
LECTURE 2: SMOOTH MANIFOLDS

1. Smooth Manifolds: The definition

¶ Smooth functions and smooth maps.

Let U be an open set in Rn, and f : U → R a continuous function. Recall that f
is said to be a Ck-function, if all its partial derivatives of order at most k,

∂αf :=
∂|α|f

∂xα
:=

∂|α|f

(∂x1)α1 · · · (∂xn)αn
, |α| = α1 + · · ·+ αn ≤ k

exist and are continuous on U . We say that f is a C∞ function, or a smooth function,
if it is of class Ck for all positive integers k. A function f is an analytic function (or
a Cω function) if it is smooth and agrees with its Taylor series in a neighborhood of
every point. Note that not all smooth functions are analytic.

Now let U be an open set in Rn and V an open set in Rm. Let

f = (f1, · · · , fm) : U → V

be a continuous map. We say f is C∞ (or Ck, or Cω) if each component fi, 1 ≤ i ≤ m,
is a C∞ (or Ck, or Cω) function. 1

Definition 1.1. A smooth map f : U → V is a diffeomorphism if f is one-to-one and
onto, and f−1 : V → U is also smooth.

Obviously

• If f : U → V is a diffeomorphism, so is f−1.
• If f : U → V and g : V → W are diffeomorphisms, so is g ◦ f : U → W .

¶ Definition of smooth manifolds.

We would like to define smooth structures on topological manifolds so that one
can do calculus on it. In particular, we should be able to talk about smoothness of
continuous functions on a given smooth manifold M . Since near each point in M , one
has a chart {ϕ,U, V } which identify the open set U in M with the open set V in Rn,
it is natural identify any function f on U with the function f ◦ ϕ−1 on V , and use
the smoothness of f ◦ ϕ−1 to define the smoothness of f itself. This idea is of course
correct. The only issue is that a point on M could sit in many different open charts,
and the smoothness of a function at this point should be independent of the choice

1In this course we will mainly consider C∞ functions/maps. However, most definitions/theorems
can be easily extended to the Ck setting. On the other hand, Cω theory will be quite different.
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2 LECTURE 2: SMOOTH MANIFOLDS

of charts. In other words, if both ϕ and ψ are chart maps near a point, we want the
maps f ◦ ϕ−1 and f ◦ ψ−1 to be simultaneously smooth or non-smooth. This amounts
to require ϕ ◦ ψ−1 to be smooth. (Note: even though f ◦ ϕ−1 and f ◦ ψ−1 are both smooth, we

still want the map ϕ ◦ ψ−1 to be smooth so that the differentials of f ◦ ϕ−1 and f ◦ ψ−1 are nicely

related by the chain rule.) With this requirement at hand, we define

Definition 1.2. Let M be a topological manifold of dimension n. We say two charts
{ϕα, Uα, Vα} and {ϕβ, Uβ, Vβ} of M are compatible if the transition map

ϕαβ = ϕβ ◦ ϕ−1α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is a diffeomorphism. [Note that both ϕα(Uα ∩Uβ) and ϕβ(Uα ∩Uβ) are open in Rn, so
the smoothness of ϕαβ is well understood.]

Definition 1.3. (1) An atlas A on M is a collection of charts {ϕα, Uα, Vα} with⋃
α Uα = M , such that all charts in A are compatible to each other.

(2) Two atlas on M are said to be equivalent if their union is still an atlas on M .

Example. We can define three atlas on R by Ai = {ϕi,R,R} (1 ≤ i ≤ 3), where
ϕ1(x) = x, ϕ2(x) = 2x and ϕ2(x) = x3. Then A1,A2 are equivalent, but A1,A3 are
non-equivalent since

ϕ31(x) = ϕ1 ◦ ϕ−13 (x) = x1/3

is not smooth on R.

Definition 1.4. An n-dimensional smooth manifold is an n-dimensional topological
manifold M equipped with an equivalence class of atlas. This equivalence class is called
its smooth structure.

So a smooth manifold is a pair (M,A). In the future we will always omit A if there
is no confusion of the smooth structure.

Remark. Similarly one can define Ck manifolds, real analytic (=Cω) manifolds and
complex manifolds. For example, a complex manifold is a Hausdorff and second count-
able topological space that locally looks like Cn, so that the transition maps are all
holomorphic maps.
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Remark. One can also define and study infinitely dimensional manifolds. There are
many different theories on infinitely dimensional manifolds, depending on whether the
manifold is modelled locally on a Banach space, a Hilbert space, a Fréchet space etc,
and one can define smooth structures on such manifolds.

Remark. Some deep results from differential topology:

• There exist topological manifolds that do not admit smooth structure. The
first example is a compact 10-dimensional manifold found by M. Kervaire.
• If a topological manifold admits a C1 structure, it also admits a C∞ structure.
• Any manifold M admits a finite atlas consisting of dimM + 1 charts (not

necessarily connected).

2. Examples of Smooth Manifolds

¶ First examples.

Note that by definition, we immediately have

Proposition 2.1. If a topological manifold M can be covered by a single chart, then
such a chart automatically determines a smooth structure on M .

As a consequence,

• Rn and any open subset of Rn is a smooth manifold.
• The general linear group GL(n,R) that we studied last time is a smooth man-

ifold.

Example. (Graphs). For any open set U ⊂ Rm and any continuous map f : U → Rn,
the graph of f is the subset in Rm+n = Rm × Rn defined by

Γ(f) = {(x, y) | x ∈ U, y = f(x)} ⊂ Rm+n.

With the subspace topology inherited from Rm+n, Γ(f) is Hausdorff and second-
countable. It is locally Euclidean since it has a global chart {ϕ,Γ(f), U}, where

ϕ : Γ(f)→ U, ϕ(x, y) = x

is the projection onto the first factor map. [To see why ϕ is a homeomorphism: obviously ϕ
is continuous, invertible, and its inverse

ϕ−1 : U → Γ(f), ϕ−1(x) = (x, f(x))

is continuous.] So Γ(f) is a topological manifold of dimension m. Since it can be covered
by one chart, we conclude

The graph Γ(f) of any continuous function f : U ⊂ Rn → R admits
an intrinsic structure of a smooth manifold. [However, it is possible that

Γ(f) is not a smooth submanifold of Rn+1.]
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¶ The spheres as smooth manifolds.

Example. (Spheres). For each n ≥ 0, the unit n-sphere

Sn = {(x1, · · · , xn, xn+1) | (x1)2 + · · ·+ (xn)2 + (xn+1)2 = 1} ⊂ Rn+1

with the subspace topology is Hausdorff and second-countable. To show that it is
locally Euclidean, we can cover Sn by two open subsets

U+ = Sn \ {(0, · · · , 0,−1)}, U− = Sn \ {(0, · · · , 0, 1)}

and define two charts {ϕ+, U+,Rn} and {ϕ−, U−,Rn} by the stereographic projections

ϕ±(x1, · · · , xn, xn+1) =
1

1± xn+1
(x1, · · · , xn).

It is easy to check that ϕ± are continuous, invertible, and the inverse

ϕ−1± (y1, · · · , yn) =
1

1 + (y1)2 + · · ·+ (yn)2
(
2y1, · · · , 2yn,±(1− (y1)2 − · · · − (yn)2)

)
is also continuous.

It follows that on ϕ−(U+ ∩ U−) = Rn \ {0},

ϕ−+(y1, · · · , yn) = ϕ+ ◦ ϕ−1− (y1, · · · , yn)

= ϕ+

(
1

1 + |y|2
(
2y1, · · · , 2yn,−1 + |y|2

))
=

1

|y|2
(y1, · · · , yn),

which is a diffeomorphism from Rn \ {0} to itself. So these two charts are compatible.

Remark. We can also cover Sn by 2n+ 2 charts using hemispheres. More precisely, for
any 1 ≤ i ≤ n+ 1, we let

U+
i = {(x1, · · · , xn+1) ∈ Sn : xi > 0}
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be the “upper hemisphere” in the ith direction and define ϕ+
i : U+

i → Bn(1) be the
projection map

ϕ+
i (x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, xn+1),

where Bn(1) is the unit ball in Rn. Then one can check that (ϕ+
i , U

+
i , B

n(1)) are chart-
s. Similarly one can construct charts (ϕ−i , U

−
i , B

n(1)) on each “lower hemispheres”.
[Check: charts of Sn defined via hemispheres are compatible with these two charts.]

¶ The real projective spaces as smooth manifolds.

Example. (The Real Projective Spaces).

The n dimensional real projective space RPn is by definition the set of lines passing
the origin in Rn+1. To give RPn a topology, we will regard it as the quotient space

RPn = Rn+1 − {(0, · · · , 0)}
/
∼,

where the equivalent relation ∼ is given by

(x1, · · · , xn+1) ∼ (tx1, · · · , txn+1), ∀t 6= 0.

One can also regard RPn as the quotient of Sn by gluing the antipodal points

RPn = Sn/ ∼ .

Form these descriptions it is easy to see that RPn is Hausdorff and second-countable,
and in fact is compact.[Prove it.]

Usually people will denote the element (=the equivalence class or the “line”) in
RPn containing the point (x1, · · · , xn+1) by [x1 : · · · : xn+1].

Now we construct local charts on RPn. Consider the open sets

Ui = {[x1 : · · · : xn+1] | xi 6= 0}, 1 ≤ i ≤ n+ 1.

For each i, define ϕi : Ui → Rn to be
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ϕi([x
1 : · · · : xn+1]) =

(
x1

xi
, · · · , x

i−1

xi
,
xi+1

xi
, · · · , x

n+1

xi

)
.

It is not hard to check that each ϕi is well-defined, is continuous, and the inverse

ϕ−1i (y1, · · · , yn) = [y1 : · · · : yi−1 : 1 : yi : · · · : yn].

is continuous. So each (ϕi, Ui,Rn) is a chart and RPn is a topological manifold.

Finally we will show that RPn is in fact a smooth manifold. Without loss of
generality, let’s verify that ϕ1,n+1 is a diffeomorphism between

ϕ1(U1 ∩ Un+1) = {(y1, · · · , yn) | yn 6= 0} =: Vn
and

ϕn+1(U1 ∩ Un+1) = {(y1, · · · , yn) | y1 6= 0} =: V1.

In fact, by definition
ϕ1,n+1(y

1, · · · , yn) = ϕn+1 ◦ ϕ−11 (y1, · · · , yn)

= ϕn+1([1 : y1 : · · · : yn])

=

(
1

yn
,
y1

yn
, · · · , y

n−1

yn

)
which is obviously a diffeomorphism from Vn to V1. Similarly one can show that all
other transition maps ϕij are diffeomorphisms.

Remark. By a similar way one can define the n dimensional complex projective space
CPn as the space of “complex lines” in Cn and verify that it is a smooth manifold. More
generally, one can show that Grassmannian 2 Gr(k, V ), the space of all k-dimensional
linear subspaces of an n-dimensional (real or complex) vector space V , is a smooth
manifold. For details, c.f. John Lee, page 22-24.

Example. (The set of all straight lines in R2). The set of all straight lines in R2 is
a manifold. To see this, we just notice that any straight line is of the form

ax+ by + c = 0

for some a, b, c ∈ R, with two triples (a, b, c) and (a′, b′, c′) defines the same line if and
only if [a : b : c] = [a′ : b′ : c′], that is, if and only if they give the same point in RP2.
Also notice that [0 : 0 : 1] will not give us a line, while each other element in RP2 gives
us a line in R2. Thus we get a well-defined bijective map [the image is a Möbius band!]

φ : {the set of lines in R2} → RP2 \ {[0 : 0 : 1]},
ax+ by + c = 0 7→ [a : b : c].

Now we just “move” all structures on RP2 to the set of all straight lines in R2 and thus
define a smooth manifold structure.[Try to construct manifold structure by local parametriza-

tions directly.]

2Named after H. Grassmann, the founder of linear algebra!


