and thus does
not converge to γ2(s), a contradiction.

Of course you can make the space path connected by adding a path:
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Remark. So in general
• connected space need not be path connected.
• the closure of path connected subset need not be path connected.

If you think about the above example carefully, you will find that near any “bad
point”, say (0, 0), inside any small neighborhood you can find infinitely many
“vertical curves” that are disconnected:

In other words, it is not “locally path connected” at these bad points:

Definition 1.4. We say a topological space X is locally path connected at x if
for any open neighborhood U of x, there exists an open neighborhood V of x
inside U which is path connected.

As usual, we say a topological space X is locally path connected if it is locally
path connected at any point.

For example, any open set in Rn (or more generally any locally Euclidian
space which includes all topological manifolds) is locally path connected. It
turns out that any connected topological space without such bad points is
path-connected, and the proof is the same as the proof of path connectedness
for connected Euclidian domains above:

Proposition 1.5. If X is connected and locally path connected, then X is path
connected.

Proof. Fix any x ∈ X. Let

P = {y ∈ X | y can be connected by path to x}.

By locally path connectedness,
• if a point is in P , then a neighborhood of this point is in P ,
• if a point is in P c, then a neighborhood of this point is in P c.

So P is both open and closed. Since X is connected and P is non-empty, we
must have P = X. �
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Last time we showed connectedness is preserved under continuous maps, under
union with nonempty intersection, and under products. The same properties holds for
path connectedness, and the proofs are simpler:

Proposition 1.6. Let f : X → Y be continuous. Then for any path connected subset
A ⊂ X, the image f(A) is path connected.

Proof. For any f(x1), f(x2) ∈ f(A), we pick a path γ : [0, 1]→ A from x1 to x2. Then
f ◦ γ : [0, 1]→ f(A) is a path from f(x1) to f(x2). �

As a consequence, any quotient space of a path connected space is still path con-
nected. So like connectedness, “path connectedness” is also a divisible topological
property.1

Proposition 1.7. Let Xα be path connected and ∩αXα 6= ∅. Then ∪αXα is path
connected.

Proof. Take x0 ∈ ∩αXα. For any x1 ∈ Xα1 and x2 ∈ Xα2 , there exist paths γ1 from x1
to x0 and γ2 from x0 to x2. It follows γ1 ∗ γ2 is a path from x1 to x2. �

Proposition 1.8. If each Xα is path connected, then the product space
Q
αXα is also

path connected (w.r.t. the product topology).

Proof. For any (xα), (yα) ∈ QαXα, we pick paths γα : [0, 1]→ Xα from xα to yα. Then

γ : [0, 1]→
Y
α

Xα, γ(t) = (γα(t))

is continuous and is a path from γ(0) = (xα) to γ(1) = (yα). [Here we used the fact a
map to the product is continuous iff each component of the map is continuous.] �

We can also define an equivalence relation via path:

x
p∼ y ⇐⇒ ∃ path in X connecting x and y.

It is easy to check
p∼ is a equivalence relation: the three conditions for equivalence

relation are exactly the three items in the remark at the end of page 1.

Definition 1.9. Let X be a topological space.

(1) Each equivalence class for
p∼ is called a path component of X.

(2) The set of
p∼-equivalence classes is denoted by π0(X).

Remark. Last time we proved that any connected component is a closed subset (which
need not be open). From the example of topologist’s sine curve we conclude that a
path component could be neither closed nor open.

1A topological property P is called divisible if for any X satisfying (P), any quotient space of X
also satisfies (P).
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Since any continuous map f : X → Y will map a path component in X into a path
component in Y , we naturally get a well-defined map

π0(f) : π0(X)→ π0(Y ), [x] 7→ [f(x)].

Obviously in the case f is a homeomorphism, the map π0(f) is a bijection whose inverse
is given by π0(f

−1).

Again, we can think of π0(X) as a quotient topological space (with the quotient
topology). For the case of topologist’s sine curve, the quotient space π0(X) consists of
two elements. Let’s use “v” to represent the vertical line segment part and use “s” to
represent the sine curve part. Then we have

π0(topologist’s sine curve) = {v, s}, Tquotient = {∅, s, {v, s}}.
This is a very bad topological space: it is not totally disconnected (in fact it is path
connected via γ(t) = s for t < 1/2 and γ(t) = v for t ≥ 1/2); AND it is not even (T1).
[One can check that the space of connected components, πc(X), is always a (T1) space
when endowed with the quotient topology.]

So although we can regard π0 as a functor mapping topological spaces X to the
quotient topological space π0(X) and mapping continuous functions f : X → Y to
π0(f) : π0(X) → π0(Y ) [which is continuous w.r.t. the quotient topology], in general
people would rather forget about the topological structure on the quotient since in
general it will not give us any useful information.

In other words, we will only regard π0(X) as a set. It is easy to check that the
maps π0(f) : π0(X) → π0(Y ) associated to continuous maps f : X → Y still satisfies
the conditions of a functor. So from path components relation we get a functor

π0 : T OP → SET , X 7→ π0(X), f 7→ π0(f).

Remark. Of course we lost a lot of information when applying the functor π0. But
this is exactly the philosophy of algebraic topology: to distinguish topological spaces
could be very hard, but very often it would be easier to distinguish objects in simpler
categories (like SET , GROUP , or VECT ORSPACE). For example, by counting the
cardinality of π0(X), we are able to distinguish many topological spaces, e.g. in Lecture
1 we have mentioned

The second group of figures are topologically different because they have different π0.
For the first group, one can either use π0 by carefully deleting points in each sides, or
by looking at π1, the fundamental group, which counts the “holes” in the figure.
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2. Continuous deformation

In Lecture 1 we have seen the importance of “continuous deformation” in topology
via pictures, but without giving it a precise definition. With general topology at hand,
we can always give a precise meaning when we talk about “continuous” objects in
abstract setting:

A continuous deformation of an object x0 in an abstract topological
space X is a continuous map f : [0, 1]→ X with f(0) = x0, which may
have some extra constraints depending on the problem.

For example, given a path γ from x0 to x1 inside a space X, a continuous deformation
of the path γ with endpoints fixed is a continuous map

F : [0, 1]→ Ω(X;x0, x1) = {γ ∈ C([0, 1], X) | γ(0) = x0, γ(1) = x1}
which satisfies conditions

F (0) = γ,

F (t)(0) = x0,

F (t)(1) = x1.

Wait a minute! We have not specify a topology on the path space Ω(X;x0, x1) yet.
Without a topology, it would make no sense to talk about the continuity of F !

Fortunately Ω(X;x0, x1) is a subspace of C([0, 1], X), on which we already have
several topologies. In the general case where X is a topological space, from the “con-
vergence point of view” the best topology on C([0, 1], X) is the compact-open topology.
[Note: we don’t want to use the product (=pointwise convergence) topology here, since
we want the limit of a sequence of path (=continuous maps) to be a path!]

More generally, consider a map f ∈ C(X, Y ), where X, Y are topological spaces. A
continuous deformation of f over a parameter space T should be a continuous map

F : T → C(X, Y ), t 7→ F (t) = ft ∈ C(X, Y )

such that ft0 = f for some t0 ∈ T , where the topology on C(X, Y ) is the compact-open
topology Tc.o.. By definition, this topology is generated by a sub-base

Sc.o. = {S(K,U) | K ⊂ X is compact and U ⊂ Y is open },
where

S(K,U) = {f ∈ C(X, Y ) | f(K) ⊂ U}.
Now suppose we have a continuous family (with parameter space T ) of maps in

C(X, Y ). That is , we have a map F ∈ C(T, C(X, Y )). This is still conceptionally
complicated. But given any such F we can define a much simpler map

G ∈M(T ×X, Y ), G(t, x) := F (t)(x).

It turns out that under mild conditions, F is continuous if and only if G is continuous!
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Proposition 2.1. Suppose X is locally compact Hausdorff, Y, T are arbitrary topolog-
ical spaces. Consider the correspondence (which is bijection)

M(T,M(X, Y ))←→M(T ×X, Y )

F (t)(x)←→ G(t, x) := F (t)(x)

Then F ∈ C(T, C(X, Y )) if and only if G ∈ C(T ×X, Y ).

Proof. (⇐=) Suppose G ∈ C(T ×X, Y ). Then given any t ∈ T , F (t) is continuous since
it can be written as the composition of continuous maps

X
jt−→ T ×X G−→ Y,

where jt(x) = (t, x) is the “canonical embedding at level t”. So F maps T into C(X, Y ).
To prove F is continuous as a map from T to C(X, Y ), it is enough to prove

(*) F−1(S(K,U)) is open in T for any compact K ⊂ X and open U ⊂ Y.

Suppose F (t) ∈ S(K,U). Then by definition of G, G({t} ×K) ⊂ U, i.e.

{t} ×K ⊂ G−1(U).

By continuity of G, G−1(U) is open in T ×X. Since K is compact, by the tube lemma
in Lecture 6, there exists open sets V 3 t in T and W ⊃ K in X such that

V ×W ⊂ G−1(U).

It follows that for any t ∈ V ,

F (t)(K) ⊂ G(V ×K) ⊂ G(V ×W ) ⊂ U.

It follows that V ⊂ F−1(S(K,U)), which proves (*).

(=⇒) Suppose F ∈ C(T, C(X, Y )). To prove G is continuous, we need to show

(**) G−1(U) is open in T ×X for any open set U ⊂ Y.

Suppose G(t, x) ∈ U, i.e. F (t)(x) ∈ U. Then F (t) ∈ S({x}, U). In PSet 5-3-1 we have
seen that if X is locally compact and Hausdorff, then

S({x}, U) =
[

compact neighborhood K of x

S(K,U).

So there exists an open neighbourhood Wx of x s.t. Wx is compact, and

F (t) ∈ S(Wx, U).

Since F is continuous, and t ∈ F−1(S(Wx, U)), there must exists an open neighborhood
V of t s.t.

V ⊂ F−1(S(Wx, U)),

i.e. G(V,Wx) ⊂ U. It follows

V ×Wx ⊂ V ×Wx ⊂ G−1(U).

This completes the proof. �
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Remark. We only used LCH in the proof of the second part. In other words, without
LCH condition we can still claim: Any function G ∈ C(T ×X, Y ) defines a continuous
family of continuous maps: F ∈ C(T, C(X, Y )).

3. Homotopy of maps

Now we introduce the most important object on which we study the path and path
components. Suppose X and Y are topological spaces and f0, f1 ∈ C(X, Y ).

Definition 3.1. We say f0, f1 ∈ C(X, Y ) are homotopic if there is a continuous map

F : [0, 1]×X → Y

such that F (0, x) = f0(x), F (1, x) = f1(x),∀x ∈ X. Such an F is called a homotopy
between f0 and f1.

Notation : If f0 is homotopic to f1, we will write

f0 ∼ f1.

In view of proposition 2.1, when X is LCH we have

f0 and f1 are homotopic

⇐⇒f0 can be deformed continuously to f1 with parameter space [0, 1]

⇐⇒f0 and f1 lie in the same path component in (C(X, Y ),Tc.o.).

In view of the remark above, even in the bad case where X is not LCH, we are still
safe to say: if f0 and f1 are homotopic, then they lie in the same path component of
(C(X, Y ),Tc.o.).

It is easy to check that homotopy gives an equivalence relation on C(X, Y ) :

• f ∼ f ,
• f1 ∼ f2 =⇒ f2 ∼ f1,
• f1 ∼ f2, f2 ∼ f3 =⇒ f1 ∼ f3.

In the case where X is LCH, this is just the equivalence relation defined by path in
C(X, Y ).

Notation : For each f ∈ C(X, Y ), we denote

[f ] = the homotopy equivalence class containing f

and we denote

[X, Y ] = C(X, Y )/∼ = the set of homotopy classes.

So if X is LCH, then [X, Y ] = π0(C(X, Y )).
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A special case: If X = {pt} is a single point set, then a continuous map f : X → Y is
equivalent to a point in Y . In this case “two continuous maps f0, f1 are homotopic” is
equivalent to “two points can be connected by a path in Y ”. In other words,

[{pt}, Y ] = π0(Y ).

Here are some natural operations on homotopy classes of maps

(1) Composition

[X, Y ]× [Y, Z]→ [X,Z]

([f ], [g]) 7→ [g ◦ f ].

(2) Pull-back

F : X0 → X1  F ∗ : [X1, Y ]→ [X0, Y ]

[f ] 7→ F ∗([f ]) = [f ◦ F ].

(3) Push-forward

F : Y0 → Y1  F∗ : [X, Y0]→ [X, Y1]

[f ] 7→ F∗([f ]) = [F ◦ f ].

One can check that these operations are well-defined, i.e. they are independent of the
choices of representatives in each class.

The simplest continuous maps are the constant maps, i.e. mapping all points in X
to a single point in Y .

Definition 3.2. f ∈ C(X, Y ) is null-homotopic if it is homotopic to a constant map.

The conception is very useful in geometry.

Example.

(1) Let Y ⊂ Rn be convex, or more generally, be a “star-shaped” region, i.e.

∃y0 ∈ Y such that ∀y ∈ Y, the line segment y0y ⊂ Y.

Then for any X,
• any map f ∈ C(X, Y ) is null-homotopic.

Reason: The homotopy from f to a constant map is given by

ghostghostF : [0, 1]×X → Y, t 7→ F (t, x) = ty0 + (1− t)f(x).

• any map f ∈ C(Y,X) is null-homotopic.
Reason: The homotopy from f to a constant map is given by

ghostghostF : [0, 1]× Y → X, t 7→ F (t, y) = f(ty0 + (1− t)y).

Definition 3.3. We say a topological space X is contractible if the identity
map IdX is null-homotopic.
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Example: Any star-shaped region in Rn is contractible.

(2) Let X = Y = S1 ⊂ C. Let fn ∈ C(X, Y ) be the map

fn(z) = zn.

We will see that all these fn are NOT homotopic to each other, and are not
null-homotopic.

(3) Let i be the inclusion map

i : Sn−1 ↪→ Bn = {x ∈ Rn
���|x| 6 1}.

Fact: There exists f ∈ C(Bn, Sn−1) with

f ◦ i = IdSn−1

if and only if IdSn−1 ∈ C(Sn−1, Sn−1) is null-homotopic.

Proof. • If such an f exists, then IdSn−1 ∼ c via

F : [0, 1]× Sn−1 → Sn−1, (t, x) 7→ f(tx),

where
F (0, x) = f(0) ∈ Sn−1

is a constant point, and

F (1, x) = f(x) = x

on Sn−1.
• Conversely if there exists F : [0, 1]× Sn−1 → Sn−1 s.t.

F (0, x) = c, F (1, x) = x.

Then we can define f : Bn → Sn−1 by

f(x) =

8<
:
F (|x|, x|x|) x 6= 0,

c x = 0.

It remains to check f is continuous at x = 0. Since Sn−1 is compact, the
continuous function F is uniformly continuous. So ∀ε > 0,∃δ > 0 s.t.

|F (t, x)− F (0, x)| < ε

for ∀t < δ and ∀x ∈ Sn−1. So f is continuous. �

Note: We will see that for any n, IdSn−1 is never null-homotopic. (This is
equivalent to Brouwer’s fixed point theorem: Any continuous function f : Bn →
Bn has a fixed point!)


